
Repairing Business Process Models as Retrieved from

Source Code

María Fernández-Ropero1,2, Hajo A. Reijers1,3, Ricardo Pérez-Castillo2 and

Mario Piattini2

1Department of Mathematics and Computer Science, Eindhoven University of Technology

Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

{m.fernandezropero, h.a.reijers}@tue.nl
2Instituto de Tecnologías y Sistemas de la Información, University of Castilla-La Mancha

Paseo de la Universidad 4, 13071 Ciudad Real, Spain
3Perceptive Software

Piet Joubertstraat 4, 7315 AV Apeldoorn, The Netherlands

{marias.fernandez, ricardo.pdelcastillo, mario.piattini}@uclm.es

Abstract. The static analysis of source code has become a feasible solution to

obtain underlying business process models from existing information systems.

Due to the fact that not all information can be automatically derived from

source code (e.g., consider manual activities), such business process models

may not entirely reflect the original behavior of the organization. This paper

provides a technique to repair such business process models on the basis of

event logs collected during the execution of information systems. The technique

detects missing sequence flows regarding the event log and tidily adds these se-

quence flows to the target business process model. In order to enhance its ap-

plicability, this technique is tool-supported. Additionally, this paper provides a

case study with a real-life system to demonstrate its feasibility.

Keywords: process models, source code mining, event logs, repairing

1 Introduction

Business process management enables organizations to become more efficient, more

effective and more readily adaptable to changes than traditional, functional manage-

ment approaches. Business processes describe the organization’s operations, as well

as the roles and resources involved [1]. Sometimes, however, business processes

models do not explicitly exist in an organization. And even if an organization has

created models of its business processes, these could be outdated and misaligned with

the actual activities. In cases where business activities are supported by information

systems, reverse engineering techniques can be used to obtain business process mod-

els from these. This is often an attractive practice, since existing information systems

may embed business logic in their source code. For this reason, business process ar-

cheology has emerged as a set of techniques and tools to mine business processes

from source code. Source code contains a lot of business knowledge that has been

embedded during the information system maintenance. Thus, business process arche-

ology represents a good start point for business experts, requiring less effort than

modeling from scratch. One of these techniques is MARBLE [2], which is based on a

model-driven approach, and uses the KDM (Knowledge Discovery Metamodel)

standard to represent intermediate models.

While the analysis of source code allows the acquisition of embedded knowledge

that is not present anywhere else, their application may entail a semantic loss due to

the increase of abstraction level [3]. Business process models obtained in this way can

therefore be incomplete, could contain irrelevant information, or may even contain

ambiguities that decrease their understandability. The improvement of such a process-

es model is necessary to address these problems, which helps to have them better

reflect reality [4]. To enrich the semantics of business process models it is necessary

to consider alternative sources from which to extract knowledge. Event logs form one

such candidate. In an opposite way to business process archeology, process mining

techniques aim at obtaining useful information from event logs by means of process

discovery, conformance checking and model enhancement [5, 6]. These event logs are

recorded by information system such as enterprise resource planning (ERP) or cus-

tomer relationship management (CRM) systems, among others, i.e., process-aware

information systems (PAISs) [7]. Organizations may also operate traditional (non-

process-aware) information systems supporting their business processes, which do not

record any event during execution.

This paper presents a technique to repair business processes models as obtained by

a static analysis of source code by capturing additional information from event logs.

To develop the technique two assumptions based on our previous work were taken

into account: (1) business process models, capturing a static viewpoint, are obtained

by means of MARBLE, an adaptive framework to recover the underlying business

process models from legacy information system; and (2) event logs, representing a

dynamic viewpoint, are obtained by means of the technique proposed by Pérez-

Castillo et al. [8] in which event logs are generated from non process-aware systems,

which enables a process mining approach. Business process models obtained with

these two different techniques display similarities as well as differences. Hence, our

proposed approach finds similar tasks in both models in order to detect missing se-

quence flows by comparing both artifacts, i.e. those sequences flows that can be in-

ferred from the event log but which are not in the initial business process model. The

detected, missing sequence flows are incorporated into the target business process

model, making it more complete and accurate regarding to the event log. The actual

improvement obtained after this repair step is evaluated in the paper through a case

study using a real-life information system. The case study’s results show that the re-

paired business models are indeed more accurate and more complete than the initial

model as retrieved by reverse engineering.

The remainder of this paper is organized as follows: Section 2 presents related

work. Section 3 introduces the proposed approach to repair business processes models

using event logs. Section 4 shows some preliminary results provided by the proposed

approach using real-life systems. Finally, Section 5 presents the conclusions and di-

rections for future work.

2 Related Work

In the literature, various techniques are described to obtain business process models.

