
JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. (2012)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.1554
Software modernization by recovering Web services from
legacy databases
Ricardo Pérez-Castillo*,†, Ignacio García-Rodríguez de Guzmán, Ismael Caballero and
Mario Piattini

Alarcos Research Group, University of Castilla-La Mancha, Paseo de la Universidad, nº4 13071 Ciudad Real, Spain
ABSTRACT

Databases are considered to be a valuable asset for organizations because they contain all those organizations’
persistent pieces of data. Both databases and the information systems that use them undergo erosion as a
consequence of uncontrolled maintenance over time. However, when information systems evolve to become
modernized versions of them, existing databases must not be discarded because they contain much valuable
business knowledge that is not present anywhere else. Some of the software industry’s current demands, such
as time-to-market developments and the provision of software as services entail additional challenges in the
reuse of legacy systems during software modernization. This paper addresses this problem and proposes a
reengineering process that follows model-driven development principles to recover Web services from legacy
databases. The Web services that are mined manage access to legacy databases without discarding them.
Legacy databases can thus be used by modernized information systems in service-oriented environments.
The adoption of this process is facilitated by the implementation of a support tool, which is used to
conduct an industrial case study involving a real-life legacy database. The study demonstrates that the proposal
reduces development efforts and improves the return of investment by extending the lifespan of legacy
databases. Copyright © 2012 John Wiley & Sons, Ltd.

Received 25 October 2011; Revised 12 January 2012; Accepted 14 February 2012

KEY WORDS: web services; SOA; software modernization; ADM; relational databases; MDA
1. INTRODUCTION

The ever-growing globalized nature of the world is currently leading to a situation in which organizations
are increasingly forced to share more and more data as a basic activity in their daily operations [1].
The heterogeneity of information systems is also growing on a daily basis as a result of the appearance
of new technological environments, paradigms, and standards [2, 3]. One consequence of this volatile
technological evolution and high level of uncertainty in the software industry is that organizations are
involved in a process of continuous renewal of their information and communication technology (ICT)
resources to improve, or at least maintain, their competitiveness level through their information systems [4].

These circumstances signify that software engineers and developers need to carry out shorter
developments and faster maintenance [5]. This acceleration in the development process involves the
reuse, as far as possible, of components and software artifacts that already exist in the organization [6]
to attain two main advantages. First, these developments are shorter and cheaper than software
developments without reuse. Second, the lifespan of the existing (or legacy) information systems is
extended, and the return on investment (ROI) is therefore improved [7].
*Correspondence to: Ricardo Pérez-Castillo, Alarcos Research Group, University of Castilla-La Mancha, Paseo de la
Universidad, nº4 13071 – Ciudad Real, Spain.

†E-mail: ricardo.pdelcastillo@uclm.es

Copyright © 2012 John Wiley & Sons, Ltd.



R. PÉREZ-CASTILLO ET AL.
Because the modernization of ICT is a real fact, organizations must make changes to support the
evolution of the software implemented in their legacy information systems. In this respect,
reengineering has been successfully used over the last two decades to address the necessary evolution
of legacy information systems in terms of the migration and reuse of its artifacts [8], such as moving
legacy information systems toward environments like the Web while resources such as valuable
organizational data are preserved.

Model-driven architecture (MDA) [9] has influenced the software industry in the last few years because
this industry is progressively demanding software developments at higher abstraction levels to maximize
reuse. MDA treats each system or each piece of systems as models, and establishes model transformations
between these models at different abstraction levels, which increases the reusability, formalization, and
automation of software developments. Architecture-driven modernization (ADM) [10] also successfully
supports those reengineering processes that follow the MDA principles.

Moreover, several software artifacts belonging to a legacy information system (e.g., source code,
user interfaces, databases, etc.) have been the subject of reengineering and modernization processes.
Nevertheless, databases can possibly be considered as one of the most fundamental artifacts [11]
because they contain all of an organization’s persistent pieces of data. This is true because data have
become the basis of decision-making at operational, tactical, and strategic levels. Consequently, and
independently of the various software applications developed, organizations need to keep their data
ready to be used within their organizational process.

This paper addresses the aforementioned challenges by proposing an ADM-based process named
PRECISO, whose main objective is to expose data stored in legacy databases through a set of Web
services. The advantage of this approach is that the data access takes place by means of Web services,
thus allowing legacy information systems to be modernized toward SOA environments according to
software industry’s demands [12]. The ADM-based process consists of the three main stages. First, it
recovers functionalities from relational databases by analyzing their schemas. Second, these
functionalities are transformed into services. Third, the services obtained are automatically implemented
by using Web service technologies. A tool has been implemented to easily support the technique and
to facilitate its adoption. This tool has been used to demonstrate the feasibility of the proposed
ADM-based process in an industrial case study.

The remainder of this paper is organized as follows. Section 2 introduces the main approaches and
standards on which the proposal is based. Section 3 summarizes related work. Section 4 provides a
detailed explanation of the ADM-based process. Section 5 presents the most relevant details of the
supporting tool. Section 6 provides a case study involving a real-life information system that uses a
legacy database. Finally, Section 7 discusses our conclusions and future work.
2. BACKGROUND

The following subsections introduce the three main concepts to provide a better understanding of the
proposal: the reengineering approach, the ADM standard, and SOA.

2.1. Reengineering

Most companies have existing information systems that are considered to be legacy information
systems because the code in these systems was written long ago and may now be technologically
obsolete. Software vendors have cultivated a belief that ‘anything new is beautiful and that
everything old is ugly’ and we have become ‘victims of a volatile IT industry’ [6]. However, legacy
software artifacts, like databases or source code, embed much latent knowledge that is not present
anywhere else. This valuable knowledge must therefore be preserved when legacy information
systems are replaced.

Reengineering has been the most powerful and widely-used mechanism to deal with the knowledge
preservation challenge in recent years. Reengineering is ‘the examination and alteration of a subject
system to reconstitute it in a new form and the subsequent implementation of the new form’ [13].
Unfortunately, a 2005 study states that over 50% of reengineering projects fail [14]. This is owing
Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



SOFTWARE MODERNIZATION BY RECOVERING WEB SERVICES FROM LEGACY DATABASES
to the fact that, in most cases, reengineering usually has two main problems. First, the reengineering of
large complex legacy information systems is very difficult to automate [15], and the maintenance costs
therefore increase significantly. Second, traditional reengineering processes lack formalization and
standardization [16], signifying that different reengineering tools that address specific tasks in the
reengineering process cannot be integrated or reused in different reengineering projects.

The software industry is therefore demanding reengineering processes that enable the evolutionary
maintenance of legacy systems in an automatic and standardized manner. The typical reengineering
concept has therefore shifted to the ADM concept as a solution to these demands.

2.2. Architecture-driven modernization

The software modernization paradigm, and particularly ADM as defined by the Object Management
Group (OMG), is the concept of modernizing legacy information systems with a focus on all aspects
of the current system’s architecture and the ability to transform current architectures into target
architectures [10]. According to Ref. [17], ADM is the process of understanding and evolving
existing software assets, thus restoring the value of existing applications, that is, ADM involves
software improvement, interoperability, and migration. The main advantages of using the ADM
standard are: (i) the revitalization of legacy information systems, making them more agile; (ii) a
reduction in maintenance and development costs; (iii) an extension of the useful life of legacy
information systems, while also improving their ROI; and (iv) easy integration with other systems
and other environments like SOA.

Architecture-driven modernization advocates carrying out reengineering processes by following the
MDA standard [9], which makes it possible to model all the legacy software artifacts as models and
establishes model transformations between the different MDA abstraction levels. There are three
main kinds of models.

• Computation independent model (CIM), which is a view of the system from the computation
independent viewpoint at a high abstraction level. CIM models are sometimes called domain
models and play the role of bridging the gap between the domain experts and experts in the
system’s design and construction.

• Platform independent model (PIM), which is a view of a system from the platform independent
viewpoint at an intermediate abstraction level. A PIM has a specific degree of technological
independence to be suitable for use with a number of different platforms of a similar type.

• Platform specific model (PSM), which is a view of a system from the platform specific viewpoint
at a low abstraction level. A PSM combines the specifications in the PIM with the details that
specify how that system uses a particular type of platform or technology.

Nevertheless, ADM does not replace traditional reengineering, but improves it. Indeed, the horseshoe
reengineering model [16] has been adapted to ADM and is known as the horseshoe modernization model
(see Figure 1). This model considers the three main stages of traditional reengineering [9]: (i) reverse
engineering (on the left-hand side of the horseshoe), which builds abstract representations of the legacy
system at a higher abstraction level; (ii) restructuring (in the curve of the horseshoe), which transforms
abstract representations, thus preserving the legacy system’s external behavior; and finally (iii) forward
engineering (on the right-hand side of the horseshoe), which generates implementations of the target
system at a lower abstraction level.
Source Legacy System R
ec

o
ve

ry

Source PSM model 

A
bs

tr
ac

t

Source PIM model 

A
bs

tr
ac

t

Source CIM model Refactoring and Optimización
(new business requirements)

R
ev

er
se

 E
n

g
in

ee
ri

n
g

F
o

rw
ard

 E
n

g
in

eerin
g

ADM

Target Improved System

G
en

erate

Target PSM model

D
efine

Target PIM model 

D
efine

Target CIM model 

Figure 1. Reengineering process according to ADM approach.

