
How Does Refactoring Affect Understandability of

Business Process Models?

Ricardo Pérez-Castillo, Maria Fernández-Ropero, Mario

Piattini

Instituto de Tecnologías y Sistemas de Información (ITSI),

University of Castilla-La Mancha,
Paseo de la Universidad 4, 13071, Ciudad Real, Spain

[ricardo.pdelcastillo, marias.fernandez,

mario.piattini]@uclm.es

Danilo Caivano

 Department of Informatics, University of Bari,

Via E. Orabona, 4, 70126 Bari, Italy
caivano@di.uniba.it

Abstract—Business process refactoring techniques have been

often provided for business process manually modeled.

Unfortunately, no many refactoring techniques lie in reversing

business process models obtained from existing information

systems, which need, even more, to be refactored. Hence, there is

no strong empirical evidence on how the understandability of

business process models is affected by this kind of refactoring

techniques. This paper is aimed at providing a case study with

two real-life information systems, from which 40 business process

models were obtained by reverse engineering. The empirical

study attempts to quantify the effect to the understandability of

the order of refactoring operators as well as the previous

refactoring actions. The main implication of the obtained results

are a set of rules that may be used to optimize the

understandability by means of the prioritization and

configuration of refactoring techniques specially developed for
business process models retrieved by reverse engineering.

Keywords-Business Process, Refactoring, Understandability

I. INTRODUCTION

Business process models depict the sequence of coordinated
activities that an organization carried out to achieve their
business goal [22]. Business processes models are considered
one of the most important assets for organizations due to two
main reasons. An appropriate management of business process
models first helps companies to quickly adapt their business
goals and structures to environmental changes while
maintaining or even improving their competitiveness [10].
Secondly, from a software engineering viewpoint, business
process models are the starting point for obtaining the
requirements of new-development or maintenance projects
[19].

Since business processes exist within organization in an
intangible way, business process modeling provides tangible
descriptions of them allowing their management.
Unfortunately, not all business processes are modeled in the
organization, or when business processes are modeled, these
might be out of date and therefore could be misaligned
regarding the enterprise information systems that give support
to such processes [9]. Similarly to the chicken-and-egg
dilemma, there is no way to truly know which came first,
business process models or enterprise information systems. In

fact, outdated and misaligned business process models
(together with organizations that deal with business process
modeling at the first time) are the key motivations for reverse
engineering techniques devoted to retrieving the actual
business process models supported by the existing information
systems [17, 20].

Reverse engineering techniques for obtaining business
process models are often less error-prone and time-consuming
than manual (re-)modeling from scratch. However, reverse
engineering techniques imply an inherent semantic loss due to
the abstraction increase [2]. As a result, although outdated and
misalignment problems are addressed, quality of the retrieved
models is eroded. Reverse engineering techniques could
retrieve, for example, incomplete or inaccurate business
process models (i.e., with missing and wrong elements), or
even modes with inadequate understandability and
modifiability levels (e.g., with a vast amount of fine-grained
and ambiguity elements) [7].

In order to cope with understandability and modifiability
faults, refactoring of business process models has been widely
used [7]. These techniques change the internal structure of
business process models without altering or modifying their
external behavior. There exist in literature several refactoring
approaches to be applied with business process models [3, 11,
21]. Unfortunately, there are no refactoring techniques
specially developed for those models obtained through reverse
engineering and some of their peculiarities such as missing
elements, mining of non-relevant elements, fine granularity,
and so on. In addition to this drawback, the main problem is
that current refactoring techniques often apply several
refactoring operators to deal with different bad smells, i.e.,
refactoring opportunities (e.g., non-relevant elements, fine-
grained elements, etc.). The application of different refactoring
operators is commonly done in an arbitrary way [7].
Nevertheless, it has been demonstrated that the order and
subset of refactoring operators lead to different results in terms
of the understandability and modifiability gain [6].

