
ANDRIU. A Technique for Migrating Graphical User

Interfaces to Android

Ricardo Pérez-Castillo, Ignacio García-Rodríguez de Guzmán, Rafael Gómez-Cornejo, Maria Fernandez-Ropero and

Mario Piattini

Instituto de Tecnologías y Sistemas de Información (ITSI) at University of Castilla-La Mancha

Paseo de la Universidad 4 13071, Ciudad Real, Spain

{ricardo.pdelcastillo, ignacio.grodriguez, rafael.gomezcornejo, marias.fernandez, mario.piattini}@uclm.es

Abstract—Nowadays, pervasive environments force maintainers

to provide agile solutions for migrating legacy information

systems to mobile applications. While business knowledge can be

easily reused in tier-based modularized systems, the migration of

user interface tiers to a mobile application entails a bigger (but

usually ignored) challenge. This paper presents AndrIU, a

reverse engineering tool based on static analysis of source code

for transforming user interface tiers from desktop applications to

mobile ones. AndrIU has been specially developed for migrating

traditional systems to Android applications. AndrIU is generic

and extensible since it manages all the embedded knowledge in a

common, standard repository according to the Knowledge

Discovery Metamodel. This metamodel represents legacy

knowledge in a platform-independent way. The main advantage

is that AndrIU is designed to be extended for different migrations
to others mobile platforms.

Keywords—Migration, User Interface, Android.

I. INTRODUCTION

Pervasive environments are very common in our lives,
which allow us to freely interact with a vast amount of services
through a great variety of interactive devices (e.g.,
smartphones, laptops, pads, game consoles or digital television
among other) [15]. For example, today’s smartphones serve as
email readers, calendars, car navigation systems or even
entertainment systems, and they can provide almost constant
connectivity between people via texting, voice calls, and video
conferencing [3].

Pervasive environments force software producers to carry
out agile developments to obtain just-in-time software
applications for different devices [11]. Indeed, App Store and
Google Play (two of the most important mobile applications
markets) offer today more than 400,000 applications (with a
growth of 20% per month) and they approximately consider
80,000 software vendors [16].

Recently, researchers and engineers have provided many
methods and techniques to alleviate the challenge of agile
software development for pervasive environments. Firstly,
there exist multi-platform programming languages like Java.
Secondly, various architectural design patterns have been
proposed to facilitate the reuse of software such as three-tier
architecture [4] or model-view-controller architecture [7]. The
tier-based architectures encapsulate business rules in an

isolated tier that minimize the coupling with other tiers in
charge of user interface and data persistency.

Tier-based architectures facilitate the migration of software
applications in pervasive environments since the core, business
tier can be almost fully reused, while the remaining tiers has to
be adapted. In fact, the sole migration of the part of an
application that is interacting with the user is sometimes
enough to migrate an application to different devices [2].

This paper addresses the migration of the graphical user
interface (GUI) tiers of traditional applications to the user
interfaces of mobile applications by integrating them with other
source code tiers. This technique follows the model-driven
development approach. The technique is particularly based on a
static analyzer of Swing/AWT user interfaces which represent
the information in a common, standard repository according to
KDM (Knowledge Discovery Metamodel) [10]. KDM is the
ISO/IEC 19506 standard for representing all the information
retrieved by reverse engineering from every legacy software
artifact (e.g., source code, databases, user interfaces, etc.).
After that, the technique transforms the user interface model
represented in the KDM repository to a user interface model for
Android [8] applications based on a set of XML (eXtensible
Markup Language) files.

The technique is supported by an Eclipse™-based tool,
which was specially developed for Android applications due to
their widespread use and open source nature, which facilitated
the research. However, the technique is generic because it is
based on the KDM standard, and therefore, additional
transformations from KDM to others platforms such as iOS
(based on Xcode) could easily be provided. The developed tool
allows the applicability and adoption by the industry of the
proposed technique for migrating user interfaces from Java-
based applications to Android applications.

The remaining of the paper is organized as follows. Section
II presents in detail the technique to migrate user interface tiers
to Android applications. Section III introduces the supporting
tool. Finally, Section 0 discusses conclusions and future work.

II. MIGRATION TECHNIQUE

AndrIU facilitates the migration of graphical user interfaces
from desktop applications to mobile applications. On the one
hand, the underlying process follows model-driven

development principles, i.e., (i) it treats all the involved
artifacts as models in accordance with particular metamodels,
and (ii) it provides automatic transformations between such
models at different abstraction levels. On the other hand,
AndrIU is based on KDM [10] to represents all the extracted
information in a platform-independent and standardized way.