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



R. PÉREZ-CASTILLO ET AL.
Architecture-driven modernization solves the formalization problem because it represents all the
artifacts involved in the reengineering process as models, and therefore treats them homogenously,
that is, as models, meaning that ADM can establish model transformations between them. These
transformations are formalized by means of the QVT (query / views / transformations) standard
proposed by the OMG [18]. The QVT specification consists of two distinct but related languages: (i)
QVT-Operational language, which is procedural in nature, and (ii) QVT-Relations, a declarative
language. QVT makes it possible to define deterministic transformations between models at the
same abstraction level or at a different level, and the model transformations can consequently be
automated. The model-driven development principles also make it possible to reuse the models
involved in the ADM projects, because several PIM models can be generated from a CIM model,
and various PSM models can in turn be obtained for each PIM model. The automation problem can
therefore also be solved as a result of both the automated transformations and the reuse of the models.

To date, model-driven development principles have usually been used in the forward engineering stage.
Model-driven generative techniques are used in that stage to obtain source code from different kinds of
models, such as UML models. In fact, some researchers consider that model-driven engineering is only
applicable to forward engineering. However, model-driven development principles can be applied to
the reverse engineering and restructuring stages in an effective manner.

In the reverse engineering stage, the information recovered from software artifacts can be represented in
models according to certain metamodels, and restructuring and refactoring techniques can also be applied to
models. This stage thus consists of a transformation from the input model (as it is) to obtain a target model
(as it will be). Model-based restructuring has some advantages with regard to traditional restructuring: (i)
the model-based version allows researchers to define language-independent and platform-independent
refactoring techniques; (ii) a restructuring transformation could be implemented as a model in itself, thus
allowing the transformation to be reused; (iii) model-based refactoring makes it possible to define
generic or domain-specific refactoring techniques in an easy manner; (iv) it improves the feature location
because the traceability throughout corresponding models at different abstraction levels is better, etc.

2.3. Service-oriented architecture

Organizations feel increasingly compelled to adopt the new market viewpoint, which is service
oriented. This new paradigm has emerged to separate the possession and ownership concept from
the use concept [19]. SOA advocates precisely this approach, that is, offer software as a service [19].

Service-oriented architecture is a means to design, develop, deploy, and manage software systems,
and consists of a set of services and service consumers. Services are reusable pieces of source code that
represent certain business functionalities. Service consumers can then compose applications or systems
by using these services through standard interfaces like WSDL (web service description language).

Service-oriented architecture is consequently the best current option that is available for system
integration and the leverage of legacy systems. Indeed, a recent 2010 study developed by the
Software Engineering Institute (Carnegie Mellon University, Pittsburgh, Pennsylvania, USA) [12]
provides a software engineering research agenda that detects the need for legacy information system
modernization towards SOA environments.

3. RELATED WORK

Much work concerning the joint reengineering of applications and databases exists in literature. For
example, Reus et al. [20] provided a reverse engineering technique with which to transform Procedural
Language/Structured Query Language (PL/SQL) textual sources into MDA-ready UML models.
Similarly, Pereira and Pinto [21] generated an object-oriented application from the procedures stored in
relational databases. The problem with these two works is that they ignore the relational database
schema during the reverse engineering stage.

Behm et al. [22] transformed relational database schemas into object-oriented schemas and migrated the
relational data to the new schema. Hainaut et al. [23] proposed a general architecture for data-centered
application reverse engineering, and provided a set of CASE tools to deal with this challenge. Finally,
they depicted five real-world projects in which the proposal and tools were applied. Polo et al. [24]
Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



SOFTWARE MODERNIZATION BY RECOVERING WEB SERVICES FROM LEGACY DATABASES
proposed a database-driven development method for building applications with a three-tier structure
(presentation, business, persistence) from a legacy relational database. The method works as a
transformation function that takes the relational schema as its input, producing three sets of classes (which
depend on the actual system being reengineered) to represent the final application.

With regard to the reengineering process, the first stage typically focuses on achieving a set of abstract
specifications to generate a new system with the new requirements. However, there are many cases in
which it is not necessary to create a new database, but rather to wrap the database with an interface to
access it, and there is no need to restructure it. These techniques are called ‘wrapping techniques’ and
consist of building software components that usually wrap a database management system. For
instance, Thiran et al. [25] provided a formal framework with which to define schema mappings and to
generate as much of the code of the wrappers as possible. McBrien and Pouolovassilis [26] presented a
framework that can be used to transform database schemas according to different data models. This
work provides a set of transformations with which to automatically migrate or wrap data, queries and
updates between semantically equivalent schemas. Moreover, Thiran and Hainaut [27] proposed a
generic wrapper architecture to be instantiated for specific data models and software systems. This is
achieved by transforming the requests to the subject data model in another target model that is
independent of any database management system. Wrapping techniques allow databases to be
integrated into new information systems for which they were not initially designed, and the database
life cycle can therefore be extended. Canfora et al. [28] presented a black-box modernization approach
to obtain wrappers that interact with legacy systems through their user interfaces in a noninvasive
manner. However, the cornerstone of this approach is not legacy databases.

Despite all these efforts, there is little research in literature concerning the detection of services from
databases, that is, obtaining wrappers as services to enable the interaction between modernized
information systems and legacy databases. In [6], Sneed proposed a reengineering process to obtain
Web services from legacy COBOL applications. In addition, Chung et al. [29] provided a method to
support legacy information system reengineering, taking Web services as the main building unit. All
these works focus on obtaining Web services by analyzing source code and SQL queries embedded
in that code, but these proposals ignore database schema’s information. Moreover, these proposals
do not incorporate the envision of MDA or ADM approaches to solve the formalization and
automation challenges. Indeed, all the work presented in this section usually proposes ad hoc
techniques and tools that will hardly ever be reused in other specific situations.

Other proposals attempt to solve the formalization problem by following model-driven development
principles. In this respect, Bezivin et al. [30] proposed a forward engineering transformation by
following the MDA approach to support the generation of Web services. This transformation obtains
PSM models, depicting services from different kinds of PIM models such as UML models. Wang
et al. [31] proposed a framework to support the model-driven reengineering of databases, but this
work does not obtain Web services. García-Rodriguez de Guzmán et al. [32] provided an approach
to support database reengineering to identify Web services. However, although this approach
follows the MDA approach, it does not consider certain principles of the new ADM initiative.
Nevertheless, this work is the starting point for our research, and the work presented herein is based
upon on the idea of relational database schema pattern recognition.

Table I shows a comparison between the current proposal and existing work. The main contributions of
this work are: (i) it improves the previous pattern matching technique by adding new patterns to take
advantage of foreign key relationships between tables; (ii) this work incorporates the automation of
selective publication and the deployment of Web services by following the ADM approach; (iii) it
additionally provides a tool that supports and instruments the whole proposal, thus facilitating its adoption
in industry; and finally (iv) the proposed approach is validated through a real-life industrial case study.
4. PRECISO — AN ADM-BASED PROCESS

This section describes the ADM-based process named PRECISO, and aims to establish the necessary
guidelines to allow the generation of Web services from relational databases. According to the ADM
horseshoe model, the proposed process takes a legacy relational database as its input, which is first
Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



Table I. Comparison of some database reengineering proposals.

Mechanism Non-model-driven development principles Model-driven development principles

Outgoing
artifact

Reverse
engineering Restructuring

Forward
engineering

Reverse
engineering Restructuring

Forward
engineering

New schema Behm et al. [22]
Hainaut et al. [23]

New software
application

Reus et al. [20];
Pereira and Pinto [21]

Wang et al. [31]

Polo et al. [24]
Wrappers Thiran et al. [25];

McBrien and Poulovassilis [26];
Thiran and Hainaut [27];
Canfora et al. [28]

Services Sneed [6]; Chung et al. [29] *Our Proposal Bezivin et al. [30]
García-Rodriguez de Guzmán et al. [32]

R. PÉREZ-CASTILLO ET AL.
transformed into a PSM model, according to the SQL-92 metamodel [33], by means of reverse
engineering. While other techniques focused on analyzing legacy code to discover integrity
constraints or ensure data consistency, this technique is developed to work with relational database
schemas, which already contain integrity constraints.