This paper therefore focuses on the assessment and
optimization of the understandability of business process
models during refactoring. Hence, this paper tries to provide a
set of arguments and insights through empirical validation so

that the community can have a better answer to the question:
how affect refactoring to the business process model
understandability? In order to provide the mentioned insights
for such answer this paper conducts a case study with two
industrial information systems, from which 40 business process
models were first obtained by reverse engineering. After that,
those models were refactored by using IBUPROFEN [6], a
refactoring approach, by setting up different orders and subsets
of refactoring operators. IBUPROFEN is used in this study
since this approach and its supporting tools were specially
developed for refactoring business process models obtained by
reverse engineering from existing source code. Finally, all the
obtained business process models are inspected to evaluate the
understandability gains and determine the best configurations.

The remainder of this paper is organized as follows. Section
II briefly presents related work. Section III introduces
IBUPROFEN, the approach used for refactoring. Section IV
explains the case study in detail. Finally, Section V discusses
conclusions and future work.

II. RELATED WORK

Business process management has become a valuable
activity for managing organizations from an operational
perspective. Dijkman et al. [4] provide various techniques for
improving their management as merging, mining, refactoring,
re-use, among other. Particularly, refactoring has been used for
several authors in literature for improving the quality degree of
business process models. For example, Weber et al. [21] collect
a catalogue of process model smells for identifying refactoring
opportunities and provide a set of behavior-preserving
techniques for refactoring to avoid redundancies and increase
in the complexity of the model. Similarly, Dijkman et al. [3]
show a development of a technique based on metrics to detect
refactoring opportunities and La Rosa et al. [11] identify
patterns to reduce the model complexity through compacting,
compositing, merging, amoung other. Leopold et al. [12], for
their part, focus on refactoring of activity labels in a business
process model following a verb-object style.

Concerning to the order of application of the refactoring
operators or the selection of a sub-set of operators, previous
approaches rely on the expert decision, or simply define an
arbitrary sub-set and order. Although Gambini et al. [8]
propose the automation of de business process models
refactoring through a technique for automatically fixing the
refactoring scenarios using Petri nets, the order of application is
not mentioned. Fernandez-Ropero et al. [6] demonstrate that
the order of application of refactoring operators affect the
understandability and modifiability. However, that preliminary
work does not assess the best sub-sets or application orders to
achieve the highest understandability.

III. IBUPROFEN

IBUPROFEN [6] (Improvement and BUsiness Process
Refactoring OF Embedded Noise) is a framework with which
to refactor business process models particularly retrieved by
reverse engineering. IBUPROFEN allows applying different
refactoring operators taking into account the assessment of
various measures related to the modifiability and

understandability of business process models [7] such as
density, size, connectivity, separability, etc.

IBUPROFEN is supported by a tool specially designed for
business process models represented according to the BPMN
(Business Process Modeling Notation) [14]. The tool has being
implemented as an EclipseTM plug-in [1]. Hence, the supporting
tool can be used in combination with other Eclipse™ plug-ins
aimed, for example, at obtaining business process models from
the source code of existing information systems.

IBUPROFEN provides a set of ten refactoring operators
(see TABLE I) grouped into three categories in terms of the
bad smells that the operators address: (i) relevant elements
maximization; (ii) fine-grain granularity reduction; and finally,
(iii) completeness maximization.

A. Relevant Elements maximization

This category groups five refactoring operators (R1 to R5)
responsible for removing non-relevant elements found in
business process models as isolated tasks, sheet tasks and
inconsistencies. Moreover, nested gateways can origin an
increase in the complexity of business process models, thus
these are replaced by equivalent, light-weight structures.

R1 removes nodes (i.e., tasks, gateways or events) in the
business process model that are not connected with any other
node in the business process model. R2 discards elements in
the business process model that are considered sheet nodes.
These nodes can be gateways or intermediate events that have
no successor nodes. In turn, R3 merges consecutive gateways
of the same type when the first gateway has only one output
and the second has only one input, i.e., nested gateways. R4
removes sequence flows in the business process model that are
considered as inconsistent. When two tasks are connected
through a cut node, as an intermediate event or a gateway, and
through a direct sequence flow this sequence flow are removed.
Finally, R5 removes gateways that connected only two nodes,
i.e. with one input and one output. Such gateways are removed
and a direct sequence flow is created between related nodes.