Some of these techniques consider dynamic analysis, which obtain process models

from the event logs that are recorded during system execution. These logs represent

the actual system performance and several algorithms can be used, such as the alpha

algorithm proposed by Van der Aalst et al., a genetic algorithm proposed by De

Medeiros et al., a heuristics algorithm proposed by Weijters et al., among others, to

mine the business process [9-11]. The event logs used by these algorithms are ob-

tained from process-aware information systems (PAISs) [7], i.e., information systems

whose nature facilitates the direct registration of events throughout process execution.

Although information systems that are not process-aware do not automatically record

event logs, such logs can be obtained by hand or by injecting code to trace by tech-

niques as proposed by Perez-Castillo et al. [8]. These event logs are generated when

the information system is running, and describe which tasks are executed and in what

order for a certain time period. The downside of such event logs is that not all func-

tionalities can be captured, i.e. only tasks that have been carried out at the time of

executing the injector. That is, if the injector stores the event logs for a year it is not

possible to recover the tasks that are executed, e. g., two years back, or it may not be

able to recover those tasks that hardly ever occur but are important for the system.

 Apart from dynamic analyses, a static analysis has been proposed. Static analysis

obtain process models through the syntactical analysis of the source code, e.g. by Zou

et al. [12]. They developed a framework based on a set of heuristic rules to extract

business processes following model-driven development. The framework statically

analyzes the legacy source code and applies the rules to transform pieces of source

code in business process elements. Although this work is based on the MDA (Model-

Driven Architecture) approach, standards as KDM are not considered. Ghose et

al.[13], in turn, consider other software artifacts as a set of text-based queries in doc-

umentation for extracting business knowledge, but the approach is not based on the

MDA. Perez-Castillo et al.[2], use standards in their approach to obtain process mod-

els. They propose MARBLE to obtain a first approximation of business process that is

especially useful for organizations that have never modeled their processes, while

their legacy information systems do embed knowledge during its maintenance

(knowledge that is only present in the source code, not in the documentation). Unfor-

tunately, the retrieved process models have a low abstraction level, being very close

to the code level. Furthermore, not all embedded information can be obtained using

MARBLE. Thus, the recovered process models involve several challenges to address.

Neither static nor dynamic analysis can obtain the actual and complete contours of

business processes in an organization. Adriansyah et al. [14] discuss in their work that

a retrieved model often does not describe the process executions as observed in reali-

ty, e.g., activities in the model are skipped in the log, the log contains events not de-

scribed in the model or the order execution of the tasks are different. This work com-

pares the process model with an event log of the same process. In follow up to this

observation, Fahland et al. [4] suggest to repair business process with the recorded

event logs. They obtain subprocesses in event logs not being present in the process

model and then, insert them where it is missing. This particular work assumes that the

process model has been discovered by mining process (using event logs) or by hand.

However, this is mostly realistic in PAIS settings. The present paper is focused on a

technique to repair business process using event logs that are also suitable for non-

PAISs. Thus, this work combines the static and dynamic analysis in order to improve

process models.

3 Technique for Repairing Business Process Models

The repair technique combines artifacts obtained from the static and dynamic analyses

of existing information systems, i.e., a first sketch of business process models and

event logs collected at runtime. The main goal of the technique is to detect missing

sequence flows by comparing both artifacts and build an improved business process

model containing these sequence flows. The technique has been defined under two

assumptions, which are related to the two previously mentioned techniques. Despite

these two assumptions, this approach can be adapted to other techniques with which

to reverse business process models or obtain event logs.

Assumption 1. One of the assumptions of the repair technique is that the process

models are obtained using MARBLE (Modernization Approach for Recovering Busi-

ness process from LEgacy systems) [2], a framework for obtaining business processes

from legacy information systems (LIS for short), focusing on the phase of reverse

engineering. MARBLE is based on KDM, which is recognized as an ISO/IEC 19506

standard [15] and allows abstract conceptual representations of the different views of

the architecture of legacy information systems. Afterwards, this knowledge is gradu-

ally transformed and refined down to the underlying business processes. For this pur-

pose, MARBLE is divided into four levels of abstraction and defines three transfor-

mations. In order to achieve optimal business process management, MARBLE repre-

sents business processes by means of Business Processes Model and Notation

(BPMN) [16]. This notation is a well-known graphical notation and is aimed to be

easily understandable by system analysts as well as business analysts.

Assumption 2. The second assumption is that event logs are obtained by the injec-

tion of fragments in specific parts of the information system to generate an event log

file during system execution, using the event traces injector proposed in [8]. This

approach generates event logs in MXML (Mining XML) format from non-process-

aware information systems. Although the technique is generic, the supporting tool that

is used in this work, Event Traces Injector (ETI), has been designed for object-

oriented systems. Event logs are considered as a suitable knowledge source to discov-

er what is really going on in an organization. Each event log is related to a “run” of

the process, i.e., a process instance, and provides additional information about the

resource executing or initiating the activity, the timestamp, or data elements. Process

mining [17] aims at knowledge extraction from event logs available in information

systems. Among the available process mining techniques, this paper uses the Heuris-

tic Miner algorithm. The Heuristics Miner proposed by Weijters et al. [11] uses a

heuristic approach to provide the control flow of the information system from an

event log. It is usually applied to real-life data with not too many different events, or

for carrying out further analysis in PROM [18].

