2009 Symposium on Applied Computing

Honolulu, Hawaii, USA
March 8-12, 2009

Hosted by
University of Hawaii at Mānoa and Chaminade University of Honolulu
The 24th Annual ACM Symposium on Applied Computing

Honolulu, Hawaii, USA
March 8-12, 2009

SYMPOSIUM CHAIRS
Sung Y. Shin, South Dakota State University, United States
Sascha Ossowski, University Rey Juan Carlos, Spain

SYMPOSIUM VICE-CHAIR
Paulo Martins, Chaminade University, United States

PROGRAM CHAIRS
Ronaldo Menezes, Florida Institute of Technology, United States
Mirko Viroli, Università di Bologna, Italy

POSTERS CHAIR
Jiman Hong, Soongsil University, Korea

PUBLICATION CHAIR
(Proceedings Editor)
Dongwan Shin, New Mexico Institute of Mining and Technology, United States

eCONFERENCE MANAGEMENT CHAIR
Mathew J. Palakal, Indiana University Purdue University, United States

PUBLICITY CHAIR
Udo Fritzke, PUC-Minas, Brazil

LOCAL CHAIR
Martha Crosby, University of Hawaii at Mānoa, United States

TREASURER, WEBMASTER, & REGISTRAR
Hisham M. Haddad, Kennesaw State University, United States
About the Sponsoring SIG

ACM SIGAPP

The ACM Special Interest Group on Applied Computing is ACM’s primary applications-oriented SIG. Its mission is to further the interests of the computing professionals engaged in the development of new computing applications and applications areas and the transfer of computing technology to new problem domains. SIGAPP offers practitioners and researchers the opportunity to share mutual interests in innovative application fields, technology transfer, experimental computing, strategic research, and the management of computing. SIGAPP also promotes widespread cooperation among business, government, and academic computing activities. Its annual Symposium on Applied Computing (SAC) provides an international forum for presentation of the results of strategic research and experimentation for this inter-disciplinary environment. SIGAPP membership fees are: $30.00 for ACM Non-members, $15.00 for ACM Professional Members, and $8.00 for ACM Student Members. For further information on SIGAPP, please contact Barrett Bryant at bryant@cis.uab.edu or visit the SIGAPP website at http://www.acm.org/sigapp.
SemanticQA: Web-Based Ontology-Driven Question Answering
Samir Tartir, University of Georgia, United States
Bobby McKnight, University of Georgia, United States
I. Budak Arpniar, University of Georgia, United States

Trust, Reputation, Evidence and other Collaboration Know-How Track
Track Co-Chairs: Jean-Marc Seigneur, University of Geneva, Switzerland

Track Editorial

iTrustU: A Blog Recommender System based on Multi-Faceted Trust and Collaborative Filtering
Ting-Chun Peng, Institute for Information Industry, Taiwan
Seng-cho T. Chou, National Taiwan University, Taiwan

A Taxonomy and Adversarial Model for Attacks against Network Log Anonymization
Justin King, IBM Rochester, United States
Kiran Lakkaraju, University of Illinois, United States
Adam Slagell, University of Illinois, United States

Extending Bayesian Trust Models Regarding Context-Dependence and User Friendly Representation
Sebastian Ries, Technische Universität Darmstadt, Germany

A Personalized Framework for Trust Assessment
Trung Dong Huynh, University of Southampton, United Kingdom

Defending Online Reputation Systems against Collaborative Unfair Raters through Signal Modeling and Trust
Yafei Yang, University of Rhode Island, United States
Yan (Lindsay) Sun, University of Rhode Island, United States
Steven Kay, University of Rhode Island, United States
Qing Yang, University of Rhode Island, United States

Poster Papers

Modeling and Analyzing Review Information on the Web Focusing on Credibility
Takuya Kobayashi, Kyoto University, Japan
Hiroaki Ohshima, Kyoto University, Japan
Satoshi Oyama, Kyoto University, Japan
Katsumi Tanaka, Kyoto University, Japan

Advances in Spatial and Image-Based Information Systems Track
Track Co-Chairs: Richard Chbeir, LE2I-CNRS, France
Ki-Joune Li, Pusan National University, Korea
Kokou Yetongnon, Bourgogne University, France

Track Editorial

GPU-Based Computation of Distance Functions on Road Networks with Applications
Marta Fort, Institut d’Informatica i Aplicacions, Universitat de Girona, Spain
J. Antoni Sellares, Institut d’Informatica i Aplicacions, Universitat de Girona, Spain
Similarity Measures for Trajectory of Moving Objects in Cellular Space .. 1325
Hye-Young Kang, Pusan National University, Korea
Joon-Seok Kim, Pusan National University, Korea
Ki-Joune Li, Pusan National University, Korea
Jung-Rae Hwang, Pusan National University, Korea

Labeled Images Verification Using Gaussian Mixture Models ... 1331
Micheal Baechler, University of Fribourg, Switzerland
Jean-Luc Bloechle, University of Fribourg, Switzerland
Andreas Humm, University of Fribourg, Switzerland
Rolf Ingold, University of Fribourg, Switzerland
Jean Hennebert, University of Applied Science, Switzerland

A Spatial Bitmap-Based Index for Geographical Data Warehouses .. 1336
Thiago Luís Lopes Siqueira, Universidade Federal de São Carlos, Brazil
Ricardo Rodrigues Ciferri, Universidade Federal de São Carlos, Brazil
Valèria Cesário Times, Universidade Federal de Pernambuco, Brazil
Cristina Dutra de Aguiar Ciferri, Universidade Federal de São Paulo, Brazil

Coordination Models, Languages and Applications Track
Track Co-Chairs: Michael Schumacher, University of Applied Sciences
Western Switzerland, Switzerland
Alan Wood, University of York, United Kingdom

Track Editorial ... 1343

On-Line Adaptation of Sequential Mobile Processes Running Concurrently .. 1345
Massimiliano de Leoni, SAPIENZA - Università di Roma, Italy
Giuseppe De Giacomo, SAPIENZA - Università di Roma, Italy
Yves Lespèrance, York University, Canada
Massimo Mecella, SAPIENZA - Università di Roma, Italy

A Framework for Modelling and Implementing Self-Organising Coordination .. 1353
Mirko Viroli, Università di Bologna, Italy
Matteo Casadei, Università di Bologna, Italy
Andrea Omicini, Università di Bologna, Italy

Situated Tuple Centres in ReSpecT ... 1361
Matteo Casadei, Università di Bologna, Italy
Andrea Omicini, Università di Bologna, Italy

Decomposing Port Automata .. 1369
Christian Koehler, CWI, Netherlands
Dave Clarke, Katholieke Universiteit Leuven, Belgium

Knowledge-Based Coordination with a Reliable Semantic Subscription Mechanism 1374
Martin Murth, Institute of Computer Languages, Vienna University of Technology, Austria
Eva Kühl, Institute of Computer Languages, Vienna University of Technology, Austria
Poster Papers

Applying Reo to Service Coordination in Long-Running Business Transactions .. 1381
Natallia Kokash, CWI, Netherlands
Farhad Arbab, CWI, Netherlands

Constraint Solving and Programming Track

Track Co-Chairs: Eric Monfroy, UTFSM, Valparaiso, Chile and LINA,
University of Nantes, France, Chile
Stefano Bistarelli, Universita ‘G. d’Annunzio’ Chieti-Pescara, IIT-CNR, Pisa, Italy
Barry O’Sullivan, University College Cork, Ireland

Track Editorial ... 1383

Exploiting Weak Dependencies in Tree-Based Search ... 1385
Alejandro Arbelaez, Microsoft-INRIA, France
Youssef Hamadi, Microsoft Research, United Kingdom

Softening Gcc and Regular with Preferences ... 1392
Jean-Philippe Métivier, University of Caen, France
Patrice Boizumault, University of Caen, France
Samir Loudni, University of Caen, France

Length-Lex Bound Consistency for Knapsack Constraints ... 1397
Justin Yip, Brown University, United States
Pascal Van Hentenryck, Brown University, United States

LS(Graph & Tree): A Local Search Framework for Constraint Optimization on Graphs and Trees 1402
Pham Quang Dung, University of Louvain, Belgium
Yves Deville, University of Louvain, Belgium
Pascal Van Hentenryck, Brown University, United States

Message-Passing and Local Heuristics as Decimation Strategies for Satisfiability 1408
Lukas Kroc, Cornell University, United States
Ashish Sabharwal, Cornell University, United States
Bart Selman, Cornell University, United States

Poster Papers

An Approximate Approach to Constraint Solving in Soft Sensing ... 1415
Tian Yang, Chinese Academy of Sciences, China
Zaifei Liao, Chinese Academy of Sciences, China
Xinjie Lu, Chinese Academy of Sciences, China
Hongan Wang, Chinese Academy of Sciences, China

The Sum-of-Increments Constraint in the Consecutive-Ones Matrix Decomposition Problem 1417
Sebastian Brand, University of Melbourne, Australia
A Recommender System for Requirements Elicitation in Large-Scale Software Projects .. 1419
Carlos Castro-Herrera, DePaul University, United States
Chuan Duan, DePaul University, United States
Jane Cleland-Huang, DePaul University, United States
Bamshad Mobasher, DePaul University, United States

A Novel Distance-Based Classifier Built on Pattern Ranking .. 1427
Dipankar Bachar, Università degli Studi di Torino, Italy
Rosa Meo, Università degli Studi di Torino, Italy