B. Fine-grained granularity reduction

The different granularity of business tasks and callable units
in existing information systems constitutes another important
challenge [17]. According to the approach proposed by Zou et
al. [24], each callable unit in an information systems is
considered as a candidate business task. However, existing
systems typically contain thousands of callable units, some of
which are large ones supporting the main business
functionalities of the system, while many are very small and do
not directly support any business activity. In other situations a
set of small callable units together supports a business activity.
As a consequence, this category provides two refactoring
operators (R6 and R7) to deal with large sets of fine-grained
business tasks and data objects:

R6 transforms each task in a compound task when the task
T has several subsequent tasks which are in turn connected with
a round-trip sequence flow to the task T. This scenario is due to
each callable unit is transformed as a task during the reverse
engineering stage when a certain callable unit can invoke
another callable unit returning a value to the first one. In this
case, the refactoring operator creates a compound task with a

start and end event connected with each subsequent task
through the respective split and join exclusive gateways.
Additionally, R7 combines data objects that are input and/or
output of a task. The combination is possible when those data
objects are exclusively used (written or read) for that task. The
combination is done when the number of data objects is above
a threshold. In order to mitigate the collateral semantic loss, all
the names of the grouped data objects are saved in the
documentation attribute defined by the BPMN specification.

C. Completeness Maximizatioin

Any reverse engineering technique implies an increase of
the abstraction degree, and therefore a semantic loss. For this
reason, R8 to R10 operators are provided to deal with semantic
loss by means of the incorporation of further elements. The
refactoring operators are the following:

R8 joins the start and end event with the starting and ending
tasks, respectively. These events are created whether such
events were not created by reverse engineering. When there are
several starting tasks the refactoring operator adds a split
complex gateway between the start event and starting tasks.
Similarly, if there are several ending tasks, the refactoring
operator adds a join complex gateway between ending tasks
and the end event [13]. Furthermore, due to the usage of
reverse engineering to retrieve business process models, it is
possible to obtain models without following some of the
modeling guidelines in accordance with the BPMN
specification with regard to the gateways. R9 therefore adds a

join and split exclusive gateways when a certain task
respectively has several precursor or subsequent tasks. Finally,
R10 improves names and labels of business tasks that were
obtained almost directly from methods or functions of legacy
source code through reverse engineering. These labels usually
follow the camel case format (i.e., the concatenation of various
capitalized words) in accordance with naming conventions
present in most programming approaches. In an effort to have
more understandable names, this refactoring operation split
these labels into ones with various words.

IV. CASE STUDY

This section provides a case study with two real-life
information systems. The case study has been conducted by
following the formal protocol developed by Runeson et al. [18]
for conducting and reporting case studies in the software
engineering field. Hence, the following sections show the
stages proposed in the formal protocol: case study design, case
selection procedure, execution procedure and data collection,
analysis and interpretation, and finally, threats to the validity.

The object of this case study is the understandability of
business process models after refactoring and the purpose of
this case study is to evaluate how the execution order of the
different refactoring operators and previous refactoring actions
affect to the understandability. Taking into account the object
and purpose of the study two main research questions are
provided.

TABLE I. IBUPROFEN’S REFACTORING OPERATORS

R
e

le
v

a
n

ce

R1. Remove Isolated Nodes R2. Remove Sheet Nodes R3. Merge nesting

R4. Remove Redundant Paths R5. Remove unnecessary nesting

G
ra

n
u

la
ri

ty
 R6. Create compound tasks R7. Combine data objects

C
o

m
p

le
te

n
e

ss

R8. Join Start and End events R10.Refine names

R9. Add gateways in incoming and outgoing branches

RQ1: How does the order of the application of refactoring
operators affect to the understandability of business
process models?

RQ2: How does previous refactoring affect to the
understandability achieved with the application of
certain refactoring operators?

A. Case Study Design

The case study follows the embedded case study design
according to the classification proposed by Yin [23], whereby
the case study consists of a multi case (i.e., it focuses on two
information systems) but considers several analysis units as
independent variable within the case, i.e., all the different
business processes models retrieved from both information
system. Therefore, the study consists of applying the three
refactoring categories: relevance (R), granularity (G) and
completeness (C) in different combinations and obtaining
business process models. Such models are in turn analyzed to
evaluate understandability in accordance with RQ1 and RQ2.
In order to quantify understandability, size, connectivity,
separability and density [5] measures are used as dependent
variables.

