
Toward Obtaining Event Logs from Legacy Code 

Ricardo Pérez-Castillo
1
, Barbara Weber

2
, Ignacio García-Rodríguez de Guzmán

1
 

and Mario Piattini
1
 

1 Alarcos Research Group, University of Castilla-La Mancha 

Paseo de la Universidad, 4 13071, Ciudad Real, Spain 

{ricardo.pdelcastillo, ignacio.grodriguez, mario.piattini}and@uclm.es 
2 University of Innsbruck 

Technikerstraße 21a, 6020 Innsbruck, Austria 

barbara.weber@uibk.ac.at 

Abstract. Information systems are ageing over time and become legacy 

information systems which often embed business knowledge that is not present 

in any other artifact. This embedded knowledge must be preserved to align the 

modernized versions of the legacy systems with the current business processes 

of an organization. Process mining is a powerful tool to discover and preserve 

business knowledge. Most process mining techniques and tools use event logs, 

registered during execution of process-aware information systems, as the key 

source of knowledge. Unfortunately, the majority of traditional information 

systems is not process-aware and does not have any built-in logging 

mechanisms. Thus, this paper defines the main challenges to be addressed as 

well as a preliminary solution to obtain event logs from traditional systems. The 

solution consists of a technique that statically analyzes the source code and 

modifies it in a non-invasive way. Finally, the modified source code enables the 

event log registration at runtime based on dynamic source code analysis. 

1  Introduction 

Business processes have become a key asset in organizations, since processes allow 

them to know and control their daily performance, and to improve their 

competitiveness [2]. Thereby, information systems automate most of the business 

processes of an organization [14]. However, due to uncontrolled maintenance 

information systems are ageing over time and become legacy information systems 

(LIS) [11]. They gradually embed meaningful business knowledge that is not present 

in any other asset of the organization [7]. When maintainability of LISs diminishes 

below acceptable limits, they must be replaced by improved versions [8]. To ensure 

that the new system is aligned with the organization’s business processes, the 

embedded business knowledge needs to be preserved  [5]. The business knowledge 

preservation requires an in-depth understanding of how the information systems 

currently support the organization’s business processes. This problem motivates the 

use of process mining, which became a powerful tool to understand what is really 

going on in an organization by observing the information systems [12]. 

Usually, event logs are obtained from Process-Aware Information Systems (PAIS) 

[3], i.e., whose nature facilitates the registration of events throughout process 

execution. Indeed, most process mining techniques and tools are developed for this 

kind of information systems [2]. In addition to PAIS, there is a vast amount of 



traditional systems that also support the business processes of an organization, and 

could thus benefit from process mining. Nevertheless, non process-aware systems 

imply five key challenges for obtain meaningful event logs. This paper proposes a 

technique for addressing these challenges and for obtaining process event logs from 

traditional (non process-aware) information systems. The technique is based on both 

static and dynamic analysis of the source code of the systems. Firstly, the static 

analysis syntactically analyzes the source code and injects pieces of source code in a 

non-invasive way in specific parts of the system. Secondly, the dynamic analysis of 

the modified source code makes it possible to write an event log file in MXML format 

during system execution. The proposed technique is further supported by specific 

information provided by business experts and system analysts who know the system. 

The remainder of this paper is organized as follows. Section 2 introduces the main 

challenges for obtaining event logs from traditional information systems. Section 3 

presents the proposed technique to tackle these challenges. Section 4 discusses related 

work and finally, Section 5 provides a conclusion and discusses future work. 

2  Process-Awareness Challenges 

Challenge 1 - Missing Process-Awareness. The first challenge is to know what 

business activities are executed. While PAISs manage processes (i.e. a sequence of 

activities with a common business goal using explicit process descriptions) [14], LIS 

are a set of methods, functions or procedures (callable units in general) where 

processes are only implicitly described. LIS can be seen as a graph where the nodes 

are the different callable units, and the arcs are the calls between callable units, i.e., 

the call graph represents the control flow of a LIS. To address this challenge Zou et 

al. [15] proposed the “a callable unit / a business activity” approach, which considers 

each callable unit as a candidate business activity in a process mining context. This 

approach provides a good starting point, but ignores other important challenges such 

as, for example, the different granularity of callable units and activities (Challenge 1) 

and the mixture of business- related and technical callable units (Challenge 3). 

