
Published by the IEEE Computer Society
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1314

IEEE Computer Society Order Number P3867
BMS Part Number: CFP09090-PRT
ISSN Number 1095-1350
ISBN 978-0-7695-3867-9

ISBN 978-0-7695-3867-9

9768359670879

00009

Computer
Society
Press

W
orking C

onference on R
e
v
e
rse

 E
n

g
in

e
e
rin

g
 2

0
0
9

Edited by
Andy Zaidman

Giuliano Antoniol
Stéphane Ducasse

Proceedings

Sixteenth Working Conference on

Reverse
Engineering

13-16 October 2009
Lille, France

Sponsored by
Reengineering Forum

Technical co-sponsor
IEEE Computer Society Technical Council on Software Engineering (TCSE)

Proceedings

16th Working Conference

on Reverse Engineering (WCRE 2009)

Proceedings

16th Working Conference
on Reverse Engineering (WCRE 2009)

13th – 16th October 2009 – Lille, France

Edited by

Andy Zaidman, Giuliano Antoniol and Stéphane Ducasee

Sponsored by Technical Co-sponsor

j

Reengineering Forum
IEEE-CS Technical Council on

Software Engineering

In cooperation with

INRIA Lille-Nord Europe

Los Alamitos, California
Washington • Tokyo

Copyright © 2009 by The Institute of Electrical and Electronics Engineers, Inc.

All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy
beyond the limits of US copyright law, for private use of patrons, those articles in this volume that carry a code at
the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service
Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect
the authors’ opinions and, in the interests of timely dissemination, are published as presented and without change.
Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer
Society, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number P3867
BMS Part Number CFP09090-PRT

ISBN 978-0-7695-3867-9
ISSN Number 1095-1350

Additional copies may be ordered from:

IEEE Computer Society IEEE Service Center IEEE Computer Society
Customer Service Center 445 Hoes Lane Asia/Pacific Office

10662 Los Vaqueros Circle P.O. Box 1331 Watanabe Bldg., 1-4-2
P.O. Box 3014 Piscataway, NJ 08855-1331 Minami-Aoyama

Los Alamitos, CA 90720-1314 Tel: + 1 732 981 0060 Minato-ku, Tokyo 107-0062
Tel: + 1 800 272 6657 Fax: + 1 732 981 9667 JAPAN
Fax: + 1 714 821 4641 http://shop.ieee.org/store/ Tel: + 81 3 3408 3118

http://computer.org/cspress
csbooks@computer.org

customer-service@ieee.org Fax: + 81 3 3408 3553
tokyo.ofc@computer.org

Individual paper REPRINTS may be ordered at: <reprints@computer.org>

Editorial production by Bob Werner
Cover art production by Joe Daigle/Studio Productions

Printed in the United States of America by The Printing House

IEEE Computer Society
Conference Publishing Services (CPS)

http://www.computer.org/cps

2009 16th Working Conference
on Reverse Engineering

WCRE 2009
Table of Contents

Message from the General Chair...ix
Message from the Program Chairs...x

Organizing Committee..xii

Steering Committee...xiii

Program Committee..xiv

Additional Reviewers...xv

Keynotes
Beyond the Lone Reverse Engineer: Insourcing, Outsourcing and Crowdsourcing ...3

Margaret-Anne D. Storey

Legacy and Future of Data Reverse Engineering ...4

Jean-Luc Hainaut

WCRE 1999 Most Influential Paper
Ten Years Later, Experiments with Clustering as a Software Remodularization Method ...7

Nicolas Anquetil and Timothy C. Lethbridge

Session I – Mining Software Repositories
Who are Source Code Contributors and How do they Change? ..11

Massimiliano Di Penta and Daniel M. German

A Study of the Time Dependence of Code Changes ..21

Omar Alam, Bram Adams, and Ahmed E. Hassan

Relating Identifier Naming Flaws and Code Quality: An Empirical Study ...31

Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp

Techniques for Identifying the Country Origin of Mailing List Participants ...36

Ran Tang, Ahmed E. Hassan, and Ying Zou

vv

Session II – Dynamic Analysis
NTrace: Function Boundary Tracing for Windows on IA-32 ..43