Size is the number of nodes in a business process model
(i.e., business tasks, gateways, data objects and events). This
measure affects negatively to the understandability, i.e. a
higher size difficult the understandability of a certain business
process model [13]. Connectivity measures the ratio between
the total number of arcs in a business process model (i.e.,
sequence flows and associations) and the total number of
nodes. This measure negatively affects the understandability
since a lower connectivity implies business process models
more understandable due to a lower intricacy. Separability
represents the ratio between the number of cut-vertices in a
business process model (i.e. nodes that serve as bridges
between otherwise strongly-connected components) and the
total number of nodes. Separability positively affects to the
understandability. Density is the ratio between the total number
of arcs in a business process model and the theoretical
maximum number of possible arcs regarding the number of
nodes. The lower density, more understandable business
process models.

B. Case Selection Procedure

To select the case under study a set of selection criteria
were formulated in order to rigorously select the source system:
(1) the system should be a real-life information system
currently in production; (2) and with a considerable size (to
avoid toy programs) which ensure that the system supports a
great number of business processes; (3) the system should be
written in Java language to be able to use the MARBLE tool
[15]. MARBLE is the tool used to recover business process
models from existing Java code. This tool was selected because
is released as an Eclipse plug-in and it therefore can be easily
integrated with the IBUPROFEN tool.

After analyzing various information systems of partner
companies, two cases were selected in accordance with the
mentioned criteria: Tabula and XCare. Tabula is a web
application of 33.3 KLOC (thousands of lines of code) devoted
to create, manage and simulate decision tables for associating
conditions with domain-specific actions. XCare is a mobile

application of 9.9 KLOC intended for diabetes patients, which
analyzes blood (through an external device) and suggests diet
plans.

C. Execution Procedure and Data Collection

The procedure to be performed to execute the case study
consists of a set of steps. (i) A sample of 40 business process
models are mined, by using MARBLE [16], from the source
code from both information systems under study. (ii) After that,
IBUPROFEN refactoring operators are executed in all the
possible orders in terms of the three categories, so six different
execution orders are considered (i.e., RGC, RCG, CRG, CGR,
GCR and GRC). (iii) The mentioned measures are computed
through IBUPROFEN tool after the execution of each category
as well as before refactoring (i.e., four measurements for each
execution order are taken). These semiautomatic steps are
executed in a computer with a 2.66 GHz dual processor and 4.0
GB RAM.

Data collected during execution is used to compute the
normalized gains after the execution of each category. TABLE
II presents the normalized gains for each previous combination
of refactoring category. This data represents the gain evolution
for all the measures in accordance with the position in which a
category is executed and regarding to the previous refactoring
actions. Size, density, connectivity and separability cells are
mean values computed for all the 40 business process models.
The whole data, including base data directly obtained from the
execution of the study is online available1.

TABLE II. GAIN ON AVERAGE FOR EACH CATEGORY WITH DIFFERENT ORDERS

Cat. Pre-Act. Size Density Connectivity Separability

R
e
le

v
a

n
ce

 - 0.390 -3.959 -0.597 0.470

G 0.500 -7.798 -0.954 0.548

C 0.127 -0.669 -0.171 0.154

GC 0.157 -0.896 -0.231 0.184

CG 0.142 -0.848 -0.207 0.172

G
r
a

n
u

la
r
it

y

- 0.269 0.051 0.218 0.064

R 0.231 -0.199 0.146 0.070

C 0.072 -0.067 0.022 0.068

RC 0.107 -0.114 0.028 0.059

CR 0.085 -0.103 0.009 0.078

C
o

rr
e
c
tn

e
ss

 - -0.476 -0.318 -0.601 -0.325

R -0.341 0.163 -0.082 -0.152

G -0.530 -0.793 -1.252 -0.373

RG -0.477 0.080 -0.315 -0.280

GR -0.459 0.140 -0.225 -0.256

D. Analysis and Interpretation

The inspection of data collected in TABLE II suggests that
results highly vary with regards to the order in which each
refactoring category is applied. These values also depend on
the previous refactoring applied. However, in order to figure
out whether these observations reflect a common pattern rather
than the random effect, a statistical hypothesis testing were
conducted for assessing the real effect of the application order.