The PSM obtained is then transformed into a PIM model, which raises the abstraction level of the
system to the business requirement level, independently of the technology used. The PIM model is
depicted by using the UML2 metamodel [34]. The restructuring stage is the right moment at which
to introduce new requirements into the PIM model, because it is the starting point from which to
generate a new vision of the model. The process is then ready to generate a new PSM model from
the PIM, and the forward engineering stage begins here. Because our aim is to generate Web
services by allowing the legacy relational database to be accessed, this PSM model must include
issues related to Web services technology, and its abstraction level is thus reduced. This PSM model
is represented according to the WSDL metamodel.

Despite the fact that PRECISO (the proposed process) is framed in the ADM horseshoe model, it
can be seen as a linear process following a sequence of activities that consist, in turn, of a set of
fine-grained tasks (see Figure 2). The proposed process considers three main activities: (i) database
model recovery, (ii) object model generation, and (iii) Web service generation. These activities are
in accordance with the three stages defined by the ADM approach, that is, reverse engineering,
restructuring, and forward engineering. The following subsections present all these activities and
specify the sequence of tasks involved in each activity. Moreover, Table A.I in Appendix I provides
a detailed explanation of the inputs, outputs, and techniques used in the proposed process.
Figure 2. Proposed ADM process to generate web services from databases.

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



SOFTWARE MODERNIZATION BY RECOVERING WEB SERVICES FROM LEGACY DATABASES
In addition, between here and the end of the paper, a small running example is shown to depict how
the process works. This example concerns how to recover and develop Web services for a legacy
database used by a conference registration application. Figure 3 shows the legacy database schema,
which consists of four tables: Conferences, Papers, Authors, and Author-Paper.

4.1. DMR Database model recovery

As previously stated, the first activity aims to create a PSM model of the legacy relational database,
which must be migrated to a set of Web services. In addition, potential services must be identified in
this activity to ensure that functionalities are not lost. The tasks involved in this activity are detailed
in the following paragraphs.

4.1.1. DMR 1 Database reverse engineering. The first task of the modernization process is to use the
implemented and working database to abstract a relational model that represents this database. This
model is technology-dependent, or in other words, it takes into account the foundations of a specific
platform. Some metadata must be recovered as a result. These metadata will be described, for better
compatibility and understanding, in terms of the SQL-92 metamodel (see Figure 4), based on Ref. [35].

The information needed to create metamodels of PSMs can be taken from the
INFORMATION_SCHEMA [36]. This is a standardized mechanism that is taken from the SQL-92
standard, which identifies the metadata of a particular database through a set of predefined views. These
views return database metadata according to a standardized schema. A PSM is consequently built through
the information provided by a set of homogeneous queries on the information schema. PSMs concerning
database are additionally made persistent by using XMI (XML metadata interchange) [37]. XMI
facilitates their safe accurate management, communication, and integration throughout the entire process.

In our example, the implementation of the database model is written using the XMI schema. In this
model (see Figure 5), there is an element for each table and for each constraint present in the database
schema according to the SQL-92 metamodel (see Figure 4).

4.1.2. DMR 2 Service discovery. A first draft list containing the services that implement the potential
functionalities is discovered in parallel during the reverse engineering stage. Bearing in mind that
certain patterns are repeatedly used in recovered database schemas, the principal objective of this
task is to complete the first draft list with new candidate services by making use of inference
mechanisms in these well-known patterns. The discovery of candidate services is based on an
already existing technique named ‘model driven pattern matching’, previously presented in [32], and
introduces some new patterns about relational database schemas. PRECISO uses these patterns as a
starting point. Moreover, PRECISO improves some of the patterns presented, and adds a new one
Author-Paper
author

paper

Authors
id

name

afiliation

Papers
id

title

proceedings

pages

Proceedings
id

title

conference

date

publisher

Figure 3. Legacy database schema of conferences system.

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



Figure 4. SQL-92 metamodel.

 

Figure 5. Database model represented by means of its XMI file.

R. PÉREZ-CASTILLO ET AL.
that addresses foreign key relationships between database tables. Table II shows the set of patterns
identified in relational database schemas to obtain a set of candidate services. There are simple
services that are found in simple database queries and more complex services that take into account
both primary key constraints (referenced table and combined table patterns), and foreign key
constraints (observed table pattern) (see Table II).

The proposed patterns rely on foreign keys because they represent the relationships between
business entities as defined in a company’s business processes. This is owing to the fact that
Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



Table II. Patterns and candidate services which are examined in relational database schema.

SOFTWARE MODERNIZATION BY RECOVERING WEB SERVICES FROM LEGACY DATABASES
relational models are obtained from entity/relationship (E/R) models, which are previously defined in
the design stage. There is consequently a direct relationship between entities and tables, and
relationships of E/R models and foreign keys of relational models. Entities (tables) are therefore
closely related to the business entities of the company, and relationships between business entities
(with a cardinality of ‘1 to n’) are related to foreign keys. It is for this reason that the patterns
exploit the foreign key information of relational databases.

The technique does not only provide large web services, but also a large set of fine-grained services
related to CRUD (Create / Read / Update / Delete) operations and get and set operations. This ensures
the future flexibility of the deployed Web services, which can be composed or choreographed into
coarse-grained Web services.

When this task is carried out in our working example, some new services are found by means of the
pattern matching technique. More specifically, the ‘combined tables’ pattern (see Table II) is
recognized in both the Author-Paper table and the Authors table, and Papers, which contain two
respective foreign keys in the Author-Paper table (see database schema in Figure 3). Once the
‘combined tables’ pattern has been recognized, the generation of the predefined services related to
this pattern is triggered. Figure 6 shows the services added to the candidate service list after the
recognition of the ‘combined tables’ patterns in the aforementioned tables (see Table II and Figure 3).

The output of this task is a set of fine-grained services, corresponding to database queries and mainly
obtained from the relationships (foreign and primary keys) between database tables. Although all the
services discovered could be published as simple services, they can also be used to build other
complex coarse-grained services. Compound Web services are often obtained to support complex
functionalities, for example functionalities that are in line with a company’s business operation. This
challenge therefore implies that it is first necessary to know the target company’s business processes
Figure 6. Services obtained from an instance of ‘combined tables’ pattern.

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



R. PÉREZ-CASTILLO ET AL.
to adequately manage the necessary orchestration and choreography of such complex Web services.
This challenge is not within the scope of the paper, because the technique focuses on the automatic
extraction of fine-grained Web services that provide: (i) a wrapper to manage the access to the data
stored in legacy databases and (ii) offers a mechanism to integrate legacy databases into SOA
environments. Nonetheless, the fine-grained Web services provided by the approach can be used to
compose more complex services to provide complex functionalities.

4.2. OMG Object model generation

The principal objective of this second activity is to generate a UML objects model from the information
obtained from database recovery. This model of objects represents the PIM model at a higher
abstraction level, and will then be the basis used to properly generate Web services in the next activity.

4.2.1. OMG 1 Object model transformation. This activity has a single task, which carries out the
PSM! PIM transformation, in which the model obtained of relational database schema is evolved
to the object model. The object model is represented according to the UML2 metamodel [34].
Transformations can be formally established by using specific languages to define automatic
transformations among models, such as QVT [18]. The transformations can also be carried out
manually by writing some pieces of source code for a supporting tool.

The object model obtained in the working example consists of four kinds of objects, one for each
table in a database model: Proceedings, Papers, Authors, Author-Paper. These classes will all be part
of the so-called Business Layer according to a Three-Tier Architecture [38] (see Figure 7).

4.3. WSG Web service generation

The third activity in the process is the activity that eventually generates and deploys the Web services
to manage the initial input legacy database.

4.3.1. WSG 1 Generation of WSDL interfaces. In this task, the object model abstraction is moved to
an abstraction level in which the specifics concerning Web services are introduced to obtain a PSM
model that supports Web services (see Figure 2). This new PSM model is achieved by merging two
input artifacts: the PIM representing the object model and the corresponding model in which
Figure 7. Object model obtained from a conference system in the working example.

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



SOFTWARE MODERNIZATION BY RECOVERING WEB SERVICES FROM LEGACY DATABASES
services have been discovered by the pattern matching technique. This task will generate the PSM
model written according to the WSDL metamodel [39].

In our working example, we again focus on the discovered instance of the ‘combined tables’ pattern,
and particularly on the first service obtained: ‘select Authors_for_Papers(intid_paper)’. Figure 8 shows
the representation of a WSDL model segment generated for this Web service after the execution of the
DMR 2: Service discovery and OMG 1: Object model transformation tasks.

4.3.2. WSG 2 Generating code from object model. This task aims to generate the pieces of source
code to support the object model obtained in previous tasks. This code will be the basis for
implementing the Web service architecture.

In our example, the classes represented in Figure 7 are implemented according to a certain
programming language that supports Web service technology such as JAVA, C#, and so on. The
classes belonging to the Business layer related to the object model are first written to solve possible
dependencies. The persistent classes for each business class and the database broker class are then
written, taking into account the logical dependences.