Frequent Spatio-Temporal Patterns in Trajectory Data Warehouses .. 1433
L. Leonardi, Università Ca’ Foscari, Italy
S. Orlando, Università Ca’ Foscari, Italy
A. Raffaetà, Università Ca’ Foscari, Italy
A. Roncato, Università Ca’ Foscari, Italy
C. Silvestri, Università Ca’ Foscari, Italy

Optimal Candidate Generation in Spatial Co-Location Mining .. 1441
Zhongshan Lin, Utah State University, United States
SeungJin Lim, Utah State University, United States

Combining Statistics and Semantics via Ensemble Model for Document Clustering 1446
Samah Jamal Fodeh, Michigan State University, United States
William F. Punch, Michigan State University, United States
Pang-Ning Tan, Michigan State University, United States

Using Minimum Description Length for Process Mining .. 1451
T. Calders, Eindhoven University of Technology, Netherlands
C.W. Günther, Eindhoven University of Technology, Netherlands
M. Pechenizkiy, Eindhoven University of Technology, Netherlands
A. Rozinat, Eindhoven University of Technology, Netherlands

Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs 1456
Keith Henderson, Lawrence Livermore National Laboratory, United States
Tina Eliassi-Rad, Lawrence Livermore National Laboratory, United States

Improved AdaBoost.M1 of Decision Trees with Confidence-Rated Predictions ... 1462
Zhipeng Xie, Fudan University, China

Capturing Truthiness: Mining Truth Tables in Binary Datasets .. 1467
Clifford Conley Owens III, Virginia Tech, United States
T. M. Murali, Virginia Tech, United States
Naren Ramakrishnan, Virginia Tech, United States

HTILDE: Scaling Up Relational Decision Trees for Very Large Databases ... 1475
Carina Lopes, Federal University of Rio de Janeiro (UFRJ), Brazil
Gerson Zaverucha, Federal University of Rio de Janeiro (UFRJ), Brazil
Automatic Discovery of Technology Trends from Patent Text ... 1480
Youngho Kim, Information & Communications University, Korea
Yingshi Tian, Information & Communications University, Korea
Yoonjae Jeong, Information & Communications University, Korea
Ryu Jihee, Information & Communications University, Korea
Sung-Hyon Myaeng, Information & Communications University, Korea

Poster Papers

Mining Functional Associated Patterns From Biological Network Data ... 1488
Xuequn Shang, Northwestern Polytechnical University, China
Zhanhuai Li, Northwestern Polytechnical University, China
Wei Li, Northwestern Polytechnical University, China

Data Streams Track

Track Co-Chairs: João Gama, University Porto, Portugal
Pedro Rodrigues, University Porto, Portugal
Jesus Aguilar, University Pablo Olavide, Spain
Andre Carvalho, University of Sao Paulo, Brazil

Track Editorial ... 1490

Parameterless Outlier Detection in Data Streams ... 1491
Alice Marascu, INRIA, France
Florent Masseglia, INRIA, France

Evaluating Algorithms that Learn from Data Streams .. 1496
João Gama, University of Porto, Portugal
Pedro Pereira Rodrigues, University of Porto, Portugal
Raquel Sebastião, University of Porto, Portugal

Online Annotation and Prediction for Regime Switching Data Streams ... 1501
Gordon J. Ross, Institute of Mathematical Sciences, Imperial College London, United Kingdom
Dimitris K. Tasoulis, Imperial College London, United Kingdom
Niall M. Adams, Imperial College London, United Kingdom
David J. Hand, Imperial College London, United Kingdom

Link-Based Event Detection in Email Communication Networks ... 1506
Xiaomeng Wan, Dalhousie University, Canada
Evangelos Milios, Dalhousie University, Canada
Nauzer Kalyaniwalla, Dalhousie University, Canada
Jeannette Janssen, Dalhousie University, Canada

Adaptive Burst Detection in a Stream Engine .. 1511
Marcel Karnstedt, Ilmenau University of Technology, Germany
Daniel Klan, Ilmenau University of Technology, Germany
Christian Pölitz, Ilmenau University of Technology, Germany
Kai-Uwe Sattler, Ilmenau University of Technology, Germany
Conny Franke, University of California, Davis, United States
Poster Papers

Real-Time Scheduling for Continuous Queries with Deadlines .. 1516
Li Ma, Chinese Academy of Sciences/China University of Petroleum, China
Xin Li, Shandong University, China
Yongyan Wang, Chinese Academy of Sciences, China
Hongan Wang, Chinese Academy of Sciences, China

A Method for Clustering Transient Data Streams .. 1518
Pimwadee Chaovalit, University of Maryland, Baltimore County, United States
Aryya Gangopadhyay, University of Maryland, Baltimore County, United States

Incremental Outlier Detection in Data Streams Using Local Correlation Integral 1520
Xinjie Lu, Chinese Academy of Sciences, China
Tian Yang, Chinese Academy of Sciences, China
Zaifei Liao, Chinese Academy of Sciences, China
Manzoor Elahi, Chinese Academy of Sciences, China
Wei Liu, Chinese Academy of Sciences, China
Hongan Wang, Chinese Academy of Sciences, China

Data Theory, Technology, and Applications Track
Track Co-Chairs: Junping Sun, Nova Southeastern University, United States
Ramzi Haraty, Lebanese American University, Lebanon
Papadopoulos Apostolos, Aristotle University, Greece

Track Editorial .. 1522

Information Retrieval from Visual Databases Using Multiple Representations and Multiple Queries ... 1523
Noureddine Abbadeni, Al-Ain University of Science & Technology, United Arab Emirates

Privacy Protection for RFID Data ... 1528
Benjamin C.M. Fung, Concordia University, Canada
Ming Cao, Concordia University, Canada
Bipin C. Desai, Concordia University, Canada
Heng Xu, Penn State University, United States

Retrieving Valid Matches for XML Keyword Search ... 1536
Lingbo Kong, INRIA Futurs, France
Rémi Gilleron, INRIA Futurs, France
Aurélien Lemay, INRIA Futurs, France

Computing Data Cubes Using Exact Sub-Graph Matching: The Sequential MCG Approach 1541
Joubert de Castro Lima, Instituto Tecnológico de Aeronáutica, Brazil
Celso Massaki Hirata, Instituto Tecnológico de Aeronáutica, Brazil

Exploiting Join Cardinality for Faster Hash Joins ... 1549
Michael Henderson, University of British Columbia Okanagan, Canada
Bryce Cutt, University of British Columbia Okanagan, Canada
Ramon Lawrence, University of British Columbia Okanagan, Canada

Enhancing XML Data Warehouse Query Performance by Fragmentation .. 1555
Hadj Mahboubi, University of Lyon, France
Jérôme Darmont, University of Lyon, France
Fuzzy Data Modeling Based on XML Schema .. 1563
Li Yan, Northeastern University, China
Z.M. Ma, Northeastern University, China
Jian Liu, Northeastern University, China

Approximate Indexing in Road Network Databases ... 1568
Sang-Chul Lee, Hanyang University, Korea
Sang-Wook Kim, Hanyang University, Korea
Junghoon Lee, Cheju National University, Korea
Jae Soo Yoo, Chungbuk National University, Korea

CPref-SQL: A Query Language Supporting Conditional Preferences 1573
Sandra de Amo, Federal University of Uberlandia, Brazil
Marcos Roberto Ribeiro, Federal University of Uberlandia, Brazil

Learning the Ontological Theory of an Information Extraction System in the Multi-Predicate ILP Setting ... 1578
Alain-Pierre Manine, Laboratoire d’Informatique de l’université Paris-Nord (LIPN), France

Poster Papers

Consistent and Decentralized Orchestration of BPEL Processes 1583
Weihai Yu, University of Tromsø, Norway

Building an Efficient Preference XML Query Processor .. 1585
SungRan Cho, University of Hannover, Germany
Wolf-Tilo Balke, University of Hannover, Germany

Enterprise Information Systems Track
Track Co-Chairs: Maria-Eugenia Iacob, University of Twente, Netherlands
Rogerio Atem de Carvalho, Federal Center for Technological Education of Campos, Brazil
Asterio Kiyoshi Tanaka, UniRio, Brazil

Track Editorial .. 1587

Model-Based Reasoning on the Achievement of Business Goals 1589
Sebastian Höhn, Albert-Ludwig University, Germany

Policy Management Architecture Based on Provisioning Model and Authorization Certificates 1594
Arlindo L. Marcon Jr., Pontifical Catholic University of Paraná, Brazil
Altair O. Santin, Pontifical Catholic University of Paraná, Brazil
Luiz A. de Paula Lima Jr., Pontifical Catholic University of Paraná, Brazil
Maicon Stihler, Pontifical Catholic University of Paraná, Brazil

Cross-Organizational ERP Management: How to Create a Successful Business Case? 1599
Silja Eckartz, University Twente, Netherlands
Maya Daneva, University Twente, Netherlands
Roel Wieringa, University Twente, Netherlands
Jos van Hillegersberg, University Twente, Netherlands
Management of Requirements in ERP Development: A Comparison between Proprietary and Open Source ERP
Björn Johansson, Copenhagen Business School, Denmark
Rogério Atem de Carvalho, Federal Center for Technological Education of Campos, Brazil

Privacy Preserving Churn Prediction
Shuting Xu, Virginia State University, United States
Shuhua Lai, Virginia State University, United States
Manying Qiu, Virginia State University, United States

Poster Papers

Constructing Process Views for Service Outsourcing
Rik Eshuis, Eindhoven University of Technology, Netherlands
Alex Norta, University of Helsinki, Finland