Challenge 2 - Granularity. The different granularity of business activities and 

callable units in LIS constitutes an important challenge. In [12], each callable unit in a 

LIS is considered as an activity to be registered in an event log. However, LISs 

typically contain thousands of callable units, many of which are very fine-grained, not 

directly supporting any business activity. To avoid that the mined processes get 

bloated with unnecessary details, too fine-grained callable units should not be 

considered in the event log. In this sense, different solutions can be implemented to 

discard fine-grained callable units. On the one hand, source code metrics (such as the 

lines of source code or cyclomatic complexity metric) could be used to determine if a 

callable unit is a coarse- or fine-grained unit. On the other hand, heuristics (like 

discarding getter and setter methods, or discarding units when call hierarchies reach a 

specific depth) could offer a good alternative with minimal computational costs. 

Challenge 3 - Discarding Technical Code. Challenge 3 is caused by the fact that 

LISs typically contain several callable units, which cannot be considered as business 

activities. Callable units can be grouped into two domains: (i) the problem domain 

contains the callable units related to the business entities and functionalities of the LIS 

(i.e., these units implement the business processes of the organization) and (ii) the 



solution domain contains the callable units related to the technical nature of the 

platform used in the LIS and aids the callable units of the previous group. Since 

callable units belonging to the solution domain do not constitute business activities, 

they should not be considered in the event log. Therefore, callable units in charge of 

auxiliary or technical functions that are not related to any use case of the system could 

be discarded. However, due to the delocalization and interleaving problems [10], the 

problem and solution domain groups are not always disjoint sets (i.e., the technical 

and business code are usually mixed), thus requiring that system analysts provide the 

information about whether a callable unit belongs to the problem or solution domain. 

Challenge 4 - Process Scope. Another challenge is to establish the scope of a 

business process (i.e., to identify where a process instance starts and ends). While the 

start and end points of a business process are explicitly defined in PAISs, LIS lack 

explicit information about the supported processes. Unfortunately, the information 

where a process starts and ends cannot be automatically derived from the source code, 

but must be provided by business experts (who know the business processes of the 

organization as well as their start and end activities) and system analysts (who know 

what callable units in the source code support the start and end activities). 

Challenge 5 - Process Instance Scope. The lack of process-awareness in LIS 

causes another fundamental challenge which is due to the fact that a business process 

is typically not only executed once, but multiple instances are executed concurrently. 

If a particular business activity is executed (i.e., callable unit is invoked), this 

particular event has to be correctly linked to one of the running process instances. 

Correlating an activity with a data set, which uniquely identifies the process instance 

it belongs to, poses significant challenges. In particular, it has to be established which 

objects can be used for uniquely identifying a process instance (i.e., what the 

correlation data is). If correlation objects have been identified, the location of these 

objects in each callable unit has to be determined (i.e., the argument or variable in 

each callable unit that contains the correlation data). This requires the input of 

business experts and systems analysts who know the LIS and the processes it 

supports. Unfortunately, however, there are some units where the selected correlation 

data is not present. For this, traceability mechanisms throughout callable units are 

needed to have the correlation data available at any place of the legacy source code. 

3  A Preliminary Solution 

This paper proposes a technique to obtain event logs from non process-aware systems 

based on a combination of static and dynamic analysis of source code addressing the 

discussed challenges. Our proposal presents a generic technique, although it is 

specially designed for object-oriented systems. The static analysis is the key stage of 

the technique, where special sentences for writing events during system execution are 

injected in the code. Due to the missing process-awareness of LISs this stage poses 

several challenges (cf. Section 2). While challenges C1 and C2 can be addressed in a 

fully automated manner (Task 5 and 6 in Fig. 1), challenges C3, C4 and C5 require 

input from business experts and system analysts (Task 1 - 4 in Fig. 1). 

In Task 1, to deal with the process scope challenge (Challenge 4), business experts 

establish the start and end business activities of the business processes to be 

discovered. In parallel, system analysts examine in Task 2 the legacy source code and 



filter the directories, files or set of callable units that support business activities (i.e., 

they select the callable units belonging to the problem domain), thereby reducing 

potential noise in the event log due to technical source code (Challenge C3). Task 3 is 

the mapping between start/end business activities and the callable units supporting 

them, which is again supported by system analysts (Challenge C4). 