For this purpose, the Kruskal-Wallis (KW) test was used.
The KW test is a non-parametric method supporting a one-way
analysis of variances by ranks. The KW test is used for
comparing more than two non-related samples. Thus, the null

1 http://alarcos.esi.uclm.es/per/mfernandez/

hypothesis is H0: μ1 = μ2 = μn, while the alternative hypothesis
means that there is a significant difference between the means
of sub-samples, i.e., H1: μ1 ≠ μ2 ≠ μn. In this study, the different
sub-samples were selected according to the five different
configurations (order and previous actions). For example, the
five samples of relevance (R) are in which R is applied at the
beginning, is applied in second place (CR or GR), or is applied
at the end (CGR or GCR). TABLE III provides the results of
the KW test, whose inspection shows that the order (RQ1) and
previous refactoring of all the categories (RQ2) affect the gain
achieved at least for some of the measures. In case of
relevance, the configuration affects to all the measures. In case
of granularity, the order and previous refactoring affect to size,
density and connectivity gain, but do not affect to separability.
Finally, in case of completeness, the configuration only affects
to density and connectivity. These results demonstrate that the
application in an arbitrary order is not a good idea.

Having known there is a difference between different
configurations, it is necessary (in order to complete the answer
of research questions RQ1 and RQ2) to figure out which
certain configuration is better than other in each category.
Figure 1 graphically shows these variances. Regarding
Relevance, the best choice was to apply it in the second place
after granularity if the goal is to maximize size and separability.
However, density and connectivity gains, which are always
negative, are better if the relevance category is applied in
second place after correctness refactoring. Concerning
granularity, the best combination was to apply it at the
beginning to achieve the greatest gain of size, density and
connectivity. However, the best separability was achieved
when granularity is applied at the end after correctness and
relevance categories. Anyway, the differences of separability
gains are negligible for every order (see Figure 1). Finally, with
respect to completeness, most gains are unfortunately negative.
Despite this fact, the best order in every case is to apply
completeness in the second place after relevance.

After analyzing outgoing results, some rules to prioritize
the application of refactoring categories can be derived so that
research question can be fully answered. The first insight is that
refactoring operators related to relevance should be applied in
second place. Particularly, after granularity refactoring if the
gain of size and separability are prioritized and after
completeness if density and connectivity gain has to be
maximized. The second rule is about granularity category,
which should be applied in the first place. The third rule about
completeness states that it should be applied in second place
after relevance refactoring operators.

E. Validity Evaluation

This section presents the threats to the validity of this case
study and possible actions to mitigate them. There are mainly
three types of validity: internal, construct and external. As far
as the internal validity is concerned, a sample of 40 business
process models was retrieved from a two information systems,
and it is therefore possible to obtain statistically representative
results. Nevertheless, the study may be replicated by using
more information systems, to attain a larger sample of business
process models. Anyway, there are two decisive threats. The
first one is related to the way in which business process models

were retrieved by reverse engineering, i.e., through MARBLE.
This supporting tool was used to obtain the business process
models, could be a factor that affects the initial sample of
business process models. Secondly, the set of refactoring
operators included in IBUPROFEN as well as their categories
is a threat to the generalization of the results. The replication of
the study by using different refactoring operators and
techniques may be a mean for mitigating these threats.