AndrIU is specially developed to the migration of
AWT/SWING user interfaces of desktop applications to
Android user interfaces based on XML files (see Figure 1).
However, AndrIU is generic due to the use of KDM, and may
easily be extended for other platforms. AndrIU considers four
different artifacts and a path of three progressive
transformations between them.

Android
MM

Static Analysis of
User Interfaces

Java
Swing
MM

KDM
MM

AST

code{

}

Mapping
ASTKDM

Model Transformation
KDMAndroid

KDM

<xml>
< >

</>

Figure 1. The user interface migration process

A. Static Code Analysis of AWT/SWING interfaces

In the proposed method, the first transformation is
characterized by the use of static analysis as a reverse
engineering technique to retrieve user interface information
from the legacy source code. Static analysis consists of
syntactically analyzing the source code of source files that
belongs to the legacy system. Such static analysis detects code
elements of the user interface tiers and ignores non-relevant
pieces of source code belonging to different tiers.

This transformation is specifically tuned to analyze Java-
based systems. Therefore, while the static analysis is digging
up the information from a Java source file, a source code model
is built on the fly according to the Java SWING metamodel.
This metamodel contains some elements to represent containers
such as JFrame or JDialog, and other elements to represent
components within containers, e.g., JTextField, JButton,
JLabel, etc. The parser searches for such elements in each
source code file and builds the respective AST which
represents a specific-platform model (PSM) (see Figure 1).

B. Integration into the KDM repository

After obtaining various ASTs from source code files, which
contain relevant user interface elements, they are mapped to
KDM elements to be integrated in the KDM repository. The
mapping between Java SWING elements and KDM elements
distinguishes three concerns: (i) the containers and control
elements mapping; (ii) the actions mapping; and (iii) the
navigability mapping.

Container and control elements mapping. The first
mapping transforms container and control elements from
SWING AST models to KDM UI models. Regarding
containers, the mapped GUI elements are: windows (JFrame)

and panels (JPanel) to Screens, and dialogs (JDialog) to
Report. Concerning control elements, for example, buttons
(JButton) and toggle buttons (JRadioButton and JCheckBox),
which are transformed into UIResource elements; labels
(JLabel) and text fields (JTextField and JTextArea) that are
transformed into UIField elements in the KDM UI model.
Since the KDM UI model has to be platform-independent, this
mapping simplifies the semantics of user interface models. In
fact, there are only four basic elements in the KDM UI model
(Screen, Report, UIResource and UIField) to represents all the
information. However, in order to avoid a semantic loss, such
KDM elements incorporate an Attribute element that has a
tagged value ‘kind’ which contains the classifier name of the
SWING element, e.g., JLabel, JButton, etc.

Action Mapping. Since GUI elements are used to interact
with other tiers of the system (e.g., the business domain tier),
actions triggered under occurred events associated with GUI
controls have to be collected in the KDM UI model. Such pairs
of events-actions are handled in Java SWING through action
listeners added in each GUI element. These elements are
represented in the KDM UI model as UIAction elements, which
have a feature implementation which contains a reference to a
CallableUnit element within the KDM Code model. The
implementation feature therefore represents a reference to the
method that implements the triggered action. In this way, the
UI and Code model are integrated within the KDM repository
and feature location techniques could be used. Besides the
action, UIAction elements contain a kind feature containing the
type of the event (e.g., actionPerformed, onMouseClick, etc.).

Navigability mapping. Finally, the mapping between the
SWING AST model and the KDM UI model is completed with
the navigability mapping. This mapping uses the UIFlow
elements, as added to the UIAction elements to define a
navigability relationship between two windows. UIFlow
elements contain the features ‘from’ and ‘to’ that respectively
represent the references to the source and target UIDisplay
elements (Screen or Report).

In order to detect the navigability between two different
windows the parser of the previous transformation searches for
calls to the method setVisible (true) (open a certain window)
and setVisible (false) (close a window). These calls represent
that a window can be launched from another window.

C. Generation of Android interfaces

Once the information retrieved from the user interface tier
is integrated into the KDM repository, it can be used for
migrating the KDM UI model to Android-based user interfaces.

Android applications follow a Model/View/Control (MVC)
architecture [7], which consists of four different components:
activities, services, intents and resources. Graphical user
interfaces of Android applications therefore consist of a set of
Activities classes, which are built using View and ViewGroup
objects. There are many types of views and view groups, each
of which is a descendant of the View class. On the one hand,
the View objects are the basic units of user interface expression
on the Android platform and is the base for subclasses called
‘widgets’, which implements user interfaces controls (e.g., text
fields and buttons).