4.3.3. WSG 3 Web services publication. Web services aimed at providing access to the legacy
relational database are built using both the source code of the object model and descriptions of
WSDL interfaces. The access is carried out by means of a set of published services chosen from
among those discovered as candidates during the DMR 2 task.

In the working example, we continue working to enable the selection of services from among all
candidate services that were previously discovered. If we return to the services shown in Figure 6,
let us consider as an example that analysts might only be interested in services with which to select
the rows in the Papers and Authors tables, and they might not be interested in other kinds of
services. Analysts will therefore only require these services to be implemented. These two services
are published as operations of the Web service class according to a certain programming language
that supports the Web service technology (see Figure 7).

4.3.4. WSG 4 Web services deployment. This task is focused on the steps that must be taken to ensure
that the Web services chosen will eventually be deployed in a Web server to be used, thus making them
fully operational services with which to access the legacy relational database.

This task requires a human-based judgment to select the subset of services to be deployed. This
judgment is carried out by system analysts or maintainers with an adequate level of expertise, or
could even be done by business experts to deploy Web services that are in line with the company’s
business processes at a particular moment or in a particular project. However, the services discarded
are already useful for future projects in which the requirements might be different.

In our running example, all the artifacts required, which have been obtained by means of the
PRECISO process, are automatically deployed in a Web application server and properly configured
to permit database responses to external requests.
Figure 8. WSDL segment of service ‘select authors for papers’.

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



R. PÉREZ-CASTILLO ET AL.
So far, a general description of the proposed modernization process has been detailed. As previously
stated, we have implemented a tool to carry out the application of PRECISO. Details of this tool are
provided in the following section.
5. THE SUPPORTING TOOL

PRECISO, the aforementioned ADM-based process, is supported by a stand-alone desktop application
(see online [40]). The PRECISO tool leads the analyst through the application of PRECISO, and
semi-automatically supports the creation of Web services from legacy relational databases, so that external
requests (mainly queries) can be made. As a consequence, and by means of this tool, PRECISO becomes
a scalable ADM process that can be used to modernize large legacy databases. Indeed, PRECISO has
been applied to a medium/large legacy database in an industrial Web development for a case study, as is
shown in Section 6.

PRECISO semi-automates the discovery, publication, and deployment of Web services from legacy
relational databases, following the model-driven principles. This means that some human intervention
is necessary. In fact, any reverse engineering technique (as our technique is partially) may entail a
certain loss of semantics if it is not aided by human intervention. This is owing to the fact that
reverse engineering techniques abstract several low-level details (e.g., implementation details).

More details on the design and implementation of the PRECISO tool will be provided below. We have
divided the description of the details into two subsections. In Section 4.1, we first summarize some
generics in the features of the tool. Second, in Section 4.2, we discuss how some specifics concerning
technical details had to be introduced in the development of the PRECISO tool to fully cover all the
tasks in the PRECISO process.
5.1. Some generics about PRECISO tool’s features

The tool has been designed by bearing in mind its use by developers who wish to continue using
existing data in legacy databases, but who wish to migrate the application to other new platforms, or
even to include new features in existing ones. The main benefit of using the PRECISO tool is the
reduction of development times when dealing with the persistence layer of an Model/View/
Controller (MVC) structured application. This has become a reality because of the automatic
generation of Web services.

As previously stated, the tool addresses issues such as remote database connection, connections to
databases from different manufacturers, the project-based graphical display of generated models,
testing, reporting, and so on. The proposed architecture, which takes into account the aforementioned
challenges, is shown in Figure 9
Figure 9. Architecture of the developed tool.

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



SOFTWARE MODERNIZATION BY RECOVERING WEB SERVICES FROM LEGACY DATABASES
5.1.1. High coverage of the PRECISO architecture-driven modernization process. The PRECISO
tool has been developed to fully support the PRECISO process. The generation of Web services from
relational databases is therefore widely supported throughout all the stages involved in the
modernization process: metadata extraction, model generation, model visualization, object model
transformation, editing and publication of Web Services, deployment, testing, reporting, and so on.

5.1.2. Working in a ‘project-based’ way. The PRECISO tool manages each instance of the PRECISO
process as a minimal full-sense working unit under the name of ‘project’ (Figures 10 and 11). This has
two advantages: on the one hand, the project enables the generation of Web services to be resumed
AuthorData
AuthorId

name

intermediateName

lastName

groupId

department

address

zipCode

city

country

email

AuthorWritingInConferencePaper
PaperId

AuthorId

short

AuthorWritingInJournalPaper
PaperId

AuthorId

short

Conference
ConferenceId

conference

ed

ConferenceName

location

startDate

finalDate

kind

ConferencePapers
PaperId

ConferenceId

title

startPage

finalPage

isLNCS

LNCS ConferencePapersACKProjectId
PaperId

ProjectId

JournalPapers
PaperId

JournalId

title

volume

issue

mounth

year

startPage

finalPage

isJCR

impactFactor

JournalPapersACKProjectId
PaperId

ProjectId

Journals
JournalId

title

editorial

LNCSProceedings
LNCSId

number

title

editor

ConferenceId

ProjectId
ProjectId

ProjectAcronym

title

year

supportingEntity

conuntry

ResearchGroups
GroupId

groupName

web

CEOId

university

address

 

Figure 10. Relational schema of legacy database of CI.

Figure 11. XMI code of table ‘conference papers’.

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



R. PÉREZ-CASTILLO ET AL.
from a previous point that has been saved. On the other hand, the project file can be migrated to another
computer. A project is composed of a package of information concerning: the database to be
modernized, the object model transformations, publication and deployment of services, and so on.
Typical operations can be carried out in the project file: creation, open, save, and so on. Throughout
Section 6 (corresponding to the case study presented in this work), some snapshots of the tool’s user
intertool are provided and explained (see Figures 12 and 13).
Figure 12. Class model obtained from the database model.

Figure 13. Selective deployment of web services through PRECISO tool.

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



SOFTWARE MODERNIZATION BY RECOVERING WEB SERVICES FROM LEGACY DATABASES
5.1.3. Partitioned and ordered process generation. In the PRECISO tool, each activity of the process
is associated with an individual module. The main reason for doing this is that each module can be
executed in an independent manner, both whenever it is suitable to do so, and wherever it can be done,
that is, by different members of staff on several computers. Figure A.1 (Appendix II) depicts the
manner of working as a partitioned process implemented by the PRECISO tool. The representation is
shown by means of a UML state machine diagram.

5.1.4. Alignment to widely-used standards and extensible to others. To ensure that they would be
adaptable to any of the possible environments, we decided to align the artifacts generated and used
by the PRECISO tool to as many technical ‘de jure’ standards as possible. In this respect, the
PRECISO Tool uses standards such as SQL-92 to inspect the database; XML and XMI to represent
the metadata [41] and to represent models; WSDL [39] and SOAP (Simple Object Access Protocol)
to support Web services technology [42], and so on. These standards allow the artifacts generated
by the PRECISO tool to be integrated into other modernization and case tools on the market, which
supposes an important benefit in the saving of both time and resources when several development
platforms must be used

To obtain a better performance and satisfy other standards, we contemplated the need to allow the
PRECISO tool to be sufficiently extensible to manage artifacts according to any other standards that
are not as widely usable as those for which we have implemented support.

5.1.5. Generation of software rather than simply source code. One of the most challenging issues
that we wished to confront when developing the PRECISO tool was to deploy running software
rather than simply generating source code for Web services. As software engineers, we are
conscious of the importance of properly documenting the generated artifacts. We therefore decided
that the tool should not only accomplish the requested pieces of running software, but should also
automatically accomplish a set of deliverables that complement and improve the generated source
code, such as class documentation, reports, model diagrams, database scripts, and so on.

5.2. Some specifics regarding the PRECISO tool’s features

As previously mentioned, the PRECISO tool covers each task in the PRECISO process. However, to
successfully implement this coverage, some decisions on technical details had to be made during the
development. In this subsection we analyze, for each of the PRECISO process tasks, the specifics on
which we based our design and implementation decisions to develop certain features.

5.2.1. Specifics regarding DMR Database model recovery. The functionalities needed to recover
database models from existing legacy relational databases have been implemented in the PRECISO
tool, along with certain strategies and heuristics to identify candidate services. Because one of our
aims was to align the design to as many standards as possible, we decided to focus on which were
the most important ones. For instance, for the DMR1 Database reverse engineering activity, we
decided that models derived from databases (PSMs) would be represented according to the SQL-92
metamodel [35]. This decision was made because the SQL-92 standard [33] is widely used in the
software industry [43, 44]. However, the PSM models can be also recovered from any other
database using other standards such as SQL-86, hierarchical databases, databases based on COBOL,
and so on. Because we required the tool to be extensible, it was only necessary to add the
corresponding metamodels to properly represent these models.