TABLE III. KRUSKAL-WALLIS TEST RESULTS

 Size Density Connectivity Separability

 2 Sig. 2 Sig. 2 Sig. 2 Sig.

Relevance 48.8 0.000 20.4 0.000 24.1 0.000 52.5 0.000

Granularity 24.6 0.000 21.7 0.000 25.8 0.000 1.6 0.801

Completeness 3.45 0.485 35.6 0.000 44.7 0.000 5.7 0.226

Figure 1. Behaviour of categories with different orders and previous actions

-4.50

-3.50

-2.50

-1.50

-0.50

0.50

Siz Den Con Sep

Relevance

R GR CR GCR CGR

-0.20

-0.10

0.00

0.10

0.20

0.30

Siz Den Con Sep

Granularity

G RG CG RCG CRG

-1.30

-1.10

-0.90

-0.70

-0.50

-0.30

-0.10

0.10

Siz Den Con Sep

Completeness

C RC GC RGC GRC

Moreover, with respect to the construct validity, the
selected measures (size, density, connectivity and separability)
were suitable for assessing the theoretical understandability of
business process models. However, a more practical approach
based on expert viewpoint could be used to assess the
understandability of business process models. Finally, external
validity is concerned with the generalization of the results. This
study considers the whole population to be business process
models retrieved by reverse engineering from legacy
information systems. The results obtained can be strictly
generalized to this population with the particularity that all the
information systems under study are based on Java platform.
This restriction is related to the mentioned supporting tools
used in the study. This threat may be mitigated by replicating
the study using systems implemented in different platforms.

V. CONCLUSIONS AND FUTURE WORK

Business process model refactoring has proved to be a good
mechanism for dealing with understandability problems and
other faults. Unfortunately, most refactoring techniques only
address business process models manually modeled and hardly
ever consider reversing models semi-automatically retrieved
from existing information systems. This paper precisely
focuses on this kind of refactoring techniques by means of an
empirical study that tries to assess how different configurations
of refactoring affect the understandability gain. However, the
understandability of business process model is difficult to be
measured. On one hand, the understandability additionally
depends on the people in charge of use, manage or evaluate
such business process models, which is individually subjective.
On the other hand, understandability of business process
models that were previously refactored could vary due to the
application of different refactoring operators. In fact, some
operators might lead to a worse understandability. This study
precisely attempts to establish links between different
refactoring configurations (in terms of categories applied, i.e.,
relevance, completeness and granularity) and the
understandability gain, which is measured with size, density,
connectivity and separability of business process models. The
study’s results reflect that refactoring categories can be
prioritized concerning the order in which to be applied as well
as the previous refactoring actions so that the understandability
gain can be optimized.

ACKNOWLEDGMENTS

This work was supported by the FPU Spanish Program and
the R&D projects PEGASO/MAGO (TIN2009-13718-C02-01)
and GEODAS-BC (TIN2012-37493-C03-01).

REFERENCES

[1] Alarcos Research Group. IBUPROFEN. 2012; Available from:

http://marketplace.eclipse.org/node/423052.

[2] Canfora, G., M. Di Penta, and L. Cerulo, Achievements and challenges
in software reverse engineering. Commun. ACM, 2011. 54(4): p. 142-

151.

[3] Dijkman, R., B. Gfeller, J. Küster, and H. Völzer, Identifying refactoring
opportunities in process model repositories. Information and Software

Technology, 2011.

[4] Dijkman, R., M.L. Rosa, and H.A. Reijers, Managing large collections
of business process models—Current techniques and challenges.

Computers in Industry, 2012. 63(2): p. 91.

[5] Fernández-Ropero, M., R. Pérez-Castillo, I. Caballero, and M. Piattini,

Quality-Driven Business Process Refactoring, International Conference
on Business Information Systems (ICBIS 2012). 2012 p. 960-966.

[6] Fernández-Ropero, M., R. Pérez-Castillo, J.A. Cruz-Lemus, and M.
Piattini, Assessing the Best-Order for Business Process Model

Refactoring. 2013. p. 1400-1406.

[7] Fernández-Ropero, M., R. Pérez-Castillo, and M. Piattini, Refactoring
Business Process Models - A Systematic Review, in 7th International

Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE 2012). 2012, INSTICC: Wroclaw, Poland. p. 140-145.

[8] Gambini, M., M. La Rosa, S. Migliorini, and A. Ter Hofstede,

Automated error correction of business process models. Business
Process Management, 2011: p. 148-165.

[9] Heuvel, W.-J.v.d., Aligning Modern Business Processes and Legacy

Systems: A Component-Based Perspective (Cooperative Information
Systems). 2006: The MIT Press.