1. Provide 

Starting/Ending 

Business 

Activities

Starting/

Ending 

Business 

Activities

3. Map Starting/

Ending Activities 

with callable units

2. Set Files/

Directories of 

Problem Domain

Problem 

Domain 

Callable 

Units

Legacy 

Source 

Code

Starting/

Ending 

Callable 

Units

4. Define 

Correlation Set of 

Attributes

5. Inject Trace 

Senteces 

(Static Analysis)

Correlation 

Sets of 

Callable 

Units

Modified 

Source 

Code

Event Log 

(MXML File)

6. System 

Execution

(Dynamic 

Analysis)

Business

Expert

System 

Analyst

Tool

C4

C4

C5

C3

C1,C2 C1

 
Fig. 1. The overall process carried out by means of the proposed technique  

In Task 4 system analysts establish the correlation data set for each callable unit 

which is uniquely identifying a process instance (Challenge C5). For this, the 

correlation data is mapped to parameters of each callable unit. This information is 

then used during run-time to correlate the executed activities with the proper process 

instance. After that, Task 5 consists of the syntactic analysis of the source code. A 

parser automatically analyzes and injects on the fly the special sentences writing the 

event long during system execution. During the static analysis, the source code is 

broken down into callable units (Challenge 1).  All callable units not belonging to the 

problem domain subgroup selected by the system analyst in Task 3 (Challenge 3) and 

all fine-grained callable units (e.g., setter, getter, constructor, toString and equals 

callable units) are then discarded (Challenge C2). Finally, in each of the filtered 

callable units, two sentences are injected at the beginning and the end of each 

respective unit (the first one with a start event type, and the second one represents the 

complete event for the same business activity). Moreover, the correlation data defined 

for the unit as well as information whether or not the unit represents a start or end 

activity are included in the sentences. When the modified code is executed, the 

injected sentences invoke a function, which writes the respective event in the log.  

The dynamic analysis is performed after the static analysis, thus the modified 

source code can be released to production again. The new code allows to write event 

log files according to the MXML (Mining XML) format, which is used by the process 

mining tool ProM [13]. When the control flow of the information system reaches an 

injected sentence, a new event is added to the event log. The events are written by 

means of a function, which searches the adequate process of the event log where the 

event must be written using an Xpath expression. If the process is null, then a new 

process is created. After that, the function examines the correlation data to determine 

to which process instance the event has to be added. If the correlation data is empty, 

then the function takes the correlation data of the previously executed callable unit to 

add the event to the correct process instance. This solution is based on simple 

heuristics and allows correlating events and process instances when no correlation 



data is available for the respective event. Moreover, in order to add the event to the 

correct process instance, the function again uses an Xpath expression taking the 

correlation data into account. If the expression does not find a process instance for the 

correlation data (i.e., because the event belongs to a start activity), the function creates 

a new process instance for the correlation data. Finally, when the function has 

determined the correct process instance, it adds the event to that instance. The event, 

represented as an AuditTrailEntry element in an MXML file, is created with (i) the 

name of the executed callable unit that represent the WorkflowModelElement; (ii) the 

event type that is also a parameter of the function; (iii) the user of the system that 

executed the callable unit (or the user of the session if the system is a web 

application), which represents the originator element; and finally (iv) the system date 

and time when the callable unit was executed to represent the timestamp element. 

4  Related Work 

There are some works related to business processes recovery from non process-aware 

information systems. Zou et al [15] developed a framework to recover workflows 

from LISs. This framework statically analyzes the source code and applies a set of 

heuristic rules to discover business knowledge from source code. Pérez-Castillo et al 

[9] make another proposal based on static analysis that uses a set of business patterns 

to discover business processes from source code. Both approaches solely rely on static 

analysis, which has the disadvantage that activities cannot be linked correctly to 

process instances, since the required correlation data is only known at runtime. Thus, 

other solutions based on dynamic analysis have been suggested. Cai et al. [1] propose 

an approach that combines requirement reacquisition with dynamic analysis. Firstly, a 

set of use cases is recovered by means of interviewing the system’s users. Secondly, 

the system is dynamically traced based on these use cases to recover business 

processes. In all these works, the technique for recovering event logs is restricted to a 

specific mining algorithm. In contrast, our solution proposes a technique based on 

dynamic analysis (combined with static analysis) to obtain MXML event logs from 

traditional information systems that is not restricted to a specific process mining 

algorithm. Similar to our approach the work of Ingvaldsen et al. [6] aims at obtaining 

logs in MXML format from ERP systems. Thereby, they consider the SAP transaction 

data to obtain event logs. In contrast, our approach aims at traditional information 

systems without any built-in logging features. In addition, Günther et al. [4] provide a 

generic import framework for obtaining MXML event logs from different PAISs. 