On the other hand, we found it necessary to describe how we proceeded so that readers could better
understand the path we had taken. We are now therefore able to, for example, provide some details on
the DMR 2 Service discovery activity, which examined the database model obtained to identify some
candidate services. The easiest, most reliable, and quickest way to do this is to infer them from the
discovery of certain structures based on pattern matching techniques [32]. We therefore decided to
use these standard techniques (see Table II for details on both the search patterns and the services
that can be derived from each pattern). It is worth highlighting that there are simple services that
involve only a single table. These services are directly obtained from the database scheme and
matched to CRUD operations along with getters & setters methods to handle various columns in
each table. Furthermore, advanced services involve several tables of schema (Table II). In this case,
Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



R. PÉREZ-CASTILLO ET AL.
services may be directly obtained from views or, on the contrary, services could be obtained from the
following patterns that were identified in the relational database scheme: (1) referenced table, when
there is a foreign key among two tables; (2) combined table, when there are two or more foreign
keys from one table to another; and (3) observed table. Unlike the second table, this pattern searches
two or more foreign keys in the same table.

5.2.2. Specifics on OMG Object model generation. The aim of the OMG task is object model
generation. This task corresponds with the module for which some specifics are to be detailed.

In the OMG1 Object model transformation task, the tool must address a PSM! PIM
transformation. Because we consider that SQL-92 represents database models, this is our source
metamodel in the transformation. We believed that the target metamodel should be a UML2 model
because it is the standard in software development. It was also necessary to define how to implement
the transformation by choosing a strategy from the possible options: using QVT or directly
implementing it by means of code within the tool. After analyzing the suitability of each option, we
decided to use and consequently implement the algorithm depicted in [30], which executes the
following transformations: a table! a class, a column! an attribute, a foreign key! association, and
so on. Moreover, SQL-92 data types are mapped onto data types of the generic programming language,
which is used to generate source code.

5.2.3. Specifics on WSG Web services generation. Finally, because we wished the tool to generate
running software rather than source code, we had to implement the publication and deployment of
Web services. This requirement involved an analysis whose specific details are presented in the
following paragraphs.

The WSG1 Generation of WSDL interfaces task takes as input both the previously obtained
object model and the services discovered. These two artifacts are the basis used to generate the Web
service descriptions, using WSDL interfaces as its output.

With regard to the task named WSG 2 Generating code of object model, and to deploy executable
Web services, the tool must write files containing the source code of the object model in a persistent
store. The source code must be written in any language with Web services technology support. In
this tool, we decided to use C#.Net. In addition, the PRECISO tool supports the edition of the files
generated. Anyway, the programming language used to implement the object model supporting the
web service interface is independent of the proposed technique and could be extended by providing
different modules to generate source code in different programming languages.

For the WSG 3 Web services publication task, the tool is prepared to offer users the functionality
of selecting services from among those services discovered. Users can select services that will be
included in the Web service, which will eventually be generated. Several reasons, including those
related to security, signify that it is not advisable to make the access to the entire database public by
means of certain services that will not be used in the future. Moreover, because the PRECISO tool
can generate several Web services with different services, it would be possible to generate several
Web services with different sets of services to provide different partial viewpoints of the database.

To implement the WSG 4 Web services deployment task, the tool must set up the Web services
built to enable them to be executed on the Web, so that they can be properly used. A particular
application server with the capability of deploying Web services should be selected for this. Of all
the existing commercial software, we decided that the PRECISO tool would be prepared to interact
with Microsoft Internet Information Server 6 (IIS6), because it is only integrated in the .Net
platform used during the development and writes the software corresponding to the object models.
The PRECISO tool had to be able to manage the various means of deployment supported by IIS6:
(1) source code files are copied in the correct location of the application server and (2) this source
code is stated as a Web directory that is accessible on the Web.

Finally, because of the fact that the implementation of the tools follows the model-driven
development principles, any implementation-specific adjustments will be easier to make than with
other tools. Different abstraction levels and their respective models at each level are consequently
less coupled than tools that do not follow model-driven principles. For example, if a new SOA
platform is, in the future, the target technologies for which Web services are created, then only some
Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



SOFTWARE MODERNIZATION BY RECOVERING WEB SERVICES FROM LEGACY DATABASES
adjustments are necessary. First, the PIM metamodel would be the same, and second a new
transformation between the PIM metamodel and the new PSM metamodel would be necessary.
6. CASE STUDY
This section presents a case study to demonstrate the feasibility of PRECISO, the proposed ADM-based
process, by applying it to an industrial project. This project addresses the modernization of a legacy
database to integrate it into a new website. The case study was carried out by following the protocol for
planning, conducting, and reporting case studies proposed by Runeson and Host [45]. The following
sections present the details of the main stages defined in the formal protocol: background; design; case
selection; case study procedure; data collection, analysis and interpretation; and validity evaluation.
6.1. Background

The case study consists of a project that was jointly carried out by the University of Castilla-La Mancha
and Indra Software Labs (Ciudad Real, Spain) (a multinational software company) in the context of the
‘CATEDRA INDRA’, an R&D centre (located in Spain) that carries out research projects in close
cooperation between industry and the university. This research centre is supported by the ’University of
Castilla-La Mancha’ (UCLM) and ‘INDRA Software Labs at Ciudad Real’.

CATEDRA INDRA (hereafter CI) needed to develop its corporate portal1 to support all the
information produced from the cooperation between industry and the university. This site is
directed towards academics, researchers, teachers, PhD candidates, and PhD students. The site
contains information about conferences, lectures, courses, grants offered, events, awards, papers,
journals, and so on.

The CI portal has been built using a standard Web architecture based on the Microsoft .NET
platform. On the one hand, it has used Microsoft Content Management Server 2002 (MCMS) as a
content management system (under the RDBMS Microsoft SQL Server 2000), and on the other
hand, Active Server Pages (ASP) has been used for the presentation layer. Finally, the whole
application (that is, the MCMS and the Web application) has been deployed through Microsoft
Internet Information Server 6 (IIS6) in a MS Windows Server 2003 host.

Because of space limitations, the case study focuses on a certain submodule of the CI portal. This
module deals with the tasks needed to manage the research papers produced by CI. This module must
be able to search research papers according to different criteria, and it must also be able to add new
paper information, and modify or delete existing papers. Until that moment, all these activities had
been carried out manually supported by the tables of a legacy relational database. The new CI portal
will be based on an existing database provided by the CI. This database, which was created many years
ago, stores a considerable amount of information from existing publications by people involved in the
CI. This information is not managed by any application and it is therefore possible to find the suitable
preconditions for implementing a modernization process through the tool. The CI’s database is thus
considered to be a legacy system. The case study applies PRECISO, the proposed ADM-based process,
to recover a set of Web services as a wrapper to integrate the legacy database into the entire CI portal.
6.2. Design

The development staff responsible for this project was interviewed to understand the information needs
of the module of the CI portal. The interviews were analyzed and this analysis reported the information
needs according to established user requirements. This meaningful information would help in the usage
of the tool to obtain the set of correct Web services required to feed the Web layer by means of the
appropriate information.
1http://catedraindra.uclm.es

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr

http://catedraindra.uclm.es


R. PÉREZ-CASTILLO ET AL.
In brief, the problem is the following: it implements a module to query information about the
publications of the CI researchers. It must therefore store all the information from conferences and
journals, data concerning authors, R&D projects financed, and so on. Moreover, this module must
contain a search engine to set up filters to carry out customized searches according to different
search criteria such as conference, journal, international/national, whether a conference is a
Lectures Notes in Computer Sciences (LNCS), whether a journal is indexed, authors, and many
other criteria.

The case study design consists of a single case, that is, it focuses on a single legacy database. This
study can therefore be considered as an holistic case study according to the classification proposed by
Yin [46]. The object of study is PRECISO, the proposed ADM-based process, and the purpose of the
study is the evaluation of specific properties of PRECISO related to effectiveness and efficiency.
Bearing in mind the object and purpose of the study, the main research question (hereafter, MQ)
addressed by the study is the following: Can PRECISO obtain Web services from legacy databases?
To answer the main research question, two additional subquestions are proposed to evaluate whether
Web services can be obtained in an effective and efficient manner (Table III). The additional
research question, AQ1, is stated to evaluate whether the Web services obtained are able to manage
all the data stored in the legacy database. That is, AQ1 aims to evaluate the effectiveness of the
procedure. Moreover, the additional research question AQ2 (Table III) evaluates whether PRECISO
can be used in real-life modernization projects to obtain Web services with a moderate effort, that is,
whether the proposed ADM-based process can obtain Web services efficiently and is consequently
scalable to different kinds and sizes of databases.