Johannes Passing, Alexander Schmidt, Martin von Löwis, and Andreas Polze

Recovering Views of Inter-System Interaction Behaviors ..53

Christopher Ackermann, Mikael Lindvall, and Rance Cleaveland

Mining Quantified Temporal Rules: Formalism, Algorithms, and Evaluation ..62

David Lo, Ganesan Ramalingam, Venkatesh Prasad Ranganath, and Kapil Vaswani

Session III – Empirical Software Engineering
An Exploratory Study of the Impact of Code Smells on Software Change-proneness ...75

Foutse Khomh, Massimiliano Di Penta, and Yann-Gaël Guéhéneuc

An Empirical Study on Inconsistent Changes to Code Clones at Release Level ..85

Nicolas Bettenburg, Weyi Shang, Walid Ibrahim, Bram Adams, Ying Zou, and Ahmed E. Hassan

Lexicon Bad Smells in Software ...95

Surafel Lemma Abebe, Sonia Haiduc, Paolo Tonella, and Andrian Marcus

Session IV – Remodularization and Reengineering
Automatic Package Coupling and Cycle Minimization ..103

Hani Abdeen, Stéphane Ducasse, Houari Sahraoui, and Ilham Alloui

Identifying Cycle Causes with Enriched Dependency Structural Matrix ..113

Jannik Laval, Simon Denier, Stéphane Ducasse, and Alexandre Bergel

The Logical Modularity of Programs ...123

Daniel Ratiu, Radu Marinescu, and Jan Jürjens

On the Use of ADM to Contextualize Data on Legacy Source Code for Software Modernization ..128

Ricardo Pérez-Castillo, Ignacio García-Rodríguez de Guzmán, Orlando Ávila-García,

and Mario Piattini

Session V - Change and Defect Proneness
On the Relationship Between Change Coupling and Software Defects ..135

Marco D’Ambros, Michele Lanza, and Romain Robbes

Tracking Design Smells: Lessons from a Study of God Classes ..145

Stéphane Vaucher, Foutse Khomh, Naouel Moha, and Yann-Gaël Guéhéneuc

Bug-Inducing Language Constructs ...155

Javed Ferzund, Syed Nadeem Ahsan, and Franz Wotawa

Design Patterns and Change Proneness: A Replication Using Proprietary C# Software ...160

Matt Gatrell, Steve Counsell, and Tracy Hall

Session VI – Static Analysis and Security
Automatic Static Unpacking of Malware Binaries ...167

Kevin Coogan, Saumya Debray, Tasneem Kaochar, and Gregg Townsend

Computing the Structural Difference between State-Based Models ...177

Kirill Bogdanov and Neil Walkinshaw

Extraction of Inter-procedural Simple Role Privilege Models from PHP Code ...187

Dominic Letarte and Ettore Merlo

vivi

Session VII – Traceability
Traceability Recovery Using Numerical Analysis ...195

Giovanni Capobianco, Andrea De Lucia, Rocco Oliveto, Annibale Panichella,

and Sebastiano Panichella

Benchmarking Lightweight Techniques to Link E-Mails and Source Code ..205

Alberto Bacchelli, Marco D’Ambros, Michele Lanza, and Romain Robbes

Domain Feature Model Recovery from Multiple Applications Using Data Access Semantics

and Formal Concept Analysis ...215

Yiming Yang, Xin Peng, and Wenyun Zhao

Session VIII - Program Comprehension
Characterizing Evolutionary Clusters ...227

Adam Vanya, Steven Klusener, Nico van Rooijen, and Hans van Vliet

Autumn Leaves: Curing the Window Plague in IDEs ..237

David Roethlisberger, Oscar Nierstrasz, and Stéphane Ducasse

Constructing a Resource Usage View of a Large and Complex Software-Intensive System ..247