Fig. 1 shows the sequence of steps carried out to obtain an improved process model

(‘Process model’). The start points of the technique are the process model and the

event logs. The steps are described in Sections 3.1 to 3.4. To facilitate their under-

standing, a running example will be progressively developed in the mentioned sec-

tions. They relate to a real-life information system, in which the technique is applied

to Villasante-Lab, a company devoted to the chemical analysis of water and waste

water (cf. Section 4).

3.1 Step 1. Obtain info tasks & diagrams

This step analyzes, on the one hand, the business process according the BPMN nota-

tion and, on the other hand, event logs according to the MXML notation. In the pro-

cess model, each diagram (BusinessProcessDiagram) contains several tasks, data

objects, and inter-connections between these. In event logs, the name of each event

corresponds to the name of the class to which it belongs and the name of the method

invoked (nameClass.nameMethod). The nameMethod is considered the task name,

while the nameClass is considered the diagram name in which the task is contained.

This step obtains which task is included in which diagram. Diagrams are classified

as fine-grained or coarse-grained diagrams in order to apply different treatments de-

pending on the type of granularity (e.g., in an object-oriented system, MARBLE

transforms some classes in BPMN diagrams and other as tasks inside another diagram

while ETI considers each class as a diagram). This classification is made according to

a proposed limit. This signifies that if a diagram contains fewer elements than this

limit specified as the number of tasks, then that diagram is considered as a fine-

grained diagram.

Fig. 1. Technique to repair BPMN using Event logs

Process

model’

Info Tasks

& Diagrams

BPMN

Info Tasks

& Diagrams

Event logs

Similar

Tasks

Heuristics Net

mined using

PROM

Edges to

insert

TECHNIQUE OUTPUTINPUT

1. Obtain info

tasks &
diagrams

2. Obtain

similar tasks

3. Obtain

edges to
insert

4. Insert

edges

Process

model

Event

Logs

1. Obtain info

tasks &
diagrams

To continue with the running example, Table 1 shows the diagrams obtained after

applying both techniques to Villasante-Lab and the number of tasks in each of these.

As the tables show, most MXML diagrams are fine-grained and contain very few

tasks (usually one) while the BPMN part contains less fine-grained diagrams. Thus,

some MXML diagrams correspond (or are equivalent) to tasks in BPMN diagrams. In

this running example, the limit to characterize fine-grained diagrams is one task. Be-

sides, a task may contain several occurrences in different diagrams as MXML tasks

getUserManager and setInvoiceManager in Table 1.

3.2 Step 2. Obtain similar tasks.

The information mined from information system using both techniques (MARBLE

and Event Traces Injector) displays the following differences:

 Different types of granularity. Depending on the extraction techniques, the dia-

grams show different types of granularity, e.g. in an object-oriented system,

MARBLE considers some classes as BPMN diagrams, while other classes are con-

sidered tasks inside another diagram, whereas ETI considers classes as diagrams.

Table 1. Extract of tasks Information. BPMN

 Name task Name diagram Type Diagram

B
P

M
N

BaseZoneController AddPointAdminController Coarse

getUserManager BaseUserController Coarse

getClientManager BaseClientController Coarse

initBinder AnalysisBean Coarse

doPrepareView AnalysisBean Coarse

searchZoneNoHistoricas AnalysisDAO Coarse

searchZone AnalysisDAO Coarse

filterUser AnalysisDAO Coarse

convertDissolutionToDissolutionBean BaseDissolutionController Coarse

calculateTotal BaseDissolutionController Coarse

Transform PdfExport Fine

resolveException ExceptionResolve Fine

M
X

M
L

setZoneManager BaseZoneController Fine

getUserManager AuthenticationManager Coarse

getUserManager BaseUserController Coarse

setRolManager BaseRolController Fine

setInvoiceManager BaseInvoiceController Fine

setInvoiceManager BaseLinesInvoiceController Fine

setDissolutionManager BaseDissolutionController Fine

getClientManager BaseClientController Coarse

initBinder BaseClientController Coarse

searchZoneNoHistoricas ClientManagerImpl Coarse

doHandle IndexController Fine

searchZone ClientManagerImpl Coarse

 Not covering the same number of tasks. While the BPMN model contains all the

business tasks derived from source code, the MXML model only contains those

tasks executed during the ETI execution during a certain time. The executed tasks

outside the execution period are not recorded and neither are those tasks that rarely

occur but are important for the system. Following with the running example,

Villasante-Lab, 368 business tasks have been obtained in the BPMN model while

only 96 tasks appeared in the MXML model. This represents that the execution of

this information system during that time only executed 26% of business tasks of

the whole instrumented information system.