Web Services in the Dutch Healthcare Insurance Sector: Expected Versus Achieved Benefits
Hayley Bakker, University of Twente, Netherlands
Maria E. Iacob, University of Twente, Netherlands

Embedded Systems Track
Track Co-Chairs: Alessio Bechini, University of Pisa, Italy
Prete Cosimo Antonio, University of Pisa, Italy

Track Editorial

An Adaptive Block-Set based Management for Large-Scale Flash Memory
Zhanzhan Liu, University of Science & Technology of China, China
Lihua Yue, University of Science & Technology of China, China
Peng Wei, University of Science & Technology of China, China
Peiquan Jin, University of Science & Technology of China, China
Xiaoyan Xiang, University of Science & Technology of China, China

Celling SHIM: Compiling Deterministic Concurrency to a Heterogeneous Multicore
Nalini Vasudevan, Columbia University, United States
Stephen A. Edwards, Columbia University, United States

Improving Functional Verification of Embedded Systems Using Hierarchical Composition and Set Theory
Cássio L. Rodrigues, Federal University of Campina Grande, Brazil
Karina R.G. da Silva, Federal University of Goiás, Brazil
Henrique N. Cunha, Federal University of Campina Grande, Brazil
Jorge C.A. de Figueiredo, Federal University of Campina Grande, Brazil
Dalton D.S. Guerrero, Federal University of Campina Grande, Brazil
Elmar Melcher, Federal University of Campina Grande, Brazil

Heterogeneous Real-Time Embedded Software Optimization Considering Hardware Platform
Meikang Qiu, University of New Orleans, United States
Hao Li, University of North Texas, United States
Edwin H.-M. Sha, University of Texas at Dallas, United States
The Current Feasibility of Gesture Recognition for a Smartphone Using J2ME 1642
Luís Tarrataca, Technical University of Lisbon, Portugal
André C. Santos, Technical University of Lisbon, Portugal
João M.P. Cardoso, University of Porto, Portugal

Optimal Service Level Allocation in Environmentally Powered Embedded Systems 1650
Clemens Moser, Swiss Federal Institute of Technology (ETH), Switzerland
Jian-Jia Chen, Swiss Federal Institute of Technology (ETH), Switzerland
Lothar Thiele, Swiss Federal Institute of Technology (ETH), Switzerland

Impact of NVRAM Write Cache for File System Metadata on I/O Performance in Embedded Systems . 1658
In Hwan Doh, Hongik University, Korea
Hyo J. Lee, Hongik University, Korea
Young Je Moon, Hongik University, Korea
Eunsam Kim, Hongik University, Korea
Jongmoo Choi, Dankook University, Korea
Donghee Lee, University of Seoul, Korea
Sam H. Noh, Hongik University, Korea

Storage Architecture and Software Support for SLC/MLC Combined Flash Memory 1664
Soojun Im, Sungkyunkwan University, Korea
Dongkun Shin, Sungkyunkwan University, Korea

RT-Replayer: A Record-Replay Architecture for Embedded Real-Time Software Debugging 1670
Ji Chan Maeng, Hanyang University, Korea
Jung-Il Kwon, Hanyang University, Korea
Min-Kyu Sin, Hanyang University, Korea
Minsoo Ryu, Hnaynag University, Korea

FlashBox: A System for Logging Non-Deterministic Events in Deployed Embedded Systems 1676
Siddharth Choudhuri, University of California, Irvine, United States
Tony Givargis, University of California, Irvine, United States

Poster Papers

Method for Fast Compression of Program Codes for Remote Updates in Embedded Systems 1683
Ryozo Kiyohara, Mitsubishi Electric Corporation, Japan
Satoshi Mii, Mitsubishi Electric Corporation, Japan
Mitsuhiro Matsumoto, Osaka University, Japan
Masayuki Numao, Osaka University, Japan
Satoshi Kuritaha, Osaka University, Japan

On Scheduling Soft Real-Time Tasks with Lock-Free Synchronization for Embedded Devices 1685
Shouwen Lai, Virginia Tech, United States
Binoy Ravindran, Virginia Tech, United States
Hyeonjoong Cho, ETRI, Korea
ERIKA and OpenZB: An Implementation for Real-Time Wireless Networking .. 1687
Paolo Pagano, Scuola Superiore Sant’Anna, Italy
Mangesh Chitnis, Scuola Superiore Sant’Anna, Italy
Antonio Romano, Scuola Superiore Sant’Anna, Italy
Giuseppe Lipari, Scuola Superiore Sant’Anna, Italy
Ricardo Severino, Polytechnic Institute of Porto, Portugal
Mário Alves, Polytechnic Institute of Porto, Portugal
Paulo G. Sousa, Polytechnic Institute of Porto, Portugal
Eduardo Tovar, Polytechnic Institute of Porto, Portugal

Information Access and Retrieval Track
Track Co-Chairs: Gabriella Pasi, University of Milano Bicocca, Italy
Gloria Bordogna, National Research Council, Italy

Track Editorial ... 1689

HITS Algorithm Improvement Using Anchor-related Text Extracted by DOM Structure Analysis ... 1691
Yoshinori Hijikata, Osaka University, Japan
Bui Quang Hung, Osaka University, Japan
Masanori Otsubo, Osaka University, Japan
Shogo Nishida, Osaka University, Japan

Bipolar Query Satisfaction Using Satisfaction and Dissatisfaction Degrees:
Bipolar Satisfaction Degrees ... 1699
Tom Matthé, Ghent University, Belgium
Guy De Tré, Ghent University, Belgium

Heterogeneous Bipolar Criteria Satisfaction Handling in Geographic Decision
Support Systems: An LSP based Approach .. 1704
Guy De Tré, Ghent University, Belgium
Jozo J. Dujmović, San Francisco State University, United States
Nico Van de Weghe, Ghent University, Belgium
Tom Matthé, Ghent University, Belgium
Niels Charlier, Ghent University, Belgium

Diverse Peer Selection in Collaborative Web Search .. 1709
Le-Shin Wu, Indiana University, United States
Filippo Menczer, Indiana University, United States

A Class of Multistep Sparse Matrix Strategies for Concept Decomposition Matrix Approximation ... 1714
Chi Shen, Kentucky State University, United States
Mike Unuakhalu, Kentucky State University, United States

Self-Organizing Collaborative Filtering in Global-Scale Massive Multi-User Virtual Environments .. 1719
Alexander Höhfeld, University of Trier, Germany
Patrick Gratz, University of Luxembourg, Luxembourg
Angelo Beck, University of Trier, Germany
Jean Botev, University of Trier, Germany
Hermann Schloss, University of Trier, Germany
Ingo Scholtes, University of Trier, Germany

Fast Error-Tolerant Search on Very Large Texts ... 1724
Marjan Celikik, Max Planck Institute for Computer Science, Germany
Holger Bast, Max Planck Institute for Computer Science, Germany
A Session Based Personalized Search Using an Ontological User Profile ... 1732
Mariam Daoud, IRIT, Paul Sabatier University, France
Lynda Tamine-Lechani, IRIT, Paul Sabatier University, France
Mohand Bouhannem, IRIT, Paul Sabatier University, France
Bilal Chebaro, Lebanese University, Lebanon

Alternatives to Conjunctive Query Processing in Peer-to-Peer File-Sharing Systems 1737
Wai Gen Yee, Illinois Institute of Technology, United States
Linh Thai Nguyen, Illinois Institute of Technology, United States
Ophir Frieder, Illinois Institute of Technology, United States

A Sentence Level Probabilistic Model for Evolutionary Theme Pattern Mining from News Corpora 1742
Shizhu Liu, Illinois Institute of Technology, United States
Yuval Merhav, Illinois Institute of Technology, United States
Wai Gen Yee, Illinois Institute of Technology, United States
Nazli Goharian, Illinois Institute of Technology, United States
Ophir Frieder, Illinois Institute of Technology, United States

Poster Papers

Stratified Division Queries Involving Ordinal User Preferences ... 1748
P. Bosc, Irisa/Enssat - University of Rennes 1, France
O. Pivert, Irisa/Enssat - University of Rennes 1, France
O. Soufflet, Irisa/Enssat - University of Rennes 1, France

Music Retrieval based on a Multi-Samples Selection Strategy for Support Vector Machine Active Learning ... 1750
Tian-jiang Wang, Huazhong University of Science & Technology, China
Gang Chen, Huazhong University of Science & Technology, China
Perfecto Herrera, Universitat Pompeu Fabra, Spain

A Light-Weight Summarizer based on Language Model with Relative Entropy .. 1752
Chandan Kumar, International Institute of Information Technology, India
Prasad Pingali, International Institute of Information Technology, India
Vasudeva Varma, International Institute of Information Technology, India

Improved Spam Filtering by Extraction of Information from Text Embedded Image E-mail 1754
Seongwook Youn, University of Southern California, United States
Dennis McLeod, University of Southern California, United States

Multimedia and Visualization Track
Track Co-Chairs: Maria G. Pimentel, SCC/ICMC/USP, Brazil
 Ethan V. Munson, University of Wisconsin-Milwaukee, United States

Track Editorial ... 1756

Incremental Board: A Grid-Based Space for Visualizing Dynamic Data Sets .. 1757
Roberto Pinho, Universidade de São Paulo, Brazil
Maria Cristina F. Oliveira, Universidade de São Paulo, Brazil
Alneu de. A. Lopes, Universidade de São Paulo, Brazil
A New Multimedia Synchronous Distance Learning System: The IVA Study Case .. 1765
Valter Roesler, Federal University of Rio Grande do Sul, Brazil
Ronaldo Husemann, Federal University of Rio Grande do Sul, Brazil
Carlos Haas Costa, Federal University of Rio Grande do Sul, Brazil