Trosky Boris Callo Arias, Pierre America, and Paris Avgeriou

Session IX – Static Analysis
Static Detection of Disassembly Errors ..259

Nithya Krishnamoorthy, Saumya Debray, and Keith Fligg

Reverse Engineering Sequence Diagrams for Enterprise JavaBeans with Business Method

Interceptors ...269

Alexander Serebrenik, Serguei Roubtsov, Ella Roubtsova, and Mark van den Brand

Computing Structural Types of Clone Syntactic Blocks ...274

Ettore Merlo and Thierry Lavoie

Reverse Engineering Existing Web Service Applications ...279

Houda El Bouhissi and Mimoun Malki

PhD Forum
Supporting Feature-Level Software Maintenance ..287

Meghan Revelle

Enabling the Evolution of J2EE Applications through Reverse Engineering and Quality

Assurance ...291

Fabrizio Perin

Approximate Graph Matching in Software Engineering ...295

Sègla Kpodjedo

Evolving Software Systems Towards Adaptability ..299

Mehdi Amoui

SQUAD: Software Quality Understanding through the Analysis of Design ...303

Foutse Khomh

viivii

Tool Demonstrations
PRECISO: A Reverse Engineering Tool to Discover Web Services from Relational Databases ...309

Ricardo Pérez-Castillo, Ignacio García-Rodríguez de Guzmán, Ismael Caballero, Macario Polo,

and Mario Piattini

Recovering Class Models Stereotyped with Crosscutting Concerns ..311

Heitor Augustus Xavier Costa, Paulo Afonso Parreira Júnior, Valter Vieira de Camargo,

and Rosângela Aparecida Dellosso Penteado

SHINOBI: A Tool for Automatic Code Clone Detection in the IDE ..313

Shinji Kawaguchi, Takanobu Yamashina, Hidetake Uwano, Kyohei Fushida, Yasutaka Kamei,

Masataka Nagura, and Hajimu Iida

Enhancing Quality of Code Clone Detection with Program Dependency Graph ...315

Yoshiki Higo and Shinji Kusumoto

JavaCompExt: Extracting Architectural Elements from Java Source Code ..317

Nicolas Anquetil, Jean-Claude Royer, Pascal André, Gilles Ardourel, Petr Hnětynka,

Tomáš Poch, Dragoş Petraşcu, and Vladiela Petraşcu

ConAn: A Tool for the Identification of Crosscutting Concerns in Object Oriented Systems

Based on Type Hierarchy Analysis ..319

Mario Luca Bernardi and Giuseppe Antonio Di Lucca

Workshops
R.E.M. 2009 - International Workshop on Reverse Engineering Models from Software Artifacts ..323

Leon Moonen and Tarja Systä

FAMOOSr 2009 - Workshop on FAMIX and Moose in Software Reengineering ...325

Simon Denier and Tudor Gîrba

Author Index ...327

viiiviii

On the use of ADM to Contextualize Data on Legacy Source
Code for Software Modernization

Ricardo Pérez-Castillo, Ignacio García-Rodríguez de
Guzmán and Mario Piattini

Alarcos Research Group, University of
Castilla-La Mancha

Paseo de la Universidad, 4 13071,
Ciudad Real, Spain

{ricardo.pdelcastillo, ignacio.grodriguez,
mario.piattini}@uclm.es

Orlando Ávila-García

* Open Canarias, S.L.
C/ Elías Ramos González, nº 4 - Oficina 304 38001,

Santa Cruz de Tenerife, Spain
orlando@opencanarias.com

Abstract—Legacy systems are usually made of two kind of
artifacts: source code and databases. Typically, the
maintenance of those systems is carried out through re-
engineering processes. Although both artifacts can be
independently maintained, for a more effective re-engineering
of the whole system both should be analyzed and evolved
jointly. This is mainly due to the fact that the knowledge
expected to be extracted by analyzing both kind of artifacts at
the same time is greater and richer than the one recovered by
just looking at the system partly, and thus ROI and lifespan of
the system are expected to improve. This paper proposes the
Data Contextualization for recovering code-to-data linkages
in legacy systems. This technique is framed in the ADM
(Architecture Driven Modernization) approach to
modernization of legacy systems, considering all involved
artifacts as models. This paper also presents a tool to support
that technique throughout a real-life case study.