 Similar tasks. The tasks used in these two models also display similarities. The

great challenge is to know which tasks of the MXML model correspond to tasks of

the BPMN model (see Fig. 2). This is done by computing the syntactic distance of

their name labels. When a MXML task is contained in a fine-grained process, it is

necessary to compare the MXML diagram with each BPMN task (due to different

granularities) as well as to compare the names of the MXML and BPMN tasks.

Fig. 2. Comparison BPMN and MXML: Diagrams framed in solid line are similar. Dotted

MXML diagrams are tasks in dotted BPMN diagrams

6

11

1

31

1

1

4

8

1

11

4

2

1

18

19

29

18

66

21

97

2

18

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

GenDAO

XmlExport

GenericoViews

Validation

PdfExport

MensajeIU

ListenerAplicacion

Hibernate3DaoSupport

ExceptionResolver

AddPuntoAdminController

BaseUsuarioController

BaseRolController

IndexController

BaseFacturaController

BaseDisolucionController

BaseClienteController

BaseCalibracionController

AnalisisBean

Analisis

AnalisisDAO

HashUtils

AuthenticationManager

Number of Tasks

D
ia

g
ra

m
 i
n

 B
P

M
N

13

1

2

3

18

6

23

1

1

1

4

1

4

1

1

1

3

1

1

1

1

4

1

1

1

1

0 5 10 15 20 25 30

ClienteManagerImpl

RolManagerImpl

ZonaManagerImpl

FacturaManagerImpl

DisolucionManagerImpl

CalibracionManagerImpl

AnalisisManagerImpl

BaseZonaController

BaseAnalisisController

BasePuntoCalibracionController

BaseClienteController

BaseRolController

BaseUsuarioController

BaseLineasAnalisisController

BaseDisolucionController

BaseCalibracionController

AuthenticationManager

BaseFacturaController

BaseLineasFacturaController

RoleVoter

IndexController

UsuarioManagerImpl

LogoutController

ListClienteController

InsertEntryClienteController

ClienteBean

Numer of tasks

D
ia

g
ra

m
 i
n

 M
X

M
L

13

1

2

3

18

6

23

1

1

1

4

1

4

1

1

1

3

1

1

1

1

4

1

1

1

1

0 5 10 15 20 25 30

ClienteManagerImpl

RolManagerImpl

ZonaManagerImpl

FacturaManagerImpl

DisolucionManagerImpl

CalibracionManagerImpl

AnalisisManagerImpl

BaseZonaController

BaseAnalisisController

BasePuntoCalibracionController

BaseClienteController

BaseRolController

BaseUsuarioController

BaseLineasAnalisisController

BaseDisolucionController

BaseCalibracionController

AuthenticationManager

BaseFacturaController

BaseLineasFacturaController

RoleVoter

IndexController

UsuarioManagerImpl

LogoutController

ListClienteController

InsertEntryClienteController

ClienteBean

Numer of tasks

D
ia

g
ra

m
 i
n

 M
X

M
L

Thus, step 2 selects tasks that are similar in process model and event logs. The step

uses the information obtained in the previous step to calculate the distance between

two tasks of the two artifacts. If the MXML task is contained in a fine-grained dia-

gram the distance between the BPMN task and MXML diagram is calculated.

The syntactic similarity is calculated using the Levenshtein distance [19] of the la-

bels as Algorithms 1 to 3 show.

Algorithm 1: Obtaining Similar Tasks.

1 getSimilarTasks(Info InfoBPMN, Info InfoMXML)

2 List similarTasks;

3 for(tb:InfoBPPMN.getTasks()) do

4 for(tm:InfoMXML.getTasks()) do

5 if((getSimilarity(tb,tm))>=LIMIT)then

6 similarTasks.add(tb,tm);

7 if(tm.getDiagram().getType()==FINE_GRAINE)then

8 if ((getSimilarity (tb,tm.getDiagram()))>=LIMIT) then

9 similarTasks.add(tb,tm.getDiagram());

10 return similarTasks;

Algorithm 2: Obtaining the syntactic similarity between task names

1 getSimilarity (Task t1, Task t2)

2 double similarity;

3 double distance = LevenshteinDistance(t1.name, t2.name);

4 similarity = 1 – distance/max(t1.name.length,t2.name.length)

5 List adjacentT1 = getAdjacent(t1);

6 List adjacentT2 = getAdjacent(t2);

7 for(at1: adjacentT1)do

8 for(at2: adjacentT2)do

9 similarity + =(getSimilarity(at1,at2)/10);

10 return similarity;