A Recommendation System for Browsing Digital Libraries ... 1771
Antonio d’Acierno, ISA-CNR, Italy
Vincenzo Moscato, University of Naples, Italy
Antonio Picariello, University of Naples, Italy
Massimiliano Albanese, University of Maryland, United States
Angelo Chianese, University of Naples, Italy

A New Inter-Layer Prediction Scheme for Spatial Scalability with Different Frame Rates 1779
Jinmi Kang, Pusan National University, Korea
Gyeongeun Goh, Pusan National University, Korea
Kidong Chung, Pusan National University, Korea

A Smart Clustering Algorithm for Photo Set Obtained from Multiple Digital Cameras 1784
Chuljin Jang, Pusan National University, Korea
Taijin Yoon, Pusan National University, Korea
Hwan-Gue Cho, Pusan National University, Korea

Term Distribution Visualizations with Focus+Context ... 1792
Moses Schwartz, New Mexico Institute of Mining & Technology, United States
Curtis Hash, New Mexico Institute of Mining & Technology, United States
L.M. Liebrock, New Mexico Institute of Mining & Technology, United States

Visualization of Clustered Directed Acyclic Graphs with Node Interleaving .. 1800
Pushpa Kumar, University of Texas at Dallas, United States
Kang Zhang, University of Texas at Dallas, United States

Information-Theoretic Identification of Content Pages for Analyzing User Information Needs and Actions on the Multimedia Web ... 1806
Rahul Singh, San Francisco State University, United States
Bibek D. Bhattarai, San Francisco State University, United States

An Enhanced Multi-View Video Compression Using the Constrained Inter-View Prediction 1811
Sunghwan Chun, Pusan National University, Korea
Seoyoung Lee, Pusan National University, Korea
Kwangmu Shin, Pusan National University, Korea
Kidong Chung, Pusan National University, Korea

Discovery of Time Series in Video Data through Distribution of Spatiotemporal Gradients 1816
Omar U. Florez, Utah State University, United States
SeungJin Lim, Utah State University, United States

Variable Handling in Time-Based XML Declarative Languages ... 1821
Luiz Fernando G. Soares, Pontifícia Universidade Católica do Rio de Janeiro, Brazil
Rogério F. Rodrigues, Pontifícia Universidade Católica do Rio de Janeiro / FAST, a Microsoft Subsidiary, Brazil
Renato Cerqueira, Pontifícia Universidade Católica do Rio de Janeiro, Brazil
SimoneDJ Barbosa, Pontifícia Universidade Católica do Rio de Janeiro, Brazil
User-Media Interaction via Interactive TV ... 1829
Cesar A.C. Teixeira, Universidade Federal de São Carlos, Brazil
Erick L. Melo, Universidade Federal de São Carlos, Brazil
Renan G. Cattelan, Universidade de São Paulo, Brazil
Maria da Graça C. Pimentel, Universidade de São Paulo, Brazil

Ubiquitous Services in Home Networks offered through Digital TV 1834
Giliard Brito de Freitas, Universidade Federal de São Carlos, Brazil
Cesar Augusto Camillo Teixeira, Universidade Federal de São Carlos, Brazil

Poster Papers

Efficient Concept Detection by Fusing Simple Visual Features 1839
Duy-Dinh Le, National Institute of Informatics, Japan
Shin’ichi Satoh, National Institute of Informatics, Japan

Visualization of Information Flows in a Very Large Social Network 1841
Shin-gyu Kim, Seoul National University, Korea
Hyuck Han, Seoul National University, Korea
Kyungho Jeon, Seoul National University, Korea
Hyungsoo Jung, Seoul National University, Korea
Heon Y. Yeom, Seoul National University, Korea

Two-Dimensional Non-Photorealistic Drawings on Mobile Devices 1843
Damon Shing-Min Liu, National Chung Cheng University, Taiwan
Chi-Hsien Liu, National Chung Cheng University, Taiwan
Ching-I Cheng, National Chung Cheng University, Taiwan

Fast Mode Decision for Scalable Video Coding based on Neighboring Macroblock Analysis ... 1845
Gyeongeun Goh, Pusan National University, Korea
Jinmi Kang, Pusan National University, Korea
Misook Cho, Pusan National University, Korea
Kidong Chung, Pusan National University, Korea

A Framework for Text Visualization Using Memory Traffic Management for Mobile Devices 1847
João Bosco Ferreira Filho, Universidade Federal do Ceará, Brazil
José de S.R. Neto, Universidade Federal do Ceará, Brazil
Cláudio R.F. Lima, Universidade Federal do Ceará, Brazil
Rossana M.C. Andrade, Universidade Federal do Ceará, Brazil

Object Oriented Programming Languages and Systems Track
Track Co-Chairs: Davide Ancona, University of Genova, Italy
Alex Buckley, Sun Microsystems, United States

Track Editorial ... 1849

Matching ThisType to Subtyping ... 1851
Chieri Saito, Kyoto University, Japan
Atsushi Igarashi, Kyoto University, Japan
Static Type Inference for Ruby .. 1859
Michael Furr, University of Maryland, United States
Jong-hoon (David) An, University of Maryland, United States
Jeffrey S. Foster, University of Maryland, United States
Michael Hicks, University of Maryland, United States

Representing Refactoring Opportunities ... 1867
Eduardo Piveta, Universidade Federal do Pampa, Brazil
Marcelo Pimenta, Universidade Federal do Rio Grande do Sul, Brazil
João Araújo, Universidade Nova de Lisboa, Portugal
Ana Moreira, Universidade Nova de Lisboa, Portugal
Pedro Guerreiro, Universidade do Algarve, Portugal
R. Tom Price, Universidade Federal do Rio Grande do Sul, Brazil

Symmetric Encapsulated Multi-Methods to Abstract over Application Structure .. 1873
David Lievens, Trinity College Dublin, Ireland
William Harrison, Trinity College Dublin, Ireland

Programming Languages Track
Track Co-Chairs: Marjan Mernik, University of Maribor, Slovenia
Barrett Bryant, University of Alabama at Birmingham, United States

Track Editorial ... 1881

Optimizing Techniques for Saturated Arithmetic with First-Order Linear Recurrence .. 1883
Weihua Zhang, Parallel Processing Institute, Fudan University, China
Lili Liu, Parallel Processing Institute, Fudan University, China
Chen Zhang, Parallel Processing Institute, Fudan University, China
Hongjiong Zhang, Parallel Processing Institute, Fudan University, China
Binyu Zang, Parallel Processing Institute, Fudan University, China
Chuanqi Zhu, Parallel Processing Institute, Fudan University, China

Algebraic Specification Techniques for Parametric Types with Logic-Based Constraints .. 1890
David Briggs, University of Southern Maine, United States
Suad Alagić, University of Southern Maine, United States

Isomorphisms, Hylomorphisms and Hereditarily Finite Data Types in Haskell .. 1898
Paul Tarau, University of North Texas, United States

Banzai: A Java Framework for the Implementation of High-Performance Servers .. 1903
Julien Cervelle, Université Paris-Est, France
Rémi Forax, Université Paris-Est, France
Gautier Loyauté, Université Paris-Est, France
Gilles Roussel, Université Paris-Est, France

Troll, a Language for Specifying Dice-Rolls .. 1910
Torben Ægidius Mogensen, University of Copenhagen, Denmark

A Practical Solution for Scripting Language Compilers .. 1916
Paul Biggar, Trinity College Dublin, Ireland
Edsko de Vries, Trinity College Dublin, Ireland
David Gregg, Trinity College Dublin, Ireland
TWEAST: A Simple and Effective Technique to Implement Concrete-Syntax AST Rewriting Using Partial Parsing ... 1924
Akim Demaille, EPITA Research & Development Laboratory (LRDE), France
Roland Levillain, EPITA Research & Development Laboratory (LRDE), France
Benoît Sigoure, EPITA Research & Development Laboratory (LRDE), France

Points-to Analysis for JavaScript ... 1930
Dongseok Jang, Korea Advanced Institute of Science & Technology, Korea
Kwang-Moo Choe, Korea Advanced Institute of Science & Technology, Korea

Poster Papers

Data Parallel Dialect of Scheme ... 1938
Petr Krajca, SUNY Binghamton, United States
Vilem Vychodil, SUNY Binghamton, United States

Kenro: A Virtual Machine Monitor Mostly Described in Haskell 1940
Yoshihiro Oyama, The University of Electro-Communications, Japan
Yoshiki Kaneko, The University of Electro-Communications, Japan
Hideya Iwasaki, The University of Electro-Communications, Japan

Programming for Separation of Concerns Track
Track Co-Chairs: Emiliano Tramontana, Università di Catania, Italy
Yvonne Coady, University of Victoria, Canada
Corrado Santoro, University of Catania, Italy

Track Editorial ... 1942

An Implementation Substrate for Languages Composing Modularized Crosscutting Concerns 1944
Hans Schippers, University of Antwerp, Belgium
Michael Haupt, Hasso-Plattner-Institut, University of Potsdam, Germany
Robert Hirschfeld, Hasso-Plattner-Institut, University of Potsdam, Germany
Dirk Janssens, University of Antwerp, Belgium

Building a Customizable Embedded Operating System with Fine-Grained Joinpoints
Using the AOX Programming Environment .. 1952
Jiyong Park, Seoul National University, Korea
Seongsoo Hong, Seoul National University, Korea