Keywords—Data Contextualization, Modernization, Model
Transformations, ADM and KDM.

I. INTRODUCTION
At the present time, the majority of organizations have

large legacy systems supported by relational databases.
These systems are not immune to software ageing. The
erosion not only affects to the source code, but databases
also age gradually. For instance, in order to adapt the system
to new requirements, new tables and/or columns are added
to the database; other tables are modified and even
discarded without erasing them from the database. These
changes over time generate problems related to
inconsistency, redundancy and integrity among others.

Therefore, organizations must address maintenance
processes taking into account legacy source code and
databases together. In those maintenances, the entire
replacement of the legacy system would have a great
technological, strategical and economical impact for the
organization. [10]. In addition, according to [2], the 78% of
maintenance changes are corrective or behaviour-
preserving. Indeed, maintenances based on evolutionary
reengineering processes are typically carried out.

The starting point in that reengineering process is the
conceptual representation of the legacy system through
reverse engineering [1]. At this stage, the legacy source

code as well as the legacy database must be represented in
order to consider these two artefacts jointly. Nevertheless, a
challenge appears in this scenario: finding out what
fragments of the database are used by each piece of legacy
source code. This knowledge is essential in later stages of
the reengineering process, such as restructuring and forward
engineering, where the new and improved systems are built
[10]. Since the improved system will probably use the same
data, it turns out to be very important to keep track of the
use the data in the context of the source code of the legacy
system. That is to say, it is important to contextualize the
data in the representation of the legacy software when we
are reversing it.

This paper proposes the Data Contextualization
technique and a tool that supports it. This is a novel reverse
engineering technique developed in the context of the
MARBLE framework to modernize legacy systems [9]. This
technique recovers code-to-data links in legacy systems
based on relational databases and allows representing and
managing these linkages throughout entire reengineering
processes. In order to obtain these linkages two main
knowledge sources are considered: (i) database schemas and
(ii) the sentences embedded in source code. Moreover, the
proposal follows ADM (Architecture-Driven
Modernization) approach for developing this technique [6].
This approach advocates modelling all artefacts involved in
the reengineering process as models and it transforms the
models between different abstraction levels according to
MDA (Model-Driven Architecture) principles [5].

The remainder of this paper is organized as follows.
Section 2 presents the background of this work. Section 3
shows the proposed Data Contextualization technique.
Section 4 presents the developed tool. Section 5 presents a
case study of a real-life modernization project. Finally,
section 6 addresses the conclusions and the future work.

II. BACKGROUND

A. Related work
The inspection of source code and recovery of specific

knowledge is a common challenge in reengineering and
maintenance processes. Nevertheless, the linkage between
code and used data has not been widely studied. Zou
developed a framework based on a set of heuristic rules for

2009 16th Working Conference on Reverse Engineering

1095-1350/09 $25.00 © 2009 IEEE
DOI 10.1109/WCRE.2009.20

128

2009 16th Working Conference on Reverse Engineering

1095-1350/09 $26.00 © 2009 IEEE
DOI 10.1109/WCRE.2009.20

128

extracting business processes following a MDA approach
[11]. Those works took into account legacy source code and
program data in order to link pieces of code together and to
obtain workflows. However, they do not link source code
and external data such as databases. Some works such as [3]
propose frameworks to align and develop business rules by
means of collecting information about how and where these
business rules are implemented within the source code. But
data and code are not mapped together. Marinescu proposes
in [4] an approach for determining the correlation between
foreign keys extracted from the database schema and the
way the data are used in the source code. Finally, there have
been research in database reengineering follows the MDA
approach [9], but source code is not considered jointly. In
spite of these works, in any case the code-to-data linkage is
carried out following the ADM approach.