Algorithm 3: Obtaining the similarity between a task and a diagram

1 getSimilarity (Task t, Diagram t)

2 double distance= LevenshteinDistance(t.name, d.name);

3 return 1 – distance/max(t.name.length,d.name.length);

Table 2. Extract of Similar Tasks

BPMN Task MXML Task Similarity

BaseZoneController setZoneManager 1

getUserManager getUserManager 1

getRolManager setRolManager 0.923076923

BaseRolController setRolManager 1

BaseInvoiceController setInvoiceManager 1

searchZoneNoHistoricas searchZoneNoHistoricas 1

searchZone searchZone 1

filterUser filterUser 1

searchTypeAnalysis searchTypeAnalysis 1

searchPointCalibration searchPointsCalibration 0.956521739

searchLinesDissolution searchLinesDissolution 1

vote vote 1

authenticate authenticate 1

After applying step 2 and following up with the running example, 45 similar tasks

were detected, as shown in Table 2. MXML tasks in bold symbolize that these tasks

are contained in a fine-grained process which are related to BPMN tasks. In this case,

the used limit for the similarity between tasks is 0.9.

3.3 Step 3. Obtain missing sequence flows to be added.

This step uses the Heuristics Net obtained using PROM tool [18] and the set of simi-

lar tasks to determine which edges are candidates to be inserted. The source and target

of an edge must be in the same diagram in the BPMN. Algorithm 4 shows the proce-

dure used in this step. For each edge, the source and target task are searched from the

set of similar tasks (line 5-6). If there are BPMN tasks similar to both tasks (source

and target), then the occurrence of BPMN tasks included in the same BPMN diagram

are checked (line 11). If the MXML target task has no similar BPMN task (line 14),

an intermediate task is then searched (line 15-16). In this case, the obtained edge is

induced by transitivity. Similarly, if the MXML source task has no similar BPMN

task (line 25), an intermediate task is also searched (line 26-27).

To follow up with the running example, in this step 145 edges are studied, obtain-

ing from Heuristics Net. After applying the third step 14 direct edges and 11 edges are

transitively obtained as is shown in Table 3. However, edges with reflexive flows

(same source and target) are not inserted in the model since they do not provide addi-

tional semantics.

Algorithm 4: Obtaining Edges to insert.

1 getSimilarEdges(HeuristicsNet h, similarTasks)

2 List similarDirectEdges;

3 List similarInducedEdges;

4 for(edge: h.getEdges()) do

5 List similarBPMNsources = getBPMNSimilar(edge.source, similarTasks);

6 List similarBPMNtarget = getBPMNSimilar(edge.target, similarTasks);

7 if(!similarBPMNsources.isEmpty())then

8 if(!similarBPMNtarget.isEmpty())then

9 for (Task source: similarBPMNsources) do

10 for(Task target: similarBPMNtarget) do

11 if(source.getDiagram()==target.getDiagram() &&

12 source!=target) then

13 similarDirectEdges.add(new Edge(source,target));

14 else then

15 for(intermediateEdge: h.getEdges()) do

16 if(intermediateEdge.source == edge.target) then

17 List similarBPMNtarget=

18 getBPMNSimilar(intermediateEdge.target,similarTasks);

19 if(!similarBPMNtarget.isEmpty())then

20 for (Task source: similarBPMNsources) do

21 for(Task target: similarBPMNtarget) do

22 if(source.getDiagram()==target.getDiagram() &&

23 source!=target) then

24 similarInducedEdges.add(new Edge(source,target));

25 else then

26 for(intermediateEdge: h.getEdges()) do

27 if(intermediateEdge.target == edge.source)then

28 List similarBPMNtarget=getBPMNSimilar(intermediateEdge.target,

29 similarTasks);

30 if(!similarBPMNtarget.isEmpty())then

31 for (Task source: similarBPMNsources) do

32 for(Task target: similarBPMNtarget) do

33 if(source.getDiagram()==target.getDiagram() &&

34 source!=target) then

35 similarInducedEdges.add(new Edge(source,target));

36 return similarDirectEdges, similarInducedEdges;

3.4 Step 4. Insert missing sequence flows.

In the last step, the edges obtained in the previous step (see Table 3) are added to the

process model. For each edge, its source task and its target task are located in the

diagram and the sequence flow between both of these does not exist, the sequence

flow is added. In the running example, 25 sequence flows (SF) are inserted in the

process model since none of these previously existed.