Aspect-Oriented Procedural Content Engineering for Game Design 1957
Walter Cazzola, Università di Milano, Italy
Diego Colombo, Microsoft Ireland Research, Ireland
Duncan Harrison, Realtime Worlds, United Kingdom

Flexible Features: Making Feature Modules more Reusable 1963
Peter Ebraert, Vrije Universiteit Brussel, Belgium
Jorge Vallejos, Vrije Universiteit Brussel, Belgium
Yves Vandewoude, Katholieke Universiteit Leuven, Belgium
Theo D’Hondt, Vrije Universiteit Brussel, Belgium
Yolande Berbers, Katholieke Universiteit Leuven, Belgium
Real-Time Systems Track

Track Co-Chairs: Paulo Martins, Chaminade University, United States
Binoy Ravindran, Virginia Tech, United States

Track Editorial

Resource Sharing in Behavioral based Scheduling
Leo Ordinez, Universidad Nacional del Sur, Argentina
David Donari, Universidad Nacional del Sur, Argentina
Rodrigo Santos, Universidad Nacional del Sur, Argentina
Javier Orozco, Universidad Nacional del Sur, Argentina

Exploiting Stack Distance to Estimate Worst-Case Data Cache Performance
Yu Liu, Southern Illinois University Carbondale, United States
Wei Zhang, Southern Illinois University Carbondale, United States

An Implementation of the Earliest Deadline First Algorithm in Linux
Dario Faggioli, Scuola Superiore Sant’Anna, Italy
Michael Trimarchi, Scuola Superiore Sant’Anna, Italy
Fabio Checconi, Scuola Superiore Sant’Anna, Italy
Marko Bertogna, Scuola Superiore Sant’Anna, Italy
Antonio Mancina, Scuola Superiore Sant Anna, Italy

An Orthogonal Real-Time Scheduling Architecture for Responsiveness QoS Requirements in SOA Environments
F.J. Monaco, University of São Paulo, Brazil
M. Nery, University of São Paulo, Brazil
M.M.L. Peixoto, University of São Paulo, Brazil

Poster Papers

Designing Reliable Real-Time Concurrent Object-Oriented Software Systems
Alfredo Capozucca, LASSY-University of Luxembourg, Luxembourg
Nicolas Guelfi, LASSY-University of Luxembourg, Luxembourg

Designing a Multi-Core Hard Real-Time Test Bed for Energy Measurement Experiments
Tongquan Wei, Michigan Tech University, United States
Xiaodao Chen, Michigan Tech University, United States
Piyush Mishra, Michigan Tech University, United States

Computer Security Track

Track Co-Chairs: Giampaolo Bella, Dipartimento di Matematica e Informatica – Università di Catania, Italy
Luca Compagna, SAP Research France, France

Track Editorial

Privacy-Preserving Linear Programming
Jaideep Vaidya, Rutgers University, United States
Florian Kerschbaum, SAP Research, Germany
Daniel Dahlmeier, SAP Research, Germany
Axel Schröpfer, SAP Research, Germany
Debmalya Biswas, IRISA/INRIA, France

Guido Schryen, International Computer Science Institute, United States
Rouven Kadura, RWTH Aachen University, Germany

Improving Stream Correlation Attacks on Anonymous Networks ... 2024
Gavin O’Gorman, Dublin City University, Ireland
Stephen Blott, Dublin City University, Ireland

KvmSec: A Security Extension for Linux Kernel Virtual Machines .. 2029
Flavio Lombardi, Consiglio Nazionale delle Ricerche, Ufficio Sistemi Informativi, Italy
Roberto Di Pietro, Universitat Rovira i Virgili, Spain

Bayesian Bot Detection based on DNS Traffic Similarity ... 2035
Ricardo Villamarín-Salomón, University of Pittsburgh, United States
José Carlos Brustoloni, University of Pittsburgh, United States

Semi-Supervised Co-Training and Active Learning based Approach for Multi-View Intrusion Detection .. 2042
Ching-Hao Mao, National Taiwan University of Science & Technology, Taiwan
Hahn-Ming Lee, National Taiwan University of Science & Technology / Academia Sinica, Taiwan
Devi Parikh, Carnegie Mellon University, United States
Tsuhan Chen, Carnegie Mellon University, United States
Si-Yu Huang, National Taiwan University of Science & Technology, Taiwan

Taking Total Control of Voting Systems: Firmware Manipulations on an Optical Scan Voting Terminal .. 2049
Seda Davtyan, University of Connecticut, United States
Sotiris Kentros, University of Connecticut, United States
Aggelos Kiayias, University of Connecticut, United States
Laurent Michel, University of Connecticut, United States
Nicolas Nicolaou, University of Connecticut, United States
Alexander Russell, University of Connecticut, United States
Andrew See, University of Connecticut, United States
Narasimha Shashidhar, University of Connecticut, United States
Alexander A. Shvartsman, University of Connecticut, United States

SQLProb: A Proxy-Based Architecture towards Preventing SQL Injection Attacks .. 2054
Anyi Liu, George Mason University, United States
Yi Yuan, George Mason University, United States
Duminda Wijesekera, George Mason University, United States
Angelos Stavrou, George Mason University, United States

Secure Web-Based Retrieval of Documents with Usage Controls .. 2062
Peter Djalaliev, University of Pittsburgh, United States
José Carlos Brustoloni, University of Pittsburgh, United States
Advances in Computer Simulation Track

Track Co-Chairs: Giuseppe Vizzari, University of Milano-Bicocca, Italy
 Fabien Michel, Université de Reims Champagne Ardenne, France

Track Editorial ... 2070

An Extensible Simulation Tool for Overlay Networks and Services .. 2072
Jordi Pujol-Ahulló, Universitat Rovira i Virgili, Spain
Pedro García-López, Universitat Rovira i Virgili, Spain
Marc Sánchez-Artigas, Universitat Rovira i Virgili, Spain
Marcel Arrufat-Arias, Universitat Rovira i Virgili, Spain

Simulating Human Intuitive Decisions by Q-Learning ... 2077
Jason Leezer, Trinity University, United States
Yu Zhang, Trinity University, United States

Simulation Supporting the Design of Self-Organizing Ambient Intelligence Systems 2082
Stefania Bandini, University of Milano-Bicocca, Italy
Andrea Bonomi, University of Milano-Bicocca, Italy
Giuseppe Vizzari, University of Milano-Bicocca, Italy

Composing a High Fidelity HLA Federation for Littoral Operations .. 2087
Fawzi Hassaine, Defence R&D, Canada
Russ Moulton, JRM Technologies, United States
Chris Fink, JRM Technologies, United States

Simulating Antigenic Drift and Shift in Influenza A .. 2093
Nuno Fachada, LaSEEB-ISR, Portugal
Vitor V. Lopes, INETI - Instituto Nacional de Engenharia, Tecnologia e Inovação, Portugal
Agostinho Rosa, LaSEEB-ISR, Portugal

Poster Papers

Simulating Business Processes with EPML-Sim .. 2101
Davide Rossi, University of Bologna, Italy
Elisa Turrini, University of Bologna, Italy
Fabio Vitali, University of Bologna, Italy

Using Probabilistic Model Checking and Simulation for Designing Self-Organizing Systems 2103
Matteo Casadei, Università di Bologna, Italy
Mirko Viroli, Università di Bologna, Italy

Conceptualization and Implementation of a Microscopic Pedestrian Simulation Platform 2105
Edgar F. Esteves, LIACC-FEUP, Portugal
Rosaldo J.F. Rossetti, LIACC-FEUP, Portugal
Paulo A.F. Ferreira, LIACC-FEUP, Portugal
Eugénio C. Oliveira, LIACC-FEUP, Portugal

Precise Generalized Contact Point and Normal Determination for Rigid Body Simulation 2107
Dylan A. Shell, University of Southern California, United States
Evan Drumwright, University of Memphis, United States
Service Oriented Architectures and Programming Track
Track Co-Chairs: Claudio Guidi, University of Bologna, Italy
Ivan Lanese, University of Bologna, Italy
Manuel Mazzara, Newcastle University, United Kingdom

Track Editorial ... 2109

CMC-UMC: A Framework for the Verification of Abstract Service-Oriented Properties 2111
Maurice H. ter Beek, ISTI-CNR, Italy
Franco Mazzanti, ISTI-CNR, Italy
Stefania Gnesi, ISTI-CNR, Italy

Runtime Monitoring of Web Service Choreographies Using Streaming XML 2118
Sylvain Hallé, University of California, Santa Barbara, United States
Roger Villemaire, Université du Québec à Montréal, Canada

PRECISO: A Reengineering Process and a Tool for Database Modernisation through Web Services ... 2126
Ricardo P. del Castillo, Alarcos Research Group, University of Castilla-La Mancha, Spain
Ignacio García-Rodríguez, Alarcos Research Group, University of Castilla-La Mancha, Spain
Ismael Caballero, Alarcos Research Group, University of Castilla-La Mancha, Spain
Macario Polo, Alarcos Research Group, University of Castilla-La Mancha, Spain
Mario Piattini, Alarcos Research Group, University of Castilla-La Mancha, Spain

Load Management in Model-Aware Execution of Composite Web Services .. 2134
Karolina Z乌鲁owska, University of Saskatchewan, Canada
Ralph Deters, University of Saskatchewan, Canada