Figure 2. AndrIU modules and functionalities.

On the other hand, the ViewGroup class serves as the base
for subclasses called ‘layouts’, which offer different strategies
for distributing widgets such as linear, tabular, relative, and so
on. Android user interfaces are depicted through XML files
together a java class (R.java) with the definition of all the UI
resources. The XML files, depicting the Android user
interfaces, are built by transforming the KDM UI model almost
directly. For each UIDisplay element this transformation
creates a Layout element in the Android user interface. After
that, it transforms all the child elements of Screen or Report
elements to different Android controls (e.g., Button, EditText,
TextView) included within the previous Layout element.

III. ANDRIU TOOL

AndrIU [1] is a tool based on the Eclipse platform
especially developed to automate the underlying migration
process (see Figure 2). AndrIU allows maintainers to complete
the entire technique, since it automates the three proposed
model transformations. AndrIU additionally aids a manual
post-intervention by maintainers and developers through

various graphical editors so that the migration can be tuned or
adapted for each case.

A. Technologies Involved

This tool has been developed for Java-based legacy systems
and can be used to carry out case studies involving applications
with AWT/SWING user interfaces. The tool is based on four
key technologies. The first technology is JavaCC, which is a
parser and scanner generator for Java [14]. It is used to develop
the static analyzer. The second technology is EMF (Eclipse
Modeling Framework), which is a modeling framework and
code generation facility for building tools and other
applications based on structured data models [6]. This
framework makes it possible to build specific metamodels
according to the ECORE meta-metamodel (i.e. ECORE is the
metamodel proposed by the Eclipse platform to define
metamodels). Then, from these metamodels, EMF provides
tools to produce a set of Java classes for the model, along with
a set of adapter classes that enable viewing and command-
based editing of the model as well as a basic editor. Another

B D

C E

A

Eclipse framework, such as GMF (Graphical Modeling
Framework), is also used together with EMF to generate
graphical editors from the ECORE metamodels. Finally, the
fourth technology is XMI (XML Metadata Interchange), which
is a model-driven XML integration framework for defining,
manipulating and interchanging XML data and objects [12].
Every model involved in the proposed technique becomes
persistent with an XMI file.

B. Tool Modules

AndrIU is divided into five panels supporting different
functionality. Firstly, the panel A (see Figure 2) provides a
project explorer to navigate through all the different artifacts
involved in the three transformations (e.g., source code of the
input java application, KDM models, Android files, etc.).

To support the first transformation, a tool module to carry
out static analysis was developed. In this case, the module was
built specifically for parsing Java source code. This tool
module was developed through JavaCC from the EBNF
(Extended Backus–Naur Form) grammar of Java 1.5 [13]. This
module takes a Java file as input and then generates an XMI
file as the output that represents the Java code model, a PSM
model in L1. The second module executes a set of QVT
transformations to obtain a KDM model in L2 from the Java
code model obtained previously. The transformation is
executed using the open source Medini QVT [9], a model
transformation engine for QVT Relations. Panel B (see Figure
2) provides a tree view editor, which was built through EMF, to
visualize and manipulate KDM models. At the same time,
Panel C shows the graphical representation of the existing GUI.
The third module also executes a QVT transformation to
support the third transformation based on pattern matching.
Panel D (see Figure 2) visualizes in an XML editor the file that
represents the target user interface according to the Android
platform. Finally, Panel E allows maintainers to visualize in
parallel the first sketch of the target Android-based GUI so that
maintainers can refine it. Panels C and E can be used by
maintainers for checking manually the results between the
input and output graphical user interfaces.

IV. CONCLUSIONS

This paper presents AndrIU a static analysis-based tool for
migrating the GUI layer of legacy, desktop application to
mobile applications. AndrIU follows the model-driven
development principles and uses the KDM standard to
represent the intermediate information. The usage of KDM has
two important advantages. Firstly, AndrIU considers a common
KDM repository in which back-end parsers for different
graphical user interfaces (e.g., SWING, GTK, etc.) can store
the extracted information in the common KDM repository. In
turn, many front-end analyzers could be plugged in the KDM
repository to migrate interfaces to different platforms.
Secondly, another advantage of the KDM repository is that it
facilitates the integration of additional information related to
other software artifacts such us source code, databases, event
model. This information may be used to exploit synergies
between different artifacts during user interfaces migrations. In
this sense, feature location techniques [5] may be used by
mapping, for example, user interface elements with database

model in order to know which data is accessed from particular
user interface controls.