B. Architecture-Driven Modernization
Reengineering and MDA have converged on ADM,

another OMG initiative. ADM is the concept of
modernizing existing systems with a focus on all aspects of
the current systems architecture and the ability to transform
current architectures to target architectures [6].

The increasing cost of maintaining legacy systems
together with the need to preserve business knowledge has
turn modernization of legacy systems into an important
research field. ADM provides several benefits such as ROI
improvement on existing information systems, reducing
development and maintenance cost, extending life cycle of
the legacy systems, and easy integration with other systems.

ADM Task Force in OMG has led to several standards.
The cornerstone within this set of standards is KDM
(Knowledge Discovery Meta). KDM allows standardized
representation of knowledge extracted from legacy systems
by means of reverse engineering [8]. KDM provides a
common repository structure that makes possible the
exchange of information about existing software assets in

legacy systems. This information is currently represented
and stored independently by heterogeneous tools focused on
different software assets. KDM can be compared with the
UML (Unified Modeling Language) standard: UML is used
to generate new code in a top-down manner. In contrast, a
process involving KDM (as Data Contextualization) starts
from the existing code and builds a higher level model in a
bottom-up manner.

ADM and KDM advocate representing any artefact as
models according to the MDA approach. Transformations
among these models are modelled by means of QVT
(Queries / Views / Transformations) [7].

III. DATA CONTEXTUALIZATION
The proposed Data Contextualization is a technique that

can be used in modernization processes when the reverse
engineering stage is being carried out [9]. This technique
recovers the linkages between pieces of legacy source code
and the fragments of database schemas used for that pieces.
In addition, this knowledge is represented in a KDM Code
Model. Therefore, in the modernization processes, this new
knowledge is essential when a new version of a legacy
systems is being developed after the reverse engineering
stage. Perhaps, the modernized system does not require all
funtionalities of the legacy system. In this case, it is
important to be able to identify the fragments of legacy
database that are used by the reused pieces of legacy code.
As a consequence, the knowledge obtained in the Data
Contextualiztion could be used to obtain a new database
schema that is minimal and fits for the modernized system.

In order to obtain the code-to-data linkages this
technique considers two knowledge sources: database
schemas and the sentences embedded in source code. Thus,
the process showed in Figure 1 is divided into three steps:
(i) the static analysis of source code (ii) the static analysis of
SQL code; and (iii) the model transformations.

Figure 1. Overview of Data Contextualization: activities, task and artefacts involved in the technique.

A. Static analysis of source code
This activity analyzes the legacy source code in order to

obtain a KDM Code Model, an abstract conceptual
representation of code. This model is represented according
to the Code Package of the KDM metamodel. The SQL
queries embedded in the source code are also represented in
the KDM Code Model. Nevertheless, this information is not
supported by KDM Code metamodel. For this reason, a

specific extension of KDM metamodel according to the
extension mechanisms defined in the KDM standard [8] is
proposed. Therefore, all generated KDM Code Models
attach an ExtensionFamily.

The ExtensionFamily defines three stereotypes: (i)
<<SQLStatement>> depicts the SQL code of the queries
that is recovered in this activity, (ii) <<SQLModel>>
represents the model of each SQL query that is built in the
second activity, and (iii) <<DatabaseModel>> represents

129129

the model of the a specific database schema fragment
obtained from an SQL model in third activity. In addition,
each stereotype has a TagDefinition to keep the needed
information: the code of the query for <<SQLStatement>>,
and the path of the model for <<SQLModel>> and
<<DatabaseModel>>. Then, when the static parser finds out
an SQL query in legacy code, it adds a new CodeElement
with the stereotype <<SQLStatement>> and it puts the SQL
code in an associated TagValue element. Thus, the query
comes represented into the KDM code model.

B. Static analysis of SQL code
After static analysis of source code, there are several

points in KDM Code Model where the SQL queries were
recognized. Thus, this second activity carries out a static
analysis of each SQL sentences in the KDM Code Model in
order to generate several models representing the SQL
Sentences. For such an end, a specific metamodel has been
developed to represent the embedded SQL sentences. This
metamodel represents the Data Manipulation Language
(DML) of SQL-92: to model the Insert, Select, Update and
Delete SQL operations. These operations are generalized in
a SQL Statement meta-element. A set of Statements
comprise a DML model. In this point, the KDM Code
Model knows the SQL Sentence Models that it contains in
the legacy system, and in turn, the data requirements for
each fragment of source code of the legacy system.