Table 3. Sequence Flows to insert

 BPMN Source Task BPMN Target Task BPMN Diagram

D
ir

ec
t
S

eq
u

en
ce

 F
lo

w
s

getAnalysisManager BaseAnalysisController AnalysisBean

BaseAnalysisController getAnalysisManager AnalysisBean

getCalibrationManager BasePointCalibrationController BaseCalibrationController

BasePointCalibrationController getCalibrationManager BaseCalibrationController

doHandle doPrepareView AnalysisBean

initBinder doHandle AnalysisBean

getDissolutionManager BaseDissolutionController BaseDissolutionController

BaseDissolutionController getDissolutionManager BaseDissolutionController

getInvoiceManager BaseInvoiceController BaseInvoiceController

BaseInvoiceController getInvoiceManager BaseInvoiceController

getRolManager BaseRolController BaseRolController

BaseRolController getRolManager BaseRolController

getZoneManager BaseZoneController AddPointAdminController

BaseZoneController getZoneManager AddPointAdminController

T
ra

n
si

ti
v
e

S
eq

u
en

ce
 F

lo
w

s PaginateAnalysisFiltered searchTypeAnalysis AnalysisDAO

insertAnalysis searchTypeAnalysis AnalysisDAO

searchAllClient searchZone AnalysisDAO

searchPointSample PaginateDissolutionsFiltered AnalysisDAO

searchTypeAnalysis searchAllClient AnalysisDAO

searchZone searchPointSample AnalysisDAO

searchCalibration searchPointCalibration AnalysisDAO

searchPointCalibration searchCalibration AnalysisDAO

PaginateDissolutionsFiltered searchLinesDissolution AnalysisDAO

searchLinesDissolution searchSubstanceReactive AnalysisDAO

searchSubstanceReactive searchSubstanceOfAnalysis AnalysisDAO

4 Case Study

This section provides a case study concerning Villasante-Lab, in particular the system

presented in the running example. The case study has been conducted following the

formal protocol developed by Runeson et al. [20] for conducting case studies in the

software engineering field. The following sections show the stages of this protocol:

the design, selection procedure, execution procedure and data collection, analysis and

interpretation, and finally, the threats to validity.

4.1 Case study design

The object of this study is the proposed repair technique, while the purpose is the

evaluation of its effectiveness in a real-life context in terms of accurateness and com-

pleteness. The following research questions (RQ) are established in order to carry out

the case study:

RQ1: Are repaired business models more accurate than preliminary models obtained

by reverse engineering from source code?

RQ2: Are repaired business models more complete than preliminary models obtained

by reverse engineering from source code?
The case study follows the embedded case study design according to the classifica-

tion proposed by Yin [21], since the case study consists of multiple units of analysis.

The independent variables used in this study are business processes models. As de-

pendent variables, conformance checking techniques are used in order to measure the

fit degree between event logs and the target business process model after applying the

technique. Conformance checking compares the observed and modeled behavior (i.e.,
event log). Hence, to answer the question RQ1, the dependent variable is the fitness

value which is often seen as the most important quality dimension for comparing

model and log [17, 22]. The fitness values vary between 0 and 1. A model has a per-

fect fitness (i.e., 1) if each trace in the event log can be replayed by the process model

from beginning to end. To address question RQ2, as independent variable the density

of the business process model is used, i.e., the ratio of the total number of edges in a

process model to the theoretically maximum number of edges. The density, after in-

serting sequence flows, can only increase therefore this evaluation shows what to

extent in a realistic case. RQ1 and RQ2 are therefore evaluated by means of quantita-

tive research together with a qualitative evaluation, which focuses on the effective-

ness of the proposed repair technique.

4.2 Case selection procedure

In order to select the case under study the following set of selection criteria are formu-

lated: (1) the system should be a real-life information system currently in production;

(2) the size of the system should be greater to 20 KLOC (thousands of lines of source

code) to make it more likely that the system under study supports more than a single

business process; (3) the system should be written in Java language to be able to use

the supporting tools (MARBLE and Event Traces Injector).

After analyzing a dozen of information systems of partner companies according to

criteria, the selected case was Villasante-Lab, a web application of 26 KLOC devoted

to support operations of a chemical laboratory of the water and waste industry.

4.3 Execution procedure and data collection

The procedure to carry out the case study consists of the following steps according to

the proposed technique. Particular details of the execution are shown in the running

example developed throughout Section 3.

1. Business process models are mined from the source code using MARBLE.

2. Event logs are obtained using the Event Traces Injector.

3. The repair technique is applied using the artifacts generated according to the de-

scribed steps. In order to facilitate its execution, the technique has been imple-

mented as a plug-in in the PROM tool.

4. The fitness in both business process models – the original from information and

repaired using the proposed technique – is measured using the replayer proposed

by Adriansyah et al. [22]. This technique is developed as a plug-in in the PROM

tool. The fitness value is collected to carry out the conformance checking.

5. After the whole execution, the collected information is statistically analyzed to an-

swer the research questions.