Using Process Mining to Business Process Distribution ... 2140
Faramarz Safi Esfahani, Islamic Azad University, Najaf Abad Branch, Iran
Masrah Azrifah Azmi Murad, University of Putra Malaysia, Malaysia
Nasir Sulaiman, University of Putra Malaysia, Malaysia
Nur Izura Udzir, University of Putra Malaysia, Malaysia

Annotating UDDI Registries to Support the Management of Composite Services 2146
M. Brian Blake, Georgetown University, United States
Michael F. Nowlan, Georgetown University, United States
Ajay Bansal, Georgetown University, United States
Srividya Kona, Georgetown University, United States

A General Service Oriented Approach for Managing Virtual Machines Allocation 2154
Paolo Anedda, Center for Advanced Studies, Research & Development in Sardinia, Italy
Massimo Gaggero, Center for Advanced Studies, Research & Development in Sardinia, Italy
Simone Manca, Center for Advanced Studies, Research & Development in Sardinia, Italy
Omar Schiarratura, Center for Advanced Studies, Research & Development in Sardinia, Italy
Simone Leo, Center for Advanced Studies, Research & Development in Sardinia, Italy
Fabrizio Montesi, University of Bologna, Italy
Gianluigi Zanetti, Center for Advanced Studies, Research & Development in Sardinia, Italy

SimSOA – An Approach for Agent-Based Simulation and Design-Time Assessment of SOC-Based IT Systems .. 2162
Stefan Thanheiser, Karlsruhe Institute of Technology (KIT), Institute AIFB, Germany
Lei Liu, Karlsruhe Institute of Technology (KIT), Institute AIFB, Germany
Hartmut Schmeck, Karlsruhe Institute of Technology (KIT), Institute AIFB, Germany
Poster Papers

Assessing Complexity of Service-Oriented Computing Using Learning Classifier Systems 2170
Lei Liu, Karlsruhe Institute of Technology (KIT), Institute AIFB, Germany
Stefan Thanheiser, Karlsruhe Institute of Technology (KIT), Institute AIFB, Germany
Hartmut Schmeck, Karlsruhe Institute of Technology (KIT), Institute AIFB, Germany

Wireless Sensor Networks Track
Track Co-Chairs: Julie McCann, Imperial College London, United Kingdom
Richard Anthony, Grenwich University, United Kingdom

Track Editorial .. 2172

Sink-Oriented Dynamic Location Service for Shortest Path Relay with Energy Efficient Global Grid 2174
Hyeonjae Jeon, Sungkyunkwan University, Korea
Kwangjin Park, Wonkwang University, Korea
Hyunseung Choo, Sungkyunkwan University, Korea

Lightweight Monitoring of Sensor Software .. 2180
Mustafa Hammad, New Mexico State University, United States
Jonathan Cook, New Mexico State University, United States

Jointly Optimizing Data Acquisition and Delivery in Traffic Monitoring VANETs 2186
Antonios Skordylis, University of Oxford, United Kingdom
Niki Trigoni, University of Oxford, United Kingdom

Real-Time Multi-View Vision Systems Using WSNs ... 2191
Paolo Pagano, Scuola Superiore Sant’Anna, Italy
Francesco Piga, Scuola Superiore Sant’Anna, Pisa, Italy
Yao Liang, Indiana University Purdue University Indianapolis, United States

Opportunistic Real-Time Routing in Multi-Hop Wireless Sensor Networks .. 2197
Junwhan Kim, Virginia Tech, United States
Binoy Ravindran, Virginia Tech, United States

Poster Papers

Integrating Standardized Transaction Protocols in Service-Oriented Wireless Sensor Networks 2202
Christoph Reinke, Institute of Information Systems, University of Lübeck, Germany
Nils Hoeller, Institute of Information Systems, University of Lübeck, Germany
Jana Neumann, Institute of Information Systems, University of Lübeck, Germany
Sven Groppe, Institute of Information Systems, University of Lübeck, Germany
Volker Linnemann, Institute of Information Systems, University of Lübeck, Germany
Martin Lipphardt, Institute of Telematics, University of Lübeck, Germany

Towards Developing a Trust based Security Solution ... 2204
Sheikh I. Ahamed, Marquette University, United States
Donghyun Kim, Marquette University, United States
Chowdhury S. Hasan, Marquette University, United States
Mohammad Zulkernine, Queen’s University, Canada
Message from the Symposium Chairs

On behalf of the Organizing Committee, we welcome you to the 24th Annual ACM Symposium on Applied Computing (SAC 2009) hosted by Chaminade University in Hawaii. This international forum has been dedicated to computer scientists, engineers and practitioners for the purpose of presenting their findings and research results in various areas of computer applications. The organizing committee is grateful for your participation in this exiting international event. We hope that this conference proves interesting and beneficial.

The Symposium is sponsored by the ACM Special Interest Group on Applied Computing (SIGAPP), whose mission is to further the interests of computing professionals engaged in the design and development of new computing applications, interdisciplinary applications areas, and applied research. This conference is dedicated to the study of applied research of real-world problems. This event provides an avenue to discuss and exchange new ideas in the wide spectrum of application areas. We all recognize the importance of keeping up with the latest developments in our current areas of expedites.

SAC 2009 offers Technical Tracks and Posters. The success of the conference can be attributed to the substantial contribution of talented Track Chairs and Co-Chairs. Each track maintains a program committee and a set of highly qualified reviewers. We wish to thank the Track Chairs, Co-Chairs, Committee Members and participating reviewers for their hard work and effort to make the SAC 2009 conference a high quality conference. We also thank our invited keynote speakers, Dr. Vahid Tarokh, Harvard University and Dr. Rolf-Peter Kudritzki, University of Hawaii’s Institute for Astronomy for sharing their knowledge with SAC attendees. Most of all, special thanks to the authors and presenters for sharing their experience with the rest of us and to all attendees for joining us in Honolulu, Hawaii this year.

The local organizing committee has always been a central contributor to the success of the SAC 2009 conference. Our gratitude goes to the Conference Vice-Chair Dr. Paulo Martins of Chaminade University and Local Chair Dr. Martha Crosby of University of Hawaii at Mānoa. We also extend our thanks to the Publication Chair, Dr. Dongwan Shin, New Mexico Tech for his tremendous effort in putting together the conference proceedings, Posters Chair Dr. Jiman Hong of Soongsil University for his hard work to make a successful Poster Program, Publicity Chair, Dr. Udo Fritzke, PUC-Minas for his hard work, and eConference Management Chair, Dr Mathew J. Palakal of Indiana University Purdue University for successfully maintaining the eCMS system. A special thanks goes to our Program Chairs Dr. Mirko Viroli, Università di Bologna and Dr. Ronaldo Menezes, Florida Institute of Technology for coordinating and bringing together an excellent Technical Program.

Again, we welcome you to SAC 2009 and the beautiful city of Honolulu, Hawaii. We hope you enjoy the SAC 2009 conference and your stay in Hawaii. Next year, we invite you to participate in SAC 2010 to be held in Crans Montana, Switzerland. The conference will be hosted by the University of Applied Sciences of Western Switzerland.

Sung Y. Shin and Sascha Ossowski
SAC 2009 Conference Chairs
PRECISO: A Reengineering Process and a Tool for Database Modernisation through Web Services

Ricardo P. del Castillo
Alarcos Research Group
University of Castilla-La Mancha
Paseo de la Universidad, nº 4 13071 Ciudad Real, Spain
+34926295300
ricardo.pdelcastillo@uclm.es

Ignacio García-Rodríguez
Alarcos Research Group
University of Castilla-La Mancha
Paseo de la Universidad, nº 4 13071 Ciudad Real, Spain
+34926295300
ignacio.grodriguez@uclm.es

Ismael Caballero
Alarcos Research Group
University of Castilla-La Mancha
Paseo de la Universidad, nº 4 13071 Ciudad Real, Spain
+34926295300
ismael.caballero@uclm.es

ABSTRACT
A common trend in Service Oriented Architecture (SOA) is to consider Information Systems exposing software as services. This current approach is not only applied to new software developments, but also it is related to the maintenance of legacy systems. Nowadays, a cornerstone of Information Systems are relational databases, which constitute meaningful sources of services. These services can provide database’s information in SOA scenarios. This paper presents a reengineering process to recover and implement Web Services in automatic manner from relational databases. This process follows the ADM approach (Architecture-Driven Modernization). In this paper authors present a case study that has been carried out using a tool built to support the process. This tool is used to generate a set of Web Services which are integrated into a web development allowing to modernise the legacy database in a SOA context. This case study has been carried out in the context of software company Indra.

Categories and Subject Descriptors

General Terms
Algorithms, Design and Experimentation.

Keywords
Web Services, SOA, software modernisation, ADM, relational databases, MDA

1. INTRODUCTION
Nowadays, in the globalized world, organizations are increasingly forced to share more and more information as a basic activity in their daily operation [32]. Besides, the heterogeneity of Information Systems (IS) is growing every day due to the appearance of new technological environments, paradigms and standards [11, 12]. As a consequence of this fast technological evolution and high level of uncertainty in these markets (and in order to keep their competitiveness level through their Information System), organizations are involved in a process of continuous renewal [13].

Under these circumstances, developers of IS based on ICT (Information and Communication Technologies) are required to make shorter developments and maintenances [11]. This acceleration in the development process involves reusing components and software artefacts already existing in the organization [33]. The current Information Systems consist of several software artefacts. However, databases are possibly considered as one of the most fundamental assets since they contain all organization’s information. Therefore, databases turn out to be the basis of decision-making at the operational, tactic and strategic levels.

Re-engineering has emerged as a powerful and accepted method to address the necessary evolution of IS in terms of migration and reuse of its artefacts (for example, to target environments such as the Web) [13].