The work-in-progress deals with the conduction of various
experiments with several industrial, Swing applications in order
to demonstrate the applicability of AndrIU. Additionally, the
future work will address some open issues, e.g., the adaptation
of user interfaces to different devices and screens; transform
layout of desktop application to mobile devices; recognize GUI
elements in legacy applications with spaghetti code.

ACKNOWLEDGMENT

This work was supported by the FPU Spanish Program and
the R&D projects PEGASO/MAGO (TIN2009-13718-C02-01)
and GEODAS-BC (TIN2012-37493-C03-01).

REFERENCES

[1] Alarcos Research Group. AndrIU v1.0. Eclipse Marketplace 2012

[cited 2012 28-06-2012]; Available from:
http://marketplace.eclipse.org/content/andriu.

[2] Bandelloni, R., G. Mori, F. Paternò, C. Santoro, and A. Scorcia, Web

User Interface Migration through Different Modalities with Dynamic
Device Discovery, in 2nd International Workshop on Adaptation and

Evolution in Web Systems Engineering (AEWSE'07). 2007: Como,
Italy. p. 58-72.

[3] Ebling, M.R. and M. Baker, Pervasive Tabs, Pads, and Boards: Are We

There Yet?, in IEEE Pervasive Computing Magazine. 2012. p. 42-51.

[4] Eckerson, W., Three Tier Client/Server Architecture: Achieving
Scalability, Performance and Efficiency in Client Server Applications.

Open Information Systems, 1995. 10(1): p. 3.

[5] Eisenbarth, T., R. Koschke, and D. Simon, Aiding Program
Comprehension by Static and Dynamic Feature Analysis, in Proceedings

of the IEEE International Conference on Software Maintenance
(ICSM'01). 2001, IEEE Computer Society. p. 602.

[6] EMF, Eclipse Modeling Framework Project.
http://www.eclipse.org/modeling/emf/. 2009, The Eclipse Foundation.

IBM Corporation

[7] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Longman Publishing

Co. ed. 1995, Inc. Boston, MA, USA: Addison Wesley.

[8] Google Inc. Android (http://www.android.com/). 2012 [cited 2012
05/04/2012].

[9] ikv++, Medini QVT.

http://www.ikv.de/index.php?option=com_content&task=view&
id=75&Itemid=77. 2008, ikv++ technologies ag.

[10] ISO/IEC, ISO/IEC 19506. Knowledge Discovery Meta-model (KDM),

v1.1 (Architecture-Driven Modernization).
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.

htm?ics1=35&ics2=080&ics3=&csnumber=32625. 2012, ISO/IEC. p.
302.

[11] Martin, R.C., Agile software development: principles, patterns, and

practices. 2003: Prentice Hall PTR.

[12] OMG, XML Metadata Interchange. MOF 2.0/XMI Mapping, v2.1.1.

http://www.omg.org/spec/XMI/2.1.1/PDF. 2007, OMG.

[13] Open Source Initiative, Java 1.5 grammar for JavaCC.
https://javacc.dev.java.net/files/documents/17/3131/Java1.5.zip. 2009.

[14] Open Source Initiative, JavaCC 4.2. A parser/scanner generator for java.

https://javacc.dev.java.net/. 2009.

[15] Schmidt, A., B. Pfleging, F. Alt, A.S. Shirazi, and G. Fitzpatrick,
Interacting with 21st-Century Computers, in IEEE Pervasive Computing

Magazine. 2012. p. 22-31.

[16] van Agten, T. Google Android Market Tops 400,000 Applications. 2012
January 3, 2012 04/04/2012].

http://marketplace.eclipse.org/content/andriu
http://www.eclipse.org/modeling/emf/
http://www.android.com/)
http://www.ikv.de/index.php?option=com_content&task=view&
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?ics1=35&ics2=080&ics3=&csnumber=32625
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?ics1=35&ics2=080&ics3=&csnumber=32625
http://www.omg.org/spec/XMI/2.1.1/PDF

	I. Introduction
	II. MIGRATION TECHNIQUE
	A. Static Code Analysis of AWT/SWING interfaces
	B. Integration into the KDM repository
	C. Generation of Android interfaces

	III. ANDRIU Tool
	A. Technologies Involved
	B. Tool Modules

	IV. Conclusions
	Acknowledgment
	References