Table 4. Case Study’s statistics

BP model #tasks Initial Final #inserted
SF

Density
gain Density #SF Density #SF

GenDAO 6 0.1333 2 0.1333 2 0 0
XmlExport 11 0.0355 60 0.0355 60 0 0

GenericViews 1 0 0 0 0 0 0
Validation 31 0.0448 35 0.0448 35 0 0
PdfExport 1 0 0 0 0 0 0
MessageIU 0 0 0 0 0 0 0
ListenerAplication 4 0.2222 2 0.2222 2 0 0
Hibernate3DaoSupport 8 0.1429 4 0.1429 4 0 0
ExceptionResolve 1 2.0000 0 2.0000 0 0 0
AddPointAdminController 11 0.0175 3 0.0292 5 2 0.0117

BaseUserController 4 0.0667 1 0.0667 1 0 0
BaseRolController 2 0.1667 1 0.5000 3 2 0.3333
IndexController 0 0 0 0 0 0 0
BaseInvoiceController 18 0.1087 28 0.1159 30 2 0.0072
BaseDissolutionController 19 0.1082 25 0.1169 27 2 0.0087
BaseClientController 29 0.1261 80 0.1261 80 0 0
BaseCalibrationController 18 0.0627 27 0.0650 29 2 0.0023
AnalysisBean 66 0.0382 255 0.0386 259 4 0.0004

Analysis 21 0 0 0 0 0 0
AnalysisDAO 97 0.0265 124 0.0279 135 11 0.0014
HashUtils 2 0.6667 0 0.6667 0 0 0
AuthenticationManager 18 0.0342 4 0.0342 4 0 0

TOTAL 368 0.0096 651 0.0100 676 25 0.0004

4.4 Analysis and interpretation

After the full execution of the case study, the values of the fitness were collected for

the business process model. Although missing sequence flows were only detected in

seven business process diagrams, as Table 3 shows, the fitness was calculated for the

whole process model. The results demonstrated that the fitness of the repaired BP

model (0.6064) is greater than the original fitness (0.3804), i.e., the repaired model

fits 59.41% better to the observed behavior. However, the fitness is not yet close to 1

since, as was shown in Section 3.2: only 26% of business tasks of the whole infor-

mation system are captured in the event logs.

Table 4 summarizes the statistics of the case study. Once the BPMN, the MXML

and the Heuristic Net were available, the total time spent on carrying out the repair

was 973 milliseconds. In all the cases the density gain (final density - initial density)

was positive, even reaching a 33.33% gain.

Hence, the research question RQ1 may be positively answered owing to the fitness

has increased, i.e., the repaired business models are more accurate than the prelimi-

nary model obtained by reverse engineering from source code. Similarly, the research

question RQ2 may be positively answered since the final model is more connected

and therefore more complete.

4.5 Threats to validity

This section presents the threats to the validity of this case study and possible actions

to address them. The threats are divided in three types of validity: internal, construct

and external validity.

Regarding the internal validity, the study considers a process model and event logs

obtained from an information system. However, the study may be replicated by using

more information systems, to consider a larger sample of process models. Besides, the

support tools (MARBLE and ETI) could be a factor that affects the case study results

since the technique depends on the settings of retrieved process model and event logs.

With regard to construct validity, the study considers measures to evaluate the re-

search question. Nevertheless, there are other measures in literature that may be used

instead. Hence, additional measures should be evaluated in the future, such as shown

in [3]. Another threat to construct validity is the similarity algorithm used in step 2 to

obtain similar tasks (Algorithm 1). In order to address this threat, other possible simi-

larity algorithms may be considered as e.g., including the semantic similarity.

Concerning the external validity, this study considers the whole population to be

business process models retrieved by reverse engineering from legacy information

systems as well as event logs obtained from the same information system. However,

the obtained results obtained cannot be strictly generalized to all types of information.

This threat may be mitigated by replicating the study using systems implemented in

different platforms.

5 Conclusions and Future work

Reverse engineering has become a feasible solution to mine business processes mod-

els from existing information systems. Unfortunately, these retrieved business pro-

cesses models entail some challenges that are necessary to address if synch models

form the basis for properly managing these business processes.

Incompleteness is one such important challenge to deal with in a retrieved business

processes model, since data are distributed across several sources. Missing sequence

flows between elements decreases the understandability of the model since it may not

reflect the real behavior of an organization. In order to address this challenge, this

paper present a technique for repairing business processes models obtained from in-

formation systems using event logs. The technique builds on two assumptions: (1)

business process models, which represent the static viewpoint of the organization, are

mined by the archeology tool MARBLE, which is an adaptive framework to recover

business process models underlying legacy information system; and (2) event logs,

which represent the dynamic viewpoint of an organization, are obtained by means of

the technique proposed in [8], since event logs cannot automatically be generated

from non-process-aware systems. Despite these assumptions, the main ideas of this

approach can be easily adapted to other reverse engineering techniques and platforms.