Moreover, MDA (Model-Driven Architecture) is influencing the software development, rising it to higher abstraction level [26]. MDA considers each system or each piece of systems as models. Later on, transformations can be established among these models. Besides, ADM (Architecture-Driven Modernisation) appears to carry out re-engineering processes which follow the MDA approach [27]. This paper presents a re-engineering process based on ADM approach with the following performances: (1) recovery functionalities in data sources (these sources are typically relational databases); (2) functionalities are transferred towards services; and (3) these services are exposed through Web Services. Furthermore, a tool is implemented to validate the modernisation process. This tool performs the detection, implementation, setup and deployment of Web Services in an automatic manner.

The remainder of this paper is organized as follows. Section 2 summarizes related work. Section 3 focuses on proposed modernisation process. Section 4 presents the implemented tool and Section 5 shows its use in a Web development. Finally, section 6 addresses the conclusions of this paper as well as the future work.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

SAC ’09, March 8–12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03…$5.00.
2. RELATED WORK

To improve the understanding of this paper, the re-engineering concept should be remembered. The re-engineering is "the examination and alteration of a subject system to reconstitute it in a new form and the subsequent implementation of the new form" [1]. According to [9], the process has three stages: (1) reverse engineering in order to recover abstract representation of subject system; (2) restructuring to modify the system at same abstraction level; and (3) forward engineering to address the generation of new system version containing new features.

Existing research, about re-engineering on applications and database jointly, has usually been focused on certain aspects. One of them is SQL code embedded in applications or the extraction of functionalities from PL/SQL code [31]. The migration of database models [2]. The design recovery of database [16]. The integration of database based on different data models through wrapping techniques [22]. Building database-driven applications [30]; and so on. Nevertheless, there is little research on detection of services from databases.

Keeping re-engineering process in mind, the first stage typically focuses on achieving a set of abstract specifications in order to generate a new system with the new requirements. However, there are instances where the creation of a new database is not required, but to wrap database through an interface for access to it, with no need to restructure it [35]. These techniques are called ‘wrapping techniques’ and them consist in building software components usually wrapping a DBMS. This is accomplished by transforming the requests to subject data model in another target model which is independent from DBMS [34]. In this way, databases could be integrated into new IS for which they were not initially designed [35]. The database life cycle is therefore extended.

Besides, Model-Driven Architecture (MDA) [26] advocates for IS developments based on models. MDA converts one model into another model of the same system through transformations. Moreover, MDA automatically generates source code from subject model. This is not a novel idea; according to [21], interest in ‘Write Once, Run Anywhere’ approach has been shifted to ‘Model Once, Generate Anywhere’ approach. MDA addresses some challenges arising from IS heterogeneity, since according to MDA, a system can be represented at different abstraction levels through different models [26]. Therefore, on the one hand, a system could be represented through a model at business level which depicts its functionalities. It is called Platform-Independent Model (PIM) [26]. And on the other hand, transformations are performed from PIM to achieve models at technological platform level which support specific details of each platform. It is called Platform-Specific Model (PSM) [26]. Finally, source code is generated from certain PSM models. In MDA approach each model represents one system and each model is depicted according to one meta-model. Meta-models are models which allow representing models.

Further, several works about re-engineering focused on MDA approach are frequently found in literature. This is known as Architecture-Driven Modernisation (ADM) [25, 27]. ADM is the evolution of MDA. ADM intends to carry out re-engineering processes which take into account different models as input and output artefacts of these processes. Some research in this direction is being carried out in both academic and industrial environments [17, 24].

Organizations feel increasingly compelled to adopt the new market viewpoint which is service-oriented. This new paradigm emerges in order to separate possession and ownership concept of use concept [36]; SOA defends just this approach [6]. A particular implementation of SOA is the Web Services technology [8, 18].

On this other side of the spectrum, in terms of re-engineering processes toward Web Services generation, relevant work can also be found in literature. Sneed in [33] proposes a re-engineering process obtaining Web Services from legacy COBOL applications. In [3] a MDA process is depicted transforming PIM models according to UML2 [28] meta-model toward several PSM models, one of them to support the generation of Web Services. In other works as [10], re-engineering processes are carried out on legacy systems taking Web Services as a major construction unit.

After presenting theoretical background of this work as well as related work, the next section will depict the proposed process in this paper.

3. PRECISO: THE ADM PROCESS

The process aims to establish guidelines to allow the generation of Web services from relational databases through re-engineering process on MDA artefacts, i.e. a modernization process. Figure 1 represents the proposed re-engineering process focused on ADM approach: First, a legacy relational database is the input of the process. A PSM model, according to SQL-92 meta-model [20], is afterward obtained from input database through reverse engineering. Then, the PSM is transformed to PIM model which raises the abstraction level of the system. This PIM model is represented in terms of UML2 meta-model [28]. The process generates a certain PSM model from PIM model through forward engineering. This PSM model depicts Web Services, and abstraction level is thus reduced again.

Figure 1. Re-engineering process according to ADM approach

The depicted scheme in Figure 1 is the structure of the proposed process. Figure 2 depicts the modernisation process which consists of three main activities. Each major activity is broken down into a set of tasks; these tasks are partially arranged. Each activity is detailed in the following subsections.

3.1 Database Model Recovery

The first activity aims to create a PSM model that represents the input database. In addition, the information extraction on database schema is used to discover potential services. Tasks involved in this activity are detailed in following paragraphs.
DMR 1. Database Reverse Engineering. The first task of the modernisation process is the recovery of relational database design through reverse engineering. Recovered metadata of database will make up a PSM model according to SQL-92 metamodel (see Figure 3), based on [7].

DMR 2. Service Discovery. Potential services can be simultaneously discovered along the previous task. Certain patterns are sought in recovered database schema. Well known services are inferred from these patterns. According to [14] it is called ‘Model Driven Pattern Matching’ (MDPEM).

3.2 Object Model Generation
The second activity generates an object model through obtained information from database recovery. This model of objects will be afterward the basis to generate Web Services in followings activities. This activity has a single task.

OMG 1. Object Model Transformation. This task carries out transformation $PSM \rightarrow PIM$ which involves respectively the model of relational database schema and the object model (see Figure 1). Object model is developed according to UML2 metamodel [28]. Transformations can be formally established through specific languages for defining transformations among models such as QVT (Queries / Views / Transformations) [29] or ATL (ATLAS Transformation Language) [19]. On the contrary, the transformations can also be described manually through source code when a tool is being implemented to support this modernization process.

3.3 Web Services Generation
The third activity of the process is considered as ‘front-end’ activity which finally generates the Web Services to manage the initial input database.

WSG 1. Generation of WSDL interfaces. This task drops the abstraction level obtaining PSM model that supports Web Services (see Figure 1). This new PSM model is achieved through two input artefacts: the PIM representing the object model and discovered services through patterns. These patterns are summarized in Table 1. This task will generate the PSM model according to WSDL meta-model (Web Services Description Language) [37].

WSG 2. Generating code of object model. This task generates source code to support the object model obtained in previous tasks. This code will be the basis for implementing the infrastructure of Web Services.

WSG 3. Web Services Publication. Web Services are built through source code of object model and descriptions of WSDL interfaces. It also publishes a set of services belong to candidate services discovered from database schema through MDPEM [14].

WSG 4. Web Services Deployment. Web Services are finally deployed moving to production, thus these services become in fully operational services.

So far, general description of the proposed modernization process has been detailed. The implemented tool is presented as follows.

4. PRECISO: THE TOOL
4.1 Developed Tool
A tool has been implemented in order to support the mentioned modernisation process. This tool automates tasks of the process to carry out the Web Services generation from relational databases.
4.1.1 Database Model Recovery

Necessary functionality to recover database models is provided to the tool. Candidate services are also carried out in conjunction.

DMR 1. Database Reverse Engineering. Models derived from databases will be represented according to SQL-92 meta-model which is based on the meta-model presented in [7]. The tool has been developed using SQL-92 standard [20], since according to some studies these are the kind of databases more widely used in software industry [4, 5]. However, the PSM model may be built from other database management system whose data model are other standards such as SQL-86, hierarchical databases, databases based on COBOL, and so on. For this purpose, tool would only need using the appropriate meta-model to faithfully represent the model.

Metadata needed in SQL databases-92 to build the database schema model can be taken through INFORMATION_SCHEMA [23]. This is a standardized mechanism that identifies a set of views. These views return metadata on a standardized manner. In addition, the built model can be made persistent through XMI (XML Metadata Interchange) [15]. XMI facilitates their safe handling and integration within the overall process.

DMR 2. Service Discovery. The obtained database model is examined and candidate services are inferred through certain patterns based on MDPEM techniques [14]. Table 1 details both search patterns as well as services that can be derived from each pattern. On the one hand, there are simple services involving only a single table. These services are directly obtained from database scheme and matched with CRUD operations (Create / Read / Update / Delete) as well as getters & setters methods for handling various columns on each table. And on the other hand, advanced services involve several tables of schema (see Table 1). In this case, services may be directly obtained from views, or on the contrary, services could be obtained from the following patterns that are recognized in the relational database scheme: (1) referenced table, when there is a foreign key among two tables; (2) combined table, when there are two or more foreign keys from one table to other, likewise (3) observed table, unlike the previous one, this pattern searches two or more foreign keys to the same table.

4.1.2 Object Model Generation

The next activity is implemented in the tool allowing the object model generation.