C. Model transformations
Finally, in the third activity a database schema model is

obtained from the SQL sentence models by means of a set of
QVT transformations according to a database schema
metamodel. The database schema metamodel has been
developed to represent the database in the Data
Contextualization process. This metamodel enables the
representation of Tables, Constraints related to these tables,
and so on.

Schema

CreateSchema

Select2Table

Update2Table

Insert2Table

SelectedColumn2
Column

SelectedColumnExpression
2Column

SelectedColumnFunction2
Column

UpdateClauses2
Column

CreateReferentialConstraints

CreatePrimaryKeys

BaseTable

Column

Referential
Constraint

SelectedTable

Update

Insert

Column

ColumnExpression

ColumnFunction

UpdateClause

Where
PrimaryKey

Figure 2. The set of QVT relations

Figure 2 shows the set of QVT relations established
between the meta-elements of the SQL DML Metamodel
(left side) and the meta-elements of the Database Schema
Metamodel (right side). For instance, the tables that appears
in any SQL sentence (insert, select, update or delete) as well

as in source and target clauses (such as from, set, into, and
so on) will be created as tables elements in induced database
schema. Also, the columns that are selected, added, deleted
or updated in SQL sentences will be created in the
corresponding tables. In addition, the Select sentences
organized in join mode suggests potential primary keys and
foreign keys in target database schema.

After the QVT transformation, the URL of the obtained
database model is put into the Tag Value of the KDM Code
Model. Therefore, the final result is a Code Model that has a
point for each embedded SQL sentence where it links the
associate SQL Sentence and Database Schema Models.
Thus, each piece of source code is related to the database
schema fragment that it use.

IV. A TOOL FOR DATA CONTEXTUALIZATION
The Data Contextualization technique is aided by an ad

hoc tool developed for JAVA-based legacy systems. The
tool is structured in three modules corresponding to the
three activities of the Data Contextualization technique. In
order to support the first and second activity, two tool
modules to carry out static analysis was developed. Those
modules were developed through JavaCC from the EBNF
grammar of Java 1.5 and PL/SQL. The first one takes a Java
file as input and generates an XMI file as output that
represents the KDM Code model. The second one takes the
previous XMI file and generates several XMI files
corresponding to the SQL sentence models. Moreover, this
module updates the KDM Code model, since it puts the
URL of the obtained SQL Sentence models in each
embedded query.

The third module executes the QVT transformation
using the Medini QVT framework. This module obtain an
XMI file for each XMI file correspondig to the SQL
Sentences models. In addition, the ECORE version of the
three proposed metamodels was developed. Indeed, three
graphical editors were obtained from them by means of
EMF (Eclipse Modelling Framework) tools.

V. CASE STUDY
The case study addresses a modernization project that is

currently being carried out. The subject legacy system of
this project is the intranet of Computer Faculty of
University of Castilla-La Mancha. This Java-based intranet
was developed five years ago by several people. The
intranet consists of five well differenced modules: Main,
Administration, Old Students, Management and Quality.
The intranet consists of 18.5 KLOC divided into 75 source
files. Also, the legacy database schema consists of 140
tables and 7 columns per table on average.

In order to analyze the obtained results, the following
research questions are established:

Q1. Are the Database Schema Models complete?
Q2. What is the gain of the Database Schema Models?
Firstly, the Q1 question is related to the completeness of

the obtained database schema fragments. A specific schema
is complete when: (i) any table has primary key; (ii) there
are not tables without columns; and (iii) there are not

130130

duplicated elements. Secondly, the Q2 question takes into
account the minimization of the database schema. In order to
measure the gain between the previous and current size, it
uses two variables: the gain related to the number of tables
GT (1) and related to the number of columns in each table
GC (2). In these formulas, TLIS is the number of tables in the
legacy database schema and CLIS{Ti} represents the number of
columns of the table i in the legacy database. T is the
number of tables in the improved database schema and C{Ti}
is the number of columns of the table i in the obtained
database.