[10] Jeston, J., J. Nelis, and T. Davenport, Business Process Management:

Practical Guidelines to Successful Implementations. 2nd ed. 2008, NV,
USA: Butterworth-Heinemann (Elsevier Ltd.). 469.

[11] La Rosa, M., P. Wohed, J. Mendling, A.H.M. ter Hofstede, H.A. Reijers,

and W. van der Aalst, Managing process model complexity via abstract
syntax modifications. Industrial Informatics, IEEE Transactions on,

2011. 7(4): p. 614-629.

[12] Leopold, H., S. Smirnov, and J. Mendling, Refactoring of process model

activity labels, in Proceedings of the Natural language processing and
information systems, and 15th international conference on Applications

of natural language to information systems. 2010, Springer-Verlag:
Cardiff, UK. p. 268-276.

[13] Mendling, J., H.A. Reijers, and W.M.P. van der Aalst, Seven process

modeling guidelines (7PMG). Information and Software Technology,
2010. 52(2): p. 127-136.

[14] OMG. Business Process Modeling Notation Specification 2.0. 2011;

Available from: http://www.omg.org/spec/BPMN/2.0/PDF/.

[15] Pérez-Castillo, R., M. Fernández-Ropero, I. García Rodríguez de
Guzmán, and M. Piattini, MARBLE. A Business Process Archeology

Tool, in 27th IEEE International Conference on Software Maintenance
(ICSM'11). 2011, IEEE Computer Society: Williamsburg, Virginia,

USA. p. 578-581.

[16] Pérez-Castillo, R., M. Fernández-Ropero, I.G.-R.d. Guzmán, and M.
Piattini, MARBLE. A Business Process Archeology Tool, in 27th IEEE

International Conference on Software Maintenance (ICSM 2011). 2011:
Williamsburg, VI. p. 578 - 581

[17] Pérez-Castillo, R., B. Weber, I. García Rodríguez de Guzmán, and M.

Piattini, Generating Event Logs from Non-Process-Aware Systems
Enabling Business Process Mining. Enterprise Information System

Journal, 2011. 5(3): p. 301–335.

[18] Runeson, P. and M. Höst, Guidelines for Conducting and Reporting

Case Study Research in Software Engineering. Empirical Softw. Eng.,
2009. 14(2): p. 131-164.

[19] Sommerville, I., P. Sawyer, and S. Viller, Viewpoints for Requirements

Elicitation: A Practical Approach, in Proceedings of the 3rd International
Conference on Requirements Engineering: Putting Requirements

Engineering to Practice. 1998, IEEE Computer Society. p. 74-81.

[20] van der Aalst, W., Process Mining: Overview and Opportunities. ACM
Transactions on Management Information Systems (TMIS), 2012. 3(2):

p. 7.

[21] Weber, B., M. Reichert, J. Mendling, and H.A. Reijers, Survey paper:
Refactoring large process model repositories. Comput. Ind., 2011. 62(5):

p. 467-486.

[22] Weske, M., Business Process Management: Concepts, Languages,
Architectures. 2007, Leipzig, Germany: Springer-Verlag Berlin

Heidelberg. 368.

[23] Yin, R.K., Case Study Research. Design and Methods. 3rd ed. 2003,
London: Sage.

[24] Zou, Y. and M. Hung, An Approach for Extracting Workflows from E-
Commerce Applications, in Proceedings of the Fourteenth International

Conference on Program Comprehension. 2006, IEEE Computer Society.
p. 127-136.

http://marketplace.eclipse.org/node/423052
http://www.omg.org/spec/BPMN/2.0/PDF/

	I. Introduction
	II. Related Work
	III. IBUPROFEN
	A. Relevant Elements maximization
	B. Fine-grained granularity reduction
	C. Completeness Maximizatioin

	IV. Case Study
	A. Case Study Design
	B. Case Selection Procedure
	C. Execution Procedure and Data Collection
	D. Analysis and Interpretation
	E. Validity Evaluation

	V. Conclusions and Future Work
	Acknowledgments
	References