The study considers some measures as dependent variables, which facilitate a quantitative analysis
that can be used to provide an answer to the research question. On the one hand, to answer the AQ1
question related to effectiveness, all the different kinds of services (regarding the pattern that is
applied in each case) are measured for each legacy database table (e.g., CRUD, setter/getter/show,
referenced table, combined table, observed table). Another measure is the Usage ratio (1) of
services, that is, the percentage of services that have already been published and deployed from the
entire set of candidate services. For this measure, it is important to know the real level of usage of
all of the services discovered. On the other hand, to provide an answer to the AQ2 question related
to efficiency, the development effort is estimated when (i) PRECISO is used to integrate the legacy
database by means of the Web services and (ii) when the integration of data management has to be
developed from scratch. The effort involved in a new development from scratch (i.e., throw away
the legacy database) is estimated in hours by taking into account the historical data of similar
development projects carried out by the company. The effort of database wrapping development
through PRECISO is accurately measured in hours after carrying out the case study. The study uses
the Effort gain measure (2) to discover the difference between these two kinds of efforts. Effort gain
is measured as the difference between the planned effort and actual effort for a particular
development activity divided by the difference of both total efforts.

Usage ratio ¼ Published services

Candidate services
(1)

Effort gaini ¼ EiPLANNED � EiACTUAL

ETOTALPLANNED � ETOTALACTUAL

(2)
Table III. Research questions of the case study.

Id Research question

MQ Can PRECISO obtain web services from legacy databases?
AQ1 Can PRECISO accurately obtain web services to manage all the stored data?
AQ2 Can PRECISO efficiently obtain web services with a moderate effort?

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



SOFTWARE MODERNIZATION BY RECOVERING WEB SERVICES FROM LEGACY DATABASES
6.3. Case selection

The case selection is a key stage in the case study planning, which aims to select a good and
suitable case to be studied. The study establishes four criteria (C1 to C4) to select the most
appropriate database. C1 guarantees that the legacy database selected is a database that stores the
organization or company’s business data. This criterion discards, for example, databases
supporting information of embedded systems or real-time systems. C2 ensures that the legacy
database will be a real-life database that is deployed in a production environment. C3 ensures
that the selected database really is a legacy database. To evaluate this criterion the time in
production is not used, because it is not a good measure. Instead of production time, C3
considers the amount of modifications in the database that alter the schema database. Finally, C4
guarantees that the database is a relational database, because both the proposed ADM-based
process and the supporting tool were especially developed for relational databases. Moreover, C4
ensures that the relational schema contains all the integrity constraints. The study could consider
a legacy database without integrity constraints, and previously apply an algorithm to discover the
implicit constrains in code. However, these techniques are not the main objective of this study
and may introduce side effects in the technique under study.

After evaluating several available databases according to the aforementioned criteria, the legacy
database of the CI was selected to be studied. The CI’s database stores all the information related to
different kinds of papers, authors, conferences, and so on, and thus meets the C1 criterion. The first
release of this database was moved to the production stage two years ago. It is used manually by
CI’s staff, and therefore also meets the C2 criterion. During that time, the CI staff in charge of
managing the papers made four medium modifications (versions 1.1, 1.2, 1.3, and 1.4), a large
modification (version 2.0), and three more medium modifications (versions 2.1, 2.2, and 2.3). This
ensures compliance with the C3 criterion. From a technological point of view, the CI’s database was
implemented by using SQL Server 2000 (Microsoft) as the Database Management System (DBMS),
that is, a relational database technology. The C4 criterion is therefore also met.

The schema of the selected legacy database is shown in Figure 10. The main tables are ‘Conference
Papers’ and ‘Journal Papers’. These main tables store papers produced for conferences and papers
produced for journals, respectively. These tables are then associated with other tables. These other
tables specify, among other things, data concerning the papers’ authors (‘Author Data’), the conference
data (‘Conference’), data about journals (‘Journals’), and so forth.
6.4. Execution procedure

After the design and case selection of the study, the execution procedure of the study also had to be
planned. The execution was aided by the tool developed to support the procedure. The case study
procedure defines the following steps. The tool first establishes a connection with the database of the
CI. It subsequently generates an XMI file containing all the metadata concerning the database
studied. The piece of XMI code, corresponding to the ‘Conference Papers’ table, is shown as an
example in Figure 11.

In the second step, the object model needed to support the future Web services was created.
The tool generated necessary classes depending on the metadata obtained in the previous
stage. The tool also wrote executable classes (in this case, using C# language). Figure 12
shows the class model of both the domain and persistence tier corresponding to the database
model obtained.

Third, the PRECISO tool achieved the executable Web services by using the class model created in
the previous step. Furthermore, the tool allows the selective publication of services. It was therefore
sufficient to create only some public services. These exposed only the parts of the database that
were necessary for the development of the project (see Figure 13). The tool then transformed Web
services into operational Web services and carried out their deployment in a Web application server.
Suitable Web services with which to provide the required functions for handling the database were
therefore obtained in accordance with the previously imposed information needs. Finally, the set of
Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



R. PÉREZ-CASTILLO ET AL.
recovered Web services were integrated into the CI portal, and Web services could thus be invoked
from Web functions in the user interface layer.
6.5. Data collection

It was necessary to define which data needed to be collected, and the data sources, before starting the
execution of the case study. First, Table IV collects data related to the legacy database, along with
the candidate services discovered through the tool. Table IV shows (i) the name of each table;
(ii) the number of columns in each table; (iii) the number of candidate services grouped by each
kind of service (i.e., CRUD services; services supporting setters, getters and shows operations;
services according the proposed patterns such as referenced table, combined table and observed
table); and finally (iv) the total number of candidate services for each table.

Second, Table V collects data related to the final services published and deployed to use in the CI
portal. Table V shows (i) all the kinds of services; (ii) the total number of services for each type;
Table IV. Candidate services obtained for each table.

Table/View #Columns

Kind of service

TotalCRUD
Setter/getter/

show
Referenced

table
Combined

table
Observed
table

Journals 3 4 7 0 0 0 11
Journal papers 11 4 23 2 5 0 34
LNCS proceedings 5 4 11 0 6 0 21
Conference 8 4 17 0 6 0 27
Conference papers 7 4 15 4 5 0 28
Project Id 6 4 13 0 4 0 21
Journal papers ACK project
Id

2 4 5 4 0 2 15

Conference papers ACK
project Id

2 4 5 4 0 2 15

Research groups 6 4 13 0 0 0 17
Authordata 11 4 23 2 6 0 35
Author writing in journal
paper

3 4 7 4 0 2 17

Author writing in conference
paper

3 4 7 4 0 2 17

View authors 11 0 1 0 0 0 1
View group Ids 6 0 1 0 0 0 1
Search author 9 0 1 0 0 0 1
View project Ids 6 0 1 0 0 0 1
Total 99 48 150 24 32 8 262

Table V. Published services in CI portal.

Kind of service Candidate services Published services Usage ratio

CRUD Insert 12 11 85.0% 93.8%
Update 12 11 85.0%
Delete 12 11 85.0%
Select 12 12 92.0%

Setters/getters/shows Setters 67 0 0.0% 2.7%
Getters 67 0 0.0%
Show 12 0 0.0%
Views 4 4 100.0%

Referenced tables 24 12 50.0%
Combined tables 32 8 25.0%
Observed tables 8 4 50.0%
Total 262 73 27.9%

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



SOFTWARE MODERNIZATION BY RECOVERING WEB SERVICES FROM LEGACY DATABASES
(iii) the total number of services published in the CI portal; and finally (iv) the exploitation
performance of each kind of service, that is, the percentage of published services.

Table VI presents (i) the six activities planned in the software development plan; (ii) the effort that
was previously estimated; and (iii) the effort that was eventually needed to carry out each activity. The
effort was measured in the work hours of a single developer.
6.6. Analysis and interpretation

The MQ question could not be answered until the AQ1 and AQ2 questions had been answered
(Table III). The tool carried out a selective publication and deployment of the Web services
generated from the legacy database. The total number of candidate services was 262 (Table V). The
Web services needed to provide the information required by the development staff involved only a
small set of the candidate services discovered from the database. Indeed, only 73 services were
published in total. The percentage of services that were published to support the functionalities of
the CI portal was therefore 27.9%. Figure 14 provides a pyramid chart to show the amount of
services published for each kind of service.

The service usage ratio depends on the project’s goals (i.e., it depends on those business
functionalities that must be supported in the modernized version of the information system). Despite
this fact, this case study assumes that the required functionalities of the project under study are the
same as those for which the legacy database was created (no additional functionalities are
considered). This is due to the fact that the project motivation was the migration and integration of
the legacy database into a SOA environment, because the previous data management consisted of
the direct manual editing of tables through the database management system. Other modernization
Table VI. Planned and actual effort involved in the development of the CI portal’s papers module.

Development activity Planned effort (h) Actual effort (h) Effort gain

Create database schema 8 0 11.4%
Legacy data migration 30 0 42.9%
Application design 24 36 �17.1%
Application implementation 44 8 51.4%
Unitary tests 8 0 11.4%
Integration tests 8 8 0%
Total 122 52 —

Figure 14. Performance of published services in CI portal.