= −

{ } = { } − { }{ }

The case study is focussed particularly on modelling the
three kinds of models involved in the Data
Contextualization. Due to space limitations, this section
shows the models obtained through the tool for a specific
Java file of the main module: ‘_Consultar__
Preinscripcion2’.

Figure 3 (A) shows through the tree model editor the
KDM Code model obtained after the static analysis of the
Java file. Also, it shows two embedded SQL sentences that
were discovered. These two points were updated later with
the paths of the SQL Sentence Models and the Database
Schema Models. After that, the Data Contextualization tool
executes the static analysis of the previous KDM Code

model and generates two SQL Sentence Models for each
SQL sentence in the first model.

Figure 3 (B) shows the model related to the second SQL
sentence. Finally, the tool executes the QVT relations and
generates also two Database Schema Models related to the
previous models. Figure 3 (C) shows the model related to
the second SQL sentence model. In this example, the tables
‘MATRICULASCEP’ and ‘ALUMNOSCEP’ of a join select
sentence as well as the columns related to these tables were
built in the output model.

TABLE I. THE RESULTS OBTAINED IN THE CASE STUDY.

Module

Legacy System Database Schema Gain

N
. o

f s
ou

rc
e

fil
es

LO
C

(m
ea

n
pe

r
fil

e)

N
. o

f Q
ue

rie
s

(m
ea

n
pe

r f
ile

)

N
. o

f P
K

N
. o

f F
K

N
. o

f T
ab

le
s

G
T

G
C

(m
ea

n
pe

r
m

od
ul

e)

Main 18 323.7 1,8 1 1 9 94% 35%
Administration 8 152.5 1.6 0 0 2 99% 8%
Quality 44 242.0 1.4 0 0 2 99% 29%
Old Students 4 141.8 1.0 0 0 1 99% 80%
Management 1 318.0 1.0 1 1 13 91% 27%

TOTAL 75 18578 1.5 2 2 25 82% 30%

After the execution of the parser and the QVT

transformation, a set of output models of the database
fragments was obtained. TABLE I summarizes the obtained
results; it shows (i) the source files, LOCs and NOQs for
each module; (ii) the primary/foreign keys and tables
obtained for each obtained database schema; and (iii) the
gain obtained with respect to the source database.

 (A) KDM Code Model (B) SQL Statement Model (C) Database Schema Model

Figure 3. An example of the models involved in the Data Contextualization.

Linkage

131131

The analysis of results obtained for these models reports
several conclusions that should be considered to answer the
Q1 question:

 The tables are usually obtained without primary
keys unless a primary key is attached. This problem
was solved with a simple matching between the
legacy database and the modernized one.

 Achieving tables without columns is not usual,
because any column that appears in a SQL
statement is normally associated to its table.

 In this case study, since the only QVT-implemented
mechanism for inferring foreign keys is the QVT
Relation based on the join select sentences, the
QVT relations do not infer enough foreign keys.
Indeed, the source code of intranet has only two join
select sentences due to bad design of the legacy
database.

In order to response the Q2 question, the gain of
obtained database schema was also assessed. 25 out of 140
tables were recovered (18%) and the GT value (1) was 82%.
Whit respect to the columns, the mean per table of the GC
values (2) was 30%, although in some modules this mean
was higher. In this study, the GC mean is lower than the GT.
However, the total gain related to the size minimization of
the new database schema is significant.

VI. CONCLUSIONS AND FUTURE WORK
The Data Contextualization, a modernization technique

based on KDM, has been proposed in this paper. The
objective of this technique is the modernization of legacy
source code together with the legacy relational database. For
this reason, this proposal recovers the code-to-data linkages
and obtains three kinds of models according to the ADM
approach: (i) The KDM Code Model, which represents the
inventory of legacy source code. It has also the points that
link the SQL Sentence Models and Database Schema
Models. (ii) The SQL Sentence Model for modelling a
certain SQL query that was embedded in legacy source
code. (iii) The Database Schema Model, which represents
the specific database fragment derived by an SQL Sentence
Model.

