Master Data Management for Big Data
John R. Talburt, PhD, IQCP, CDMP
Black Oak Analytics, Inc, USA
MIT International Conference on Information Quality Workshop June 21, 2016, Ciudad Real, Spain
My Background

Currently
- Chief Scientist for Black Oak Analytics, Inc.
- Professor of Information Science and Coordinator for the Information Quality Graduate Program at the University of Arkansas at Little Rock (UALR)

Previously
- Business Leader for Data Research and Development at Acxiom Corporation
Talk Outline

- Business Case for MDM
- Technical Foundations of MDM
 - Entity Resolution
 - Entity Identity Information Management
 - Master Data Management
- The Need for Entity Resolution Analytics
- Investing in Clerical Review for Continuous Improvement
- Large-Scale MDM Using Distributed Processing
The Value Proposition for MDM
The Business Case for MDM

- Customer Satisfaction and Entity-Based Data Integration
- Better Service
- Reducing the Cost of Poor Data Quality
- MDM as Part of Data Governance
Customer Satisfaction

- MDM has its roots in the customer relationship management (CRM) industry.
- The primary goal of CRM is to improve the customer’s experience and increase customer satisfaction.
- The business motivation for CRM is to:
 - Increase customer retention rates
 - Lower customer “churn rate”
 - Gain new customers gained through social networking and referrals from satisfied customers.
 - Costs less to keep a customer than to acquire a new customer.
Better Service

- Healthcare
 - Improved clinical care, complete view patient encounters
 - Improved medical research, find related cases
 - The value proposition is “better quality of life”

- Law Enforcement
 - Many entity types- suspects, autos, airplanes, boats, phones, places, …
 - Helps to bridge the many disparate and autonomous jurisdictions
 - The value is more efficient and more effective investigation – cases closed
Reducing the Cost of Poor Data Quality

- A major cause of data quality problems is “multiple source of the same information produce different values for this information.”
 - Lee, et al, “Journey to Data Quality”
- A result of missing or ineffective MDM practices.
- Taguchi’s Loss Function - the cost of poor data quality must be considered not only in the effort to correct the immediate problem but also include all of the costs from its downstream effects.
- MDM is considered fundamental to an enterprise data quality program
MDM as Part of Data Governance (DG)

- DG is a program for managing information as an enterprise asset
- DG provides a single-point of communication and control over information in the enterprise
- DG has created new management roles devoted to data and information
 - CDO, Chief Data Officer
 - Data Stewards
 - MDM and Reference Data Management (RDF) are regarded as essential components of mature DG programs
Technical Foundations of MDM

Entity Resolution, Entity Identity Information Management, and MDM
Three Related Concepts

- Entity Resolution (ER)
- Entity Identity Information Management (EIIM)
- Master Data Management (MDM)
Entity Resolution (ER)

The process of determining whether two references in an information system are referring to the same real-world object or to different objects (Talburt, 2011)

Record-linking
Record-deduplication
Data matching
Co-reference problem
Semantic resolution

If they refer to same real-world object, they are said to be “Equivalent”
Which belong together?

- J. Talburt
 UALR T00020975

- J Talburt
 White Dr, Batesville, AR

- John Talburt
 700 Pierce, LR, AR

- John Talburt
 Hazelton Rd, Pea Ridge, AR

- J R Talburt
 Old Country Ln, Cabot, AR

- John Talburt
 Wood Sorrell Pt, LR, AR
 xxx-xx-1519

- Jerry Talburt

- John Talburt
 DOB 3/1961
Entity Identity Information Management (EIIM)

- An extension of ER in two dimensions
 - Knowledge management
 - Creating, storing, and managing the information that represents the identity of an entity
 - Entity Identity Structure (EIS)
 - Temporal
 - Maintain persistent entity identifiers over time, i.e. process to process

- Essential for
 - Effective master data management (MDM)
 - Entity-based data integration
Master Data Management (MDM)

- MDM is a collection of
 - Policies, Procedures, Services, and Infrastructure
- To support the
 - Capture, integration, and shared use
- Of
 - Accurate, timely, consistent, and complete
- Master data

David Loshin, *Master Data Management*
Hierarchy of Support

Master Data Management (MDM)

Policies (Data Governance) Processes and Procedures

Entity Identity Information Management (EIIM)

Entity Resolution (ER)
Most Common MDM Mistakes Organizations Make

- Fail to quantitatively and systematically measure and improve Entity Identity Integrity achievement (Lack of QC and Continuous Improvement)
- Apply QA processes at the sourcing step, but not at the linking step (Partial QA – Lack of Review Indicators)
- Failure to address the life cycle of entity identity information
- The EIIM information architecture is inadequate
- The EIIM process is embedded in other ETL processes
Measuring Entity Identity Integrity

- Linking Accuracy = \(\frac{TP+TN}{TP+FP+TN+FN} \)
- False Negative Rate = \(\frac{FN}{TP+FN} \)
- False Positive Rate = \(\frac{FP}{TN+FP} \)

\[\begin{align*}
R &= \text{set of References } |R|=N \\
D &= \text{All pairs in } R, \ |D|= N\cdot(N-1)/2 \\
E &= \text{Equivalent Pairs} \\
L &= \text{Pairs Linked by Process}
\end{align*} \]
Measurement Techniques