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



R. PÉREZ-CASTILLO ET AL.
projects might therefore need a different amount of Web services to support different functionalities. In
fact, the development staff noticed that the nonselected Web services would be very useful for future
developments. Because these nonconsidered services were identified and collected, it would be easy to
deploy and integrate them into the CI Web application for the implementation of additional features.

The result is an operational Web service that handles the legacy database. The Web service
supports the information needs in a SOA context such as a CI portal. At this point, the CI portal
can carry out the required functionalities by means of the new Web services. As a consequence,
the AQ1 question can be positively answered, that is, PRECISO can obtain Web services to
manage all the stored data.

Furthermore, the AQ2 question must be also answered, and the effort time was thus evaluated. The
total effort time previously planned was 122 h (work hours of a single developer). However, the actual
effort time was only 52 h, signifying that the automatic generation of Web services provided a total
effort reduction of 70 h (i.e., 57%).

The development staff perceived advantages in most of the development activities (see
Figure 15). Because all the required information was available as services, the staff worked
with real data when developing the Web application. The staff strove to develop the Web
interface (with an effort gain of 51.4%). In addition, because the required information was
available from the beginning, all the features of the CI Web application were tested with the real
information from the database. The staff was allowed to reduce the time spent on the testing
process (effort gain of 11.4%), because Web developers were able to build the necessary
Web interfaces that display the information, which is in turn obtained by the aforementioned
Web services.

The effort time was only worse in the application design activity (effort gain of �17.1%)
because a small additional effort was necessary to plan the appropriate integration between Web
services and the CI portal (Figure 15). This additional effort would not be necessary in
traditional software developments that are aligned with the remainder of the CI portal’s design.
Despite this additional effort, which is small in comparison with the estimated time for the
design activity, the total effort time was much better when the information requirements were
implemented using PRECISO. The AQ2 question can therefore be answered as true, that is,
PRECISO can efficiently obtain Web services. As a consequence, the main research question
(MQ) is positively answered. This means that PRECISO is able to properly obtain Web services
from legacy relational databases.
Figure 15. Planned and actual effort chart to develop the CI portal’s module.

Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



SOFTWARE MODERNIZATION BY RECOVERING WEB SERVICES FROM LEGACY DATABASES
6.7. Validity evaluation

Finally, the validity of the results obtained in the case study must be evaluated. This stage
evaluates whether the results are true and not biased for the whole population to which the
results will be generalized. This section thus shows the threats to the validity of this case
study. According to Ref. [47], there are three main types of validity: internal, construct, and
external validity.

There is no large population that makes it possible to obtain statistically representative results
according to the internal validity, although a clear trend for the proposed measures was identifiable
in this case study. However, there are two determining factors involved in the obtained results
related to the efficiency of PRECISO. First, the tool used to obtain the business processes could be a
factor that affects the effort time. This means that the measure values might be different if the Web
services are obtained with another tool supporting the same proposed ADM-based process. Second,
if this study is replicated with other cases involving a different software development plan, the
results concerning effort time might be slightly different. However, a positive effort gain is expected
in the majority of cases, because the proposed automation process allows developers to reduce the
development time for several activities.

The measures of the case study were adequate to measure the variables and answer the research
questions appropriately. Thus, the construct validity was also achieved. Finally, external validity is
concerned with the generalization of the results. This study considers traditional legacy relational
databases as the whole population. In this respect, the results obtained could be generalized to this
population. However, the specific technology of the selected case (MSSQL Server 2000) is a threat
that should be noted, because future results might be different. To mitigate this threat, the study
should be replicated using legacy databases implemented in other different technologies like Oracle,
MySQL, and so on.
7. CONCLUSION AND FUTURE WORK

This paper presented an ADM whose aim is to automatically generate Web services from legacy
relational databases. Databases can thus be integrated into SOA environments. A tool (PRECISO)
that supports this process has also been developed in an ad hoc manner.

The modernization process is based on the usage of a set of metamodels to represent the models
involved in each task. For example, the SQL-92 metamodel has been used to represent the database
model (or PSM model). Moreover, the UML2 metamodel has been utilized to represent the system
(or PIM model), among other metamodels.

To illustrate how the process works, this paper also presented a case study in an industrial
context. The tool developed was used to support the modernization process of a publication
database, so that it could be used by different applications, among them a corporate website,
which was built using the Web services generated. This case study revealed that developers took
advantage of the availability of the required information to improve the development process:
because all the required information was available as services, the team could work with real
data when developing the Web application. In addition, the development team could work only
on the development of the Web interface. Furthermore, because the required information was
available from the beginning, all the features of the CATEDRA INDRA website could be tested
with the real information from the database. This allowed the development team to accelerate the
testing process.

The future lines of this research will focus on two key aspects: (1) an in-depth analysis will be
carried out to infer services based on the searching of more patterns in a database scheme; (2)
transformations among models will be formalized through the use of specific-purpose languages
such as QVT; and (3) a top–down generation of Web services based on data from business
processes will be added to obtain complex services in line with business requirements. In
addition, new versions of the PRECISO tool supporting the new advances in this research will
be implemented.
Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



R. PÉREZ-CASTILLO ET AL.
APPENDIX A: PRECISO OVERVIEW
Table A.I. Overview of PRECISO process. Activities, tasks, inputs, outputs, and techniques.

APPENDIX B: PARTITIONED PROCESS IN PRECISO
Figure B.I. Partitioned process in PRECISO tool.
Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr



SOFTWARE MODERNIZATION BY RECOVERING WEB SERVICES FROM LEGACY DATABASES
ACKNOWLEDGEMENTS

This work was supported by the Spanish FPU Program, and by the R+D projects ALTAMIRA (JCCM,
PII2I09-0106-2463); PEGASO/MAGO (MICIN and FEDER, TIN2009-13718-C02-01); MOTERO (JCCM
and FEDER, PEII11-0366-9449); ORIGIN (CDTI and FEDER, IDI-2010043(1-5)); and IQMNet (MICIN,
TIN2010-09809-E).

REFERENCES

1. Shankaranarayanan G, Cai Y. A Web Services Application for the Data Quality Management in the B2B Networked
Environment. In Proceedings of the Proceedings of the 38th Annual Hawaii International Conference on System
Sciences (HICSS’05) - Track 7 - Volume 07. IEEE Computer Society, 2005.

2. Sommerville I. Software Engineering (8th edn). Addison Wesley: Reading, Massachusetts, 2006; 864.
3. Canfora G, Penta MD, Cerulo L. Achievements and challenges in software reverse engineering. Communications of

the ACM 2011; 54(4):142–151.
4. Davenport TH. Need radical innovation and continuous improvement? Integrate process reengineering and TQM.

Strategy & Leadership Journal 1993; 21(3):6–12.
5. Di Lucca GA, Fasolino AR, Tramontana P. Reverse engineering Web applications: the WARE approach. Journal of

Software Maintenance and Evolution: Research and Practice 2004; 16:71–110.
6. Sneed HM. Migrating to Web Services. In Emerging Methods, Technologies and Process Management in Software

Engineering. Wiley-IEEE Computer Society Pr.: Hoboken, New Jersey, 2008; 151–176.
7. Lehman MM. On understanding laws, evolution, and conservation in the large-program life cycle. Journal of Systems

and Software 1979; 1:213–221.
8. Chikofsky EJ, Cross JH. Reverse Engineering and Design Recovery: A Taxonomy. IEEE Software 1990; 7(1):13–17.
9. Miller J, Mukerji J. MDA Guide Version 1.0.1. [cited 05-12-2008]; Available from: www.omg.org/docs/omg/03-06-01.

pdf 2003: OMG. 62.
10. OMG. ADM Glossary of Definitions and Terms. [cited 25-11-2009]; Available from: http://adm.omg.org/

ADM_Glossary_ Spreadsheet_pdf.pdf. 2006, OMG. p. 34.
11. Caballero I, et al. IQM3: information quality management maturity model. Journal of Universal Computer Science

2008; 14(22):3658–3685.
12. Lewis GA, Smith DB, Kontogiannis K. A Research Agenda for Service-Oriented Architecture (SOA): Maintenance

and Evolution of Service-Oriented Systems. 2010, Software Engineering Institute. p. 40.
13. Arnold RS. Software Reengineering. IEEE Computer Society Press: Washington, D.C., 1994; 688.
14. Sneed HM. Estimating the Costs of a Reengineering Project. Proceedings of the 12th Working Conference on

Reverse Engineering. IEEE Computer Society, 2005; 111–119.
15. Canfora G, Penta MD. New Frontiers of Reverse Engineering. In 2007 Future of Software Engineering. IEEE

Computer Society: Washington, D.C., 2007.
16. Kazman R, Woods SG, Carrière SJ. Requirements for Integrating Software Architecture and Reengineering Models:

CORUM II. In Proceedings of the Working Conference on Reverse Engineering (WCRE’98). IEEE Computer
Society, 1998.