The Data Contextualization technique has been
validated by means of a case study in a real-life
modernization project of a legacy intranet. The case study
reports the many advantages and some limitations of the
proposed solution. Firstly, the completeness of the database
schema model was higher whit respect to table and column
elements. Nevertheless, the completeness was lower
regarding to the constraint elements. Secondly, the gain of
the obtained Database Schema Models was important: the
size minimization was around the 30% and the 80% for
columns and tables respectively.

The work-in-progress focuses on improving the
completeness of the output models by means of more
patterns related to foreign keys. Furthermore, the future
extensions of this research will address the integration of
this technique with following stages of the modernization
process such as restructuring or forward engineering.

ACKNOWLEDGMENTS
This work has been supported by the FPU Spanish

Program; by the R+D projects funded by JCCM:
ALTAMIRA (PII2I09-0106-2463), INGENIO (PAC08-
0154-9262) and PRALIN (PAC08-0121-1374); and MITOS
(TC20091098) funded by the University of Castilla-La
Mancha.

REFERENCES
[1] Chikofsky, E., "On the Meeting of Software Architecture and

Reverse Engineering", in Working IEEE/IFIP Conference on
Software Architecture. 2005, IEEE Computer Society. p. 17-24.

[2] Ghazarian, A., "A Case Study of Source Code Evolution", in 13th
European Conference on Software Maintenance and Reengineering
(CSMR'09), R. Ferenc, J. Knodel, and A. Winter, Editors. 2009,
IEEE Computer Society: Fraunhofer IESE, Kaiserslautern,
Germany. p. 159-168.

[3] Lin, L., S.M. Embury, and B.C. Warboys. "Facilitating the
Implementation and Evolution of Business Rules". in IEEE
International Conference on Software Maintenance. 2005: IEEE
Computer Society p. 609-612.

[4] Marinescu, C. "Discovering the Objectual Meaning of Foreign Key
Constraints in Enterprise Applications". in 14th Working Conference
on Reverse Engineering (WCRE 2007). 2007. Vancouver, BC,
Canada: IEEE Computer Society p. 100-109.

[5] Miller, J. and J. Mukerji, "MDA Guide" Version 1.0.1.
www.omg.org/docs/omg/03-06-01.pdf 2003: OMG.

[6] OMG. ADM Task Force by OMG. 2007 9/06/2009 [cited 2008
15/06/2009]; Available from: http://www.omg.org/.

[7] OMG, "QVT. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification". http://www.omg.org/
spec/QVT/1.0/PDF. 2008, OMG.

[8] OMG, "Architecture-Driven Modernization (ADM): Knowledge
Discovery Meta-Model (KDM), v1.1." http://www.omg.org/spec/
KDM/1.1/PDF/. 2009, OMG. p. 308.

[9] Pérez-Castillo, R., I. García-Rodríguez de Guzmán, O. Ávila-García,
and M. Piattini. "MARBLE: Un enfoque ADM para la obtención de
Procesos de Negocio". in 6th Taller sobre Desarrollo de Software
Dirigido por Modelos (DSDM'09) 2009. San Sebastián, Spain. In
press.

[10] Sneed, H.M. "An Incremental Approach to System Replacement and
Integration". in Ninth European Conference on Software
Maintenance and Reengineering (CSMR 2005). 2005: IEEE
Computer Society p. 196-206.

[11] Zou, Y., T.C. Lau, K. Kontogiannis, T. Tong, and R. McKegney,
"Model-Driven Business Process Recovery", in Proceedings of the
11th Working Conference on Reverse Engineering (WCRE 2004).
2004, IEEE Computer Society. p. 224-233.

132132

	Portada
	Titulo1
	Titulo2
	copiright
	Contents
	Articulo