OMG 1. Object Model Transformation. The tool at this stage must address the SQL-92 model transformation to the UML2 model, i.e. a PSM → PIM transformation. These transformations could be specified for example through QVT. These transformations could be afterward implemented in the tool. However, in this tool, an existing algorithm that is depicted in [30] has been used. Realized transformations are as follows: a table → a class, a column → an attribute, a foreign key → association, and so on. Moreover, SQL-92 data types are mapped on data types of generic programming language which is used to generate source code.

4.1.3 Web Services Generation

Finally, the tool allows publication and deployment of Web Services. The implementation details are presented in the following paragraphs.

WSG 1. Generation of WSDL interfaces. This task takes the obtained object model likewise the discovered services as its inputs. And it generates Web Service descriptions through WSDL interfaces as its output.

WSG 2. Generating code of object model. In order to get executable Web Services, tool must write source code of object model in hard disk through a programming language supporting Web Services technology. In this tool C# was used. Moreover, the tool offers the user option of modifying the source code of object.

WSG 3. Web Services Publication. The tool allows selecting services among discovered services. User selects services which

Table 1. Patterns and candidate services which are examined in relational database schema

<table>
<thead>
<tr>
<th>Simple Services</th>
<th>Tables</th>
<th>CRUD operations</th>
<th>Getters & Setters Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Services</td>
<td>Patterns in database schema</td>
<td>References Table</td>
<td>Select_A_of_B (pkB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combined Table</td>
<td>Select_A_for_B (pKB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observed Table</td>
<td>Select_A_for_B (pKB)</td>
</tr>
</tbody>
</table>
will compose the future generated Web Service. Due to security reasons, as well as others, it is not advisable to open the entire database through publishing certain services that will not be used. Moreover, tool can generate several Web Services with different services each of them. Each Web Service can show different points of view of the database.

WSG 4, Web Services Deployment. In this last stage the tool configures the built Web Services to enable them to execute requests on the Web. First, a certain application server should be selected to be used. The tool is ready to interact with *Microsoft Internet Information Server 6* (IIS6). According to the used server, the deployment may vary. Nevertheless there are two responsibilities that are always carried out: (1) source code files are copied in the correct location of the application server; and (2) this source code is stated as a Web directory accessible on the Web.

4.1.4 Other aspects to highlight

The tool semi-automates several tasks in the proposed modernization process (see Figure 2). But in addition, the tool must address other issues such as remote database connection, connections to databases from different manufacturers, project management, graphical display of involved models, testing, reporting, and so on. The proposed architecture, taking into account the previous challenges, is shown in Figure 4. Likewise the skin of the developed tool can be seen in Figure 5.

![Figure 4. Architecture of the developed tool](image)

5. CASE STUDY

The case study consists on a project which was jointly carried out by the University of Castilla-La Mancha and Indra Software Labs (a multinational software company) in the context of the “CATEDRA INDRA”, a R+D centre (located in Spain) devoted to carry out research projects in a close cooperation between industry and university. This research centre is supported by the “University of Castilla-La Mancha” (UCLM) and “INDRA Software Labs at Ciudad Real”.

There was a need for CATEDRA INDRA (CI hereinafter) to develop its corporate Web site in order to support all the information produced from the cooperation of industry & university. This site is addressed to academics, researchers, teachers, PhD candidates and students. The site contains information about conferences, lectures, courses, grants offered, events, awards, papers, journals and so on.

The website has been built using a standard Web architecture based on the *Microsoft .NET* platform. On the one hand, it has used *Microsoft Content Management Server 2002* (MCMS) as a content management system (under the RDBMS *Microsoft SQL Server 2000*). And on the other hand, *Active Server Pages* (ASP) has been used for the presentation layer. Finally, the whole application (that is, the MCMS and the Web application) has been deployed through *Microsoft Internet Information Server 6* (IIS6).

Due to size limitations, the case study focuses on a portal’s sub-module. This module deals with the tasks to manage the research papers produced by CI. This module will search research articles according to different criteria. Furthermore, this module will add new paper data, modify or delete existing paper data.

5.1.1 Problem Specification

The development staff in charge of this project was interviewed to understand the information needs. They reported the information needs according to established user requirements. This valuable information would help in the usage of the tool to obtain the set of Web Services required to feed with information the Web layer.

In a nutshell, the problem is the following: implement a module to consult information about the publications of the researchers of the CI. That is, it will keep all the information from conferences and journals, data from the authors, R+D projects financed, and so on. Moreover, this module will contain a search engine to set up filters to carry out customized searches according to different criteria such as conference, journal, international/national, whether a conference is a LNCS, whether a journal is an indexed one, authors, and other criteria.

The system is based on an existing database provided by the CI. This database, which was created long time ago, keeps a lot of information from existing publications of people involved in the CI. This information is not managed by any application; therefore, in this context, it is possible to find the suitable conditions for implementing a modernisation process through the tool. Thus, the CI’s database is considered as a legacy system. The tool will expose the required functionalities by means of Web Services starting from this legacy system and following the proposed process.

5.1.2 Execution of the case study

Firstly, the tool establishes a connection to the database of the CI. Subsequently, it generates a *xml* file containing all the metadata about the studied database (see Figure 6). Second step is creating the object model for support the future Web Services. The tool generates necessary classes depending on the metadata obtained in the previous stage. Additionally, the tool writes executable class (in this case, *C#* language). Then, the Web Services are built through the tool. It will have achieved the executable Web Services, using the class model created in the previous step (see Figure 6). The tool allows selective publication of services. Therefore, it is sufficient to make some public services. These expose only the necessary parts of the database, for the development of the project. Finally, the tool converts Web Services in operational Web Services, carrying out the deployment of these in a Web application server. Therefore, it has been achieved suitable Web Services to provide the required functions for handling the database, according to the previously imposed information needs.
5.1.3 Obtained results
The tool made a selective publication and deployment of the generated Web Services. The Web Services to provide with the required information by the development staff constitute a small set from the total of candidate services discovered from the database. Table 2 shows a summary of this performance. This table considers (1) the different types of services, (2) services generated for each type, (3) the number of services (for each type) included in the sub module of the CI and (4) the percentage of services included. The percentage of services that was published to support the functionalities of the CI portal was 30%. This percentage included 73 services on a total of 245 candidate services.

In addition, the development staff noticed that the non selected Web Services would be very useful for future developments. Since these non considered services were identified and collected, it would be easy to deploy and integrate them into the CI Web application for the implementation of additional features. The tool keeps information of the modernisation project, that is, the object model, configuration of the generated services, services deployed and services available. Thus, we only need to load the project of the current case study to deploy new Web Services to fulfil new information requirements.

The result is an operational Web Service which handles the legacy database. The Web Service supports the information needs in a SOA context such as CI portal. At this point, the CI portal can carry out the required functionalities by means of the new Web Services.
could work with real data when developing the Web application. The staff could put all their effort into the development of the Web interface. Furthermore, since the required information was available from the first, all the features of the CI Web application could be tested with the real information of the database. It allowed the staff to accelerate the testing process, because web developers could build the necessary web interfaces which in turn will use the aforementioned Web Services, and will properly display the information.

Table 2. Performance of published services in CI

<table>
<thead>
<tr>
<th>Kind of Service</th>
<th>Candidate Services</th>
<th>Published Services</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>13</td>
<td>11</td>
<td>85%</td>
</tr>
<tr>
<td>update</td>
<td>13</td>
<td>11</td>
<td>85%</td>
</tr>
<tr>
<td>delete</td>
<td>13</td>
<td>11</td>
<td>85%</td>
</tr>
<tr>
<td>select</td>
<td>13</td>
<td>12</td>
<td>92%</td>
</tr>
<tr>
<td>setters</td>
<td>56</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>getters</td>
<td>56</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>show</td>
<td>13</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>views</td>
<td>4</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>referenced tables</td>
<td>24</td>
<td>12</td>
<td>50%</td>
</tr>
<tr>
<td>combined tables</td>
<td>32</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>observed tables</td>
<td>8</td>
<td>4</td>
<td>50%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>245</td>
<td>71</td>
<td>30%</td>
</tr>
</tbody>
</table>

6. CONCLUSION AND FUTURE WORK

This paper has proposed an ADM process to automatically generate Web Services from relational databases. This ADM process has allowed modernizing legacy systems such as databases to deliver its functionality in services manner. Thus, databases can be integrated into SOA environments. In addition, it has built a tool supporting this process.

The modernization process includes a set of meta-models to represent models involved in every task. For example, SQL-92 meta-model has been used to represent the database model (or PSM model). Moreover, UML2 meta-model has been utilized to represent the system model (or PIM model), among other meta-models.

In order to empirically validate the process, this paper has also presented a case study in an industrial context. The developed tool was used to carry out a modernization process within the development of a Web portal. This case study revealed a number of advantages of the proposed process such as development process acceleration, easy integration into SOA environments and certain improvements in testing.

The future extensions to this research focus on two key aspects. (1) It will carry out an in depth analysis in order to infer services based on searching of more patterns into database scheme. (2) It will formalize transformations among models through specific-purpose languages such as QVT or ATL languages. Indeed, new versions of the tool supporting new advances in this research will be further developed.

7. ACKNOWLEDGMENTS

This paper has been partially supported by the project PRALIN (PAC08-0121-1374), Junta de Comunidades de Castilla-La Mancha; the project ESFINGE (TIN2006-15175-C05-05/), Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica. Programa Nacional de Tecnologías de la Información; and the project MECENAS (PB06-0024), Plan Regional de Investigación Científica, Desarrollo Tecnológico e Innovación.

8. REFERENCES