17. OMG. Why do we need standards for the modernization of existing systems? 2003, OMG ADM Task Force.
18. OMG, QVT. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. [cited 10-10-2010];

Available from: http://www.omg.org/spec/QVT/1.0/PDF. 2008, OMG.
19. Turner M, Budgen D, Brereton P. Turning Software into a Service. IEEE Computer Society: Washington, D.C.,

2003.
20. Reus T, Geers H, Deursen Av. Harvesting Software for MDA-Based Recovering. In European Conference on Model

Driven Architecture - Foundations and Applications. Springer-Verlag Berlin Heidelberg: Bilbao (Spain), 2006.
21. Pereira ÓNM, Pinto JMHdS. Maintainability assessment of an enhanced object-oriented approach for wrapping

stored procedures. In Proceedings of the 24th IASTED international conference on Database and applications.
ACTA Press: Innsbruck, Austria, 2006; 26–31.

22. Behm A, Geppert A, Dittrich K. Algebraic Database Migration to Object Technology. In Lecture Notes in Computer
Science. Springer Berlin / Heidelberg: Berlin, Germany, 2000.

23. Hainaut J-L, et al. Database reverse engineering: From requirements to CARE tools. In Applied Categorical
Structures. SpringerLink: Berlin, Germany, 2004.

24. Polo M, et al. Generating three-tier applications from relational databases: a formal and practical approach. Informa-
tion and Software Technology 2002; 44:923–941.

25. Thiran P, et al. Updating Legacy Databases through Wrappers: Data Consistency Management. In Proceedings
of the 11th Working Conference on Reverse Engineering (WCRE’04) - Volume 00. IEEE Computer Society,
2004; 58–67

26. McBrien P, Poulovassilis A. Automatic Migration and Wrapping of Database Applications - A Schema Transformation
Approach. In Proceedings of the 18th International Conference on Conceptual Modeling. Springer-Verlag, 1999.

27. Thiran P, Hainaut J-L. Wrapper Development for Legacy Data Reuse. In Proceedings of the Eighth Working
Conference on Reverse Engineering (WCRE’01). IEEE Computer Society, 2001; 198

28. Canfora G, et al. A wrapping approach for migrating legacy system interactive functionalities to Service Oriented
Architectures. Journal of Systems and Software 2008; 81(4):463–480.
Copyright © 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr

http://www.omg.org/docs/omg/03-06-01.pdf 2003: OMG. 62
http://www.omg.org/docs/omg/03-06-01.pdf 2003: OMG. 62
http://adm.omg.org/ADM_Glossary_Spreadsheet_pdf.pdf
http://adm.omg.org/ADM_Glossary_Spreadsheet_pdf.pdf
http://www.omg.org/spec/QVT/1.0/PDF


R. PÉREZ-CASTILLO ET AL.
29. Chung S, Young PS, Nelson J. Service-Oriented Software Reengineering: Bertie3 as Web Services. In Proceedings of
the IEEE International Conference on Web Services. IEEE Computer Society, 2005.

30. Bezivin J, et al. Applying MDA Approach for Web Service Platform. In Proceedings of the Enterprise Distributed
Object Computing Conference, Eighth IEEE International. IEEE Computer Society, 2004; 58–70.

31. Wang H, Shen B, Chen C. Model-Driven Reengineering of Database. In World Congress on Software Engineering,
Beijun S, Cheng C (eds.), 2009; 113–117.

32. García-Rodríguez de Guzmán I, Polo M, Piattini M. Using Model-Driven Pattern Matching to derive functionalities
in Models. In Proceedings of the Nineteenth International Conference on Software Engineering and Knowledge
Engineering. Boston, USA, 2007; 529–534.

33. ISO/IEC. ISO/IEC 9075:1992, Database Language SQL. 1992.
34. OMG. Unified Modeling Language: Superstructure. Version 2.0. http://www.omg.org/docs/formal/05-07-04.pdf.

2007 [cited 16-08-2007]; Available from: http://www.omg.org/docs/formal/05-07-04.pdf.
35. Calero C. An Ontological Approach To Describe the SQL:2003 Object-Relational Features. Computer Standards

and Interfaces 2005; 695–713.
36. Melton J, Simon AR. Understanding the new SQL: A Complete Guide. Morgan Kaufmann Publishers, Inc: United

States of America, 1993.
37. Grose TJ, Doney GC, Brodsky SA. Mastering XMI: Java Programming with XMI, XML, and UML, Press O (ed).

John Wiley & Sons: Hoboken, New Jersey, 2001; 480.
38. Larman C. Applying UML and Patterns. Prentice Hall: Upper Saddle River, New Jersey, USA, 1998.
39. W3C. WSDL in Web Services Description Working Group. 2007 [cited 08/01/2008]; Available from: http://www.

w3.org/2002/ws/desc/.
40. Alarcos Research Group. PRECISO. A Reverse Engineering Tool to DiscoverWeb Services from Relational Databases.

2009 [cited 5/30/2011]; Available from: http://alarcos.esi.uclm.es/per/rpdelcastillo/PRECISO/PRECISO.html.
41. Grose T, Doney G, Brodsky A.Mastering XMI. Java Programming with XMI, XML, and UML. John Wiley & Sons:

Hoboken, New Jersey, 2002; 480.
42. Zimmermann O, Tomlinson M, Peuser S. Perspectives on Web Services. Appling SOAP, WSDL and UDDI to

Real-World Projects. Springer: Berlin, Germany, 2003.
43. Blaha M. A Retrospective on Industrial Database Reverse Engineering Projects-Part 1. In Proceedings of the 8th

Working Conference on Reverse Engineering (WCRE´01). IEEE Computer Society: Suttgart, Germany, 2001.
44. Blaha M. A Retrospective on Industrial Database Reverse Engineering Projects-Part 2. In Proceedings of the 8th

Working Conference on Reverse Engineering (WCRE´01). IEEE Computer Society: Suttgart, Germany, 2001.
45. Runeson P, Höst M. Guidelines for conducting and reporting case study research in software engineering. Empirical

Softw. Eng. 2009; 14(2):131–164.
46. Yin RK. Case study research. Design and methods (3rd edn). Sage: London, 2003.
47. Wohlin C, et al. Experimentation in software engineering: an introduction. Kluwer Academic Publishers: Norwell,

Massachusetts, 2000; 204.

AUTHORS’ BIOGRAPHIES
Copyright © 2012 John W
Ricardo Pérez-Castillo holds the MSc degree in Computer Science from the University
of Castilla-La Mancha, and he is currently a PhD student in Computer Science. He Works
at the Instituto de Tecnologías y Sistemas de Información (ITSI) at the University of
Castilla-La Mancha. His research intererests include architecture-driven modernization,
model-driven development and business process mining. Contact him at Escuela Superior
de Informática, Paseo de la Universidad 4, 13071-Ciudad Real, Spain; Ricardo.PdelCastillo@
uclm.es.
Ignacio García-Rodriguez de Guzmán is assistant professor at the University of
Castilla-La Mancha and belongs to the Alarcos Research Group at the UCLM. He holds
the PhD degree in Computer Science from the University of Castilla-La Mancha. His
research interests include software maintenance, software modernization and service-
oriented architecture. Contact him at Escuela Superior de Informática, Paseo de la
Universidad 4, 13071-Ciudad Real, Spain; Ignacio.GRodriguez@uclm.es.
iley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr

http://www.w3.org/2002/ws/desc/
http://www.w3.org/2002/ws/desc/
http://alarcos.esi.uclm.es/per/rpdelcastillo/PRECISO/PRECISO.html


SOFTWARE MODERNIZATION BY RECOVERING WEB SERVICES FROM LEGACY DATABASES

Copyright © 2012 John W
Ismael Caballero is assistant professor at the University of Castilla-La Mancha and
belongs to the Alarcos Research Group at the UCLM. He holds the PhD degree in
Computer Science from the University of Castilla-La Mancha. His research interests include
software and data quality, database design and software development based on quality.
Contact him at Escuela Superior de Informática, Paseo de la Universidad 4, 13071-Ciudad
Real, Spain; Ismael.Caballero@uclm.es.
Mario Piattini is full professor at the UCLM. His research interests include software
quality, metrics and maintenance. He holds the PhD degree in Computer Science from the
Technical University of Madrid, and leads the Alarcos Research Group at the Universidad
de Castilla-La Mancha. He is CISA, CISM e CGEIT by ISACA. Contact him at Escuela
Superior de Informática, Paseo de la Universidad 4, 13071-Ciudad Real, Spain; Mario.
Piattini@uclm.es.
iley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
DOI: 10.1002/smr