In fact, to ensure its feasibility this technique has been validated by means of an in-

dustrial case study. The results of this case study show that the fitness of the process

model increases after applying the technique, i.e., repairing business process model

leads to a more faithful representation of the observed behavior.
Future work will aim at incorporating a mechanism to calculate the semantic dis-

tance between two tasks. Besides, with both mechanisms (syntactic and semantic
similarity) can be performed a grouping of similar tasks in order to decrease the num-

ber of fine-grained tasks, i.e., those tasks that do not perform a real business activity.

Finally, a mechanism is called for to detect tasks’ labels which are poor in descriptive

quality, i.e., those task labels that have several occurrences in the model and do not

clearly represent their purpose.

6 Acknowledgments

This work was supported by the FPU Spanish Program and the R&D projects

GEODAS (TIN2012-39493-C03-01), PEGASO /MAGO (TIN2009-13718-C02-01)

and ARMONIAS (PII2I09-0223-7948). This work has been additionally supported by

Eindhoven University of Technology.

7 References

1. Weske, M.: Business Process Management: Concepts, Languages, Architectures.

Springer-Verlag Berlin Heidelberg, Leipzig, Germany (2007)

2. Pérez-Castillo, R., García-Rodríguez de Guzmán, I., Piattini, M.: Business Process

Archeology using MARBLE. Information and Software Technology (2011)

3. Fernández-Ropero, M., Pérez-Castillo, R., Caballero, I., Piattini, M.: Quality-Driven

Business Process Refactoring. International Conference on Business Information Systems

(ICBIS 2012), pp. 960-966, Paris, France (2012)

4. Fahland, D., Aalst, W.M.P.v.d.: Repairing Process Models to Reflect Reality. (2012)

5. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of

Business Processes. Springer (2011)

6. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves de

Medeiros, A., Song, M., Verbeek, H.: Business process mining: An industrial application.

Information Systems 32, 713-732 (2007)

7. Dumas, M., Van Der Aalst, W., Ter Hofstede, A.: Process-aware information systems.

Wiley Online Library (2005)

8. Pérez-Castillo, R., Weber, B., García Rodríguez de Guzmán, I., Piattini, M.: Generating

Event Logs from Non-Process-Aware Systems Enabling Business Process Mining. Enterprise

Information System Journal 5, 301–335 (2011)

9. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process

models from event logs. IEEE Transactions on Knowledge and Data Engineering 16, 1128-

1142 (2004)

10. De Medeiros, A.K.A., Weijters, A., Van Der Aalst, W.: Using genetic algorithms to mine

process models: representation, operators and results. Beta, Research School for Operations

Management and Logistics (2005)

11. Weijters, A., van der Aalst, W.M.P., de Medeiros, A.K.A.: Process mining with the

heuristics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP 166, (2006)

12. Zou, Y., Hung, M.: An Approach for Extracting Workflows from E-Commerce

Applications. Proceedings of the Fourteenth International Conference on Program

Comprehension, pp. 127-136. IEEE Computer Society (2006)

13. Ghose, A., Koliadis, G., Chueng, A.: Process discovery from model and text artefacts. In:

Services, 2007 IEEE Congress on, pp. 167-174. IEEE, (Year)

14. Adriansyah, A., van Dongen, B., Van der Aalst, W.: Conformance checking using cost-

based fitness analysis. pp. 55-64. IEEE, (Year)

15. ISO/IEC: ISO/IEC 19506:2012. Information technology -- Object Management Group

Architecture-Driven Modernization (ADM) -- Knowledge Discovery Meta-Model (KDM), pp.

331. ISO/IEC (2012)

16. http://www.omg.org/spec/BPMN/2.0/PDF/

17. van der Aalst, W.: Process Mining: Overview and Opportunities. ACM Transactions on

Management Information Systems (TMIS) 3, 7 (2012)

18. Promtools.org: ProM Tool. (2010)

19. Lcvenshtcin, V.: BINARY coors CAPABLE or ‘CORRECTING DELETIONS,

INSERTIONS, AND REVERSALS. In: Soviet Physics-Doklady. (Year)

20. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empirical Softw. Eng. 14, 131-164 (2009)

21. Yin, R.K.: Case study research. Design and methods. Sage, London (2003)

22. van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process models

for conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery (2012)

http://www.omg.org/spec/BPMN/2.0/PDF/

	1 Introduction
	2 Related Work
	3 Technique for Repairing Business Process Models
	3.1 Step 1. Obtain info tasks & diagrams
	3.2 Step 2. Obtain similar tasks.
	3.3 Step 3. Obtain missing sequence flows to be added.
	3.4 Step 4. Insert missing sequence flows.

	4 Case Study
	4.1 Case study design
	4.2 Case selection procedure
	4.3 Execution procedure and data collection
	4.4 Analysis and interpretation
	4.5 Threats to validity

	5 Conclusions and Future work
	6 Acknowledgments
	7 References