5  Conclusions and Future Work 

This paper presents a novel technique based on static and dynamic analysis of source 

code to obtain event logs from non process-aware systems. Thereby, the obtained 

event log can be used to discover business processes in the same way than an event 

log obtained from any PAIS. Thus, all the research and development efforts carried 

out in the process mining field may be exploited for traditional information systems. 

Achieving this goal is very ambitious since at least five key challenges must be 

addressed: (i) missing process-awareness, (ii) granularity, (iii) discarding technical 

code, (iv) process scope and (v) process instance scope.  



In a first step, the proposed technique applies static analysis for injecting special 

sentences in the source code. In a second step, the modified source code is executed, 

and an event log is written during system execution. In principle, the static analysis of 

the system has to be performed only once, and then the modified source code can be 

dynamically analyzed several times to obtain different event logs. However, the 

feedback obtained by business experts and systems analysts, after the first static and 

dynamic analysis, can be used to incrementally refine the next static analysis for 

improving the results obtained during dynamic analysis. 

Our work in progress focuses on the improvement of the proposed technique. A 

traceability mechanism will be implemented taking the call hierarchies into account to 

deal with lost and scattered correlation data. In addition, to accurately detect the 

strengths and weakness of the proposal it be validated by means of a case study. 

Acknowledgement 

This work was supported by the FPU Spanish Program; by the R+D projects 

ALTAMIRA (PII2I09-0106-2463), INGENIO (PAC08-0154-9262), and 

PEGASO/MAGO (TIN2009-13718-C02-01), and by the University of Innsbruck. 

References 

[1] Cai, Z., X. Yang, and W. Wang, Business Process Recovery for System Maintenance - An 

Empirical Approach, in ICSM'09. 2009, IEEE  Computer Society. p. 399-402. 

[2] Castellanos, M., K.A.d. Medeiros, J. Mendling, B. Weber, and A.J.M.M. Weitjers, 

Business Process Intelligence, in Handbook of Research on Business Process Modeling, 

2009, Idea Group Inc. p. 456-480. 

[3] Dumas, M., W. van der Aalst, and A. Ter Hofstede, Process-aware information systems: 

bridging people and software through process technology. 2005: John Wiley & Sons, Inc. 

[4] Günther, C.W. and W.M.P. van der Aalst, A Generic Import Framework for Process Event 

Logs. in BPI'06, 2007. LNCS 4103: p. 81-92. 

[5] Heuvel, W.-J.v.d., Aligning Modern Business Processes and Legacy Systems: A 

Component-Based Perspective (Cooperative Information Systems). 2006: The MIT Press. 

[6] Ingvaldsen, J.E. and J.A. Gulla, Preprocessing Support for Large Scale Process Mining of 

SAP Transactions. in BPI'07. 2008. LNCS 4928: p. 30-41. 

[7] Mens, T., Introduction and Roadmap: History and Challenges of Software Evolution 

Software Evolution (Springer Berlin Heidelberg), 2008. 1: p. 1-11. 

[8] Newcomb, P., Architecture-Driven Modernization (ADM), in WCRE'05. p. 237. 

[9] Pérez-Castillo, R., I. García-Rodríguez de Guzmán, O. Ávila-García, and M. Piattini, 

MARBLE: A Modernization Approach for Recovering Business Processes from Legacy 

Systems, in REM'09. 2009, p. 17-20. 

[10] Ratiu, D., Reverse Engineering Domain Models from Source Code, in REM'09. 2009, p. 13-16. 

[11] Ulrich, W.M., Legacy Systems: Transformation Strategies. 2002: Prentice Hall. 448. 

[12] van der Aalst, W. and A.J.M.M. Weijters, Process Mining, in Process-aware information 

systems: bridging people and software through process technology. 2005, John Wiley & 

Sons, Inc. p. 235-255. 

[13] van der Aalst, W.M.P., B.F. van Dongenm, C. Günther, A. Rozinat, H.M.W. Verbeek, and 

A.J.M.M. Weijters, ProM : the process mining toolkit, in BPM'09. 2009. p. 1-4. 

[14] Weske, M., Business Process Management: Concepts, Languages, Architectures. 2007, 

Leipzig, Alemania: Springer-Verlag Berlin Heidelberg. 368. 

[15] Zou, Y. and M. Hung, An Approach for Extracting Workflows from E-Commerce 

Applications, in ICPC'06. 2006, IEEE Computer Society. p. 127-136. 