- Truth set development
 - Small, but precise and time consuming
- Benchmarking over the same dataset
 - Large and fast, but less precise
- Stratified sampling of clusters by attribute entropy
 - In between, gives reliable accuracy statistics
Quality Assurance at the Linking Step

- Good MDM systems should produce “clerical review indicators”
- Clerical review indicators are signals from the system that false positive or false negative errors might have been made for certain linking decisions
- Clerical review indicators are implemented as “exception reports” that should be reviewed by true domain experts who can decide if the error was made or not
- If errors were made, the experts should be able to override the system and make corrections – “continuous improvement”
MDM Life Cycle Management
The CSRUD Model
CSRUD Model

- Capture of Entity Identity Information
- Store and Share Entity Identity Information
- Resolve and Retrieve Entity Identifiers
- Update Entity Identity Information
- Dispose (Retire) Entity Identity Information
Capture Phase in an EIMS

- Entity References
- Link Index
- Clerical Review Indicators
- Application System
- EIM Service
- Staging
- ER: Identity Capture
- Rules
- Identity KB

Build the initial population of identities (EIS) to be managed.
Store & Share Phase

- The Identity Knowledgebase is the primary repository of identity information and provides a central point of management.
- The knowledgebase comprises the set EIS that represent each identity under management.
- EIS vary from system to system and use different formats, e.g. XML structures, relational database rows.
Update Phase (Automated)

- Entity References
- Link Index
- Clerical Review Indicators

Application System

EIM Service

Staging

ER: Identity Update

Current Identity KB

Updated Identity KB

Rules
Update Phase (Manual)

- Clerical Review Indicators
- Visualization Tool
- Assertions

Application System
EIM Service

Current Identity KB
- ER: Identity Update
- Updated Identity KB

Rules
Resolve and Retrieve (Batch)

Application System → EIM Service

Staging → ER: Identity Resolution

Uses IKB Information, but does not change it

Rules

Identity KB

Entity References → Link Index → Confidence Indicator

EIM Service

© Black Oak Analytics
Resolve & Retrieve Phase (Interactive)

Application

Identity Information

Entity Identifier

API

Application System

EIM Service

ER: Identity Resolution

Current Identity KB

Does not alter the IKB
Dispose (Retire) Phase

- Eventually, some identities will no longer be relevant or active with respect to the application.
- EIS can be moved from the IKB into an archive leaving only a placeholder in the IKB.
- Beware of schema change!
 - When the definition of EIS change, it can create a problem in the retrieval of archived information.
Pair- and Cluster-level Review Indicators

Pair-Level
- In Boolean (deterministic) systems – “Soft rules”
- In Scoring (probabilistic) systems – “Review threshold”

Cluster-Level
- Cluster Entropy
- Conflict Rules & Rationality Checks
Example: Rationality Check at the Cluster Level

Unfortunately, many organizations only perform QA at the record level, and not at the Cluster level.
MDM in the World of Big Data
New IT Paradigms
New IT Paradigm of Big Data

- Move processes to data, not data to processes
- Ingest data first, then analyze and determine model, not design model first and force data to fit
- Parse and structure data on output, not on input
- De-Normalized key-value pair data stores, not normalized entity-relation schemas
- Implicit, middleware parallelism, not explicit coding
Entity Resolution is a (Noisy) Graph Problem

Simple Undirected Graph

Match Key Graph

Match Key Generator 1
Match Key Generator 2
Match Key Generator 3
Goal: Find the Connected Components

Through a process called the “Transitive Closure” of the graph
Pre-Resolution Transitive Closure in Hadoop M/R

1. Refs
2. D1
3. Generate Match Keys
4. Generate Match Keys
5. Generate Match Keys
6. Iterative Transitive Closure Process
7. D2
8. Entity Resolution on Graph Components
9. Entity Resolution on Graph Components
10. Entity Resolution on Graph Components
11. Merge
Post-Resolution Transitive Closure

The diagram illustrates the process of post-resolution transitive closure using Hadoop Map/Reduce (Hadoop M/R) for entity resolution on different match keys. The flow starts with the input 'Refs' and progresses through multiple stages of Hadoop M/R entity resolution on various match keys ('Match Key 1', 'Match Key 2', 'Match Key 3') to produce intermediate results ('EIS'). These intermediate results are then used to compute the transitive closure of entity identifiers, leading to the final EIS output.
Incremental Transitive Closure

Sort by Match Key 1 → Hadoop M/R Entity Resolution → EIS1

Transitive Closure of Entity Identifiers from EIS 1 and Match Key 2 → Hadoop M/R Entity Resolution → EIS2

Transitive Closure of Entity Identifiers from EIS 2 and Match Key 3 → Hadoop M/R Entity Resolution → Final EIS
Questions and Discussion