Information Research: an electronic journal wysiwyg://5/http://www.shef.ac,uk/~is/publications/infres/ircont. html

Jnformation 2esearch

an electronic joummadl

Information Research: an electronic journal, is published by the
Department of Information Studies, University of Sheffield.

ISSN 1368-1613

If you find Information Research useful, please sign in and we'll notify
you of future issues.

Editors
Editorial Policy : Volume 4
Peer Review K No 4 June 1999
Copyright No 3 February 1999
pyright No 2 October 1998
Author Instructions g No 1 July 1998
Author Index Best viewed with
Subject Index WG
Search Database § "
Full-text Search Volume 3
; No 4 March 1998
: N¢ 3 January 1998
Digital Resources [No 2 tem
Reviews No 1 July 1997
Volume 2
Register . 4 April 199
: No3 mber 19
' No 2 October 1996
Home No 1 August 1996
Yolume 1
No 3 March 1996
No 2 December 1995
No 1 April 1995

This page is maintained by Professor Tom Wilson.
t.d.wilson@sheffield.ac.uk Last up-date; 2nd July 1999. For statistics,
click here:

1de2 14/10/99 8:32

Evaluation criteria for information retrieval systems. Pagina 1 de 14

Characterization of Fourth Generation
languages (4GLs)

Antonio Martinez and Mario Piattini
Grupo Alarcos, Departamento de Informatica
University of Castilla-la Mancha
Ronda de Calatrava, 5
13071, Ciudad Real (Spain)

Abstract

Because of their basic features, the Fourth Generation Languages (4GL’s) have
contribute profits to the development of applications. 4GL’s environment are
more user- friendly systems, they improve on productivity in relation to
traditional languages, they make easy the development through "templates" and
casier allow the creation of real prototypes that transform the cycle of the live
of the applications, and the facility of building portable applications with
considerable possibilities of adaptation.

The heterogeneity of the sentences that constitute the 4GL make it difficult to
apply traditional metrics, such as McCabe’s cyclomatic number (McCabe,
1976).

We propose here a classification of the fourth generation languages in different
sub-languages in order to make the application of metrics possible.

1. Introduction to fourth generation languages (4gls)

Many of the organisations which use management information systems are now aware that
computer systems constructed using third generation languages, such as COBOL and
FORTRAN, can be more effectively produced and maintained using modern productivity-
enhancing tools. These tools have been given various names, including fourth- generation
languages (4GL’s). application generators, or more recently fourth-generation systems. The
term fourth generation is open to a wide variety of interpretations — no two definitions ever
have exactly the same implications. True 4GL’s imply that all phases of application design
and development are catered for, not just the coding phase, which is after all a relatively
small proporiion of the total effort involved in developing and maintaining a major
application system (Holloway, 1990).

There is one central theme, common to all the definitions of 4G environment, and that is
significant improvements in productivity over conventional methods of writing application
software.

Fourth Generation Languages (4GLs) have been found appropriate for a large class of
commercial applications, and allow rapid system development. In some cases such
development can be extremely fast, which permits a significant change in the methodology
used. Fourth Generation Languages have greatly enlarged the community of direct users and
manipulators of data. Many of these tools are centred around some form of data dictionary,
often actively used by the system. This begins to address the need for a single source of such
routines, and has potential for greatly improving data integrity by eliminating the chance of
multiple, inconsistently implemented routines.

4GLs have revolutionised the approach to software production in a number of ways. One of
the key changes consists in making possible user participation in systems design. The ability
to specify an application very rapidly at a workstation and subsequently to amend it has
enabled the end-user to become a real partner in the software design process. Another key

http://www.shef.ac.uk/~is/publications/infres/Martinez. htm 13/10/99

Evaluation criteria for information retrieval systems. Pagina 2 de 14

area of change is in the reduction of errors in writing code to access files and handle screens.
This is a major source of errors in conventional code. However, with a 4GL, this code is no
longer the responsibility of the programmer. The benefits here derive from substantially
reducing the number of these very common errors.

Overall, the use of 4GLs appears to lead to more reliable code, with less manpower. The
4GL provides good documentation in a uniform style, which helps to ensure that as the
applications evolve reliability of the code is maintained.

Traditionally, we classify the 4GLs in two groups:

a. Final user languages (information centre): They are centred in ease and flexibility of
use.

b. Professional Languages (development centre): To develop sophisticated applications
and to permit rapid prototype-ceonstruction applications. These kinds of languages
appear with Base Data Management Systems (Cobb, 1985).

2. Identification of sub-languages.

The rising development of applications in 4GL makes necessary a maintainability control of
the written code in 4GL. Maintainability is considered to be influenced by
understandability, modifiability and testability (I.i and Chen, 1987); which depend on the
size, length and complexity of Fourth Generation Language programs.
It is a fact that 4GL languages are heterogeneous, as they include sentences of different
natures, so it is impossible to give overall metrics for 4GL programs. We propose to identify
different sublanguages:
A. 4GL Sentences.
Al) Procedural control sentences.
A2) Visual control sentences.
A3) Exception handling sentences.
B. SQL Sentences.
B1) Database definition sentences.
B2) Database manipulation sentences
B3) Security control sentences.

B4) Transaction control sentences.

We define each of the sublanguages with examples in different 4GL (CA- Openlngres,
Visual Basic, Delphi).

2.1. 4GL Sub-languages

This sub-language contains the building blocks sentences (if, do while, case, do until) (see
figures 1, 2 and 3.)

http://www shef.ac.uk/~is/publications/infres/Martinez.htm 13/10/99

Evaluation criteria for information retrieval systems. Pagina 3 de 14

If status = 'n' then
If empsum = 0 then
Message 'Pleass enter employes number';
Sleep 3;
Else
Callframe NewEm sp
E nudif,
Endif;

Figure 1. CA-Openlngres Procedural Control Sentences

If Isnull(x) and Isruali(y) then
2 =null

Else
Z=0

Endif

Figure 2. Visual Basic Procedural Control Sentences

Ifx>15then
Begn
k=k+1
Z =3+,
end,
else
begn
z:=1.5
t = add_cal (x,¥,2)
end,

Figure 3. Delphi Procedural Control Sentences
2.1.2. Visual Control Sentences.

This sublanguage is defined as covering display sentences and forms-control sentences to
manipulate both forms field and local variables. (See figures 4, 5 and 6.)

Set_forms frs(activate (rextield) =1,
activate (previousfield) = |,

activate (Keys) = 1),

Figure 4. CA-Openlngres Visual Control Sentences.

MsgBox ("Are you there?', ME_SINO + MB_ICONQALTO)

Figure 5. Visual Basic Visual Control Sentences

MessageDigP os (‘Are you there?’, mtC onfirm ation, mb¥esNoC oncet, 0, 200, 200%,

Figure 6. Delphi Visual Control Sentences.

2.1.3. Exception handling sentences

This sublanguage is defined as containing the sentences and functions to retrieve
information about an application that is running. (See figures 7, 8 and 9.)

http://www.shef.ac.uk/~is/publications/infres/Martinez.htm 13/10/99

Evaluation criteria for information retrieval systems. Pagina 4 de 14

Status = callproc incuire file (hande = fileno, filenams = byref (filenams),

Offset = biyref (offsetna));

Figure 7. Openlngres Exception handling sentences

On error Goto CantReadFile

Open "CURRENCY.TXT"

CantReadFile::

MsgBox "Have you created the file CURRENCY TXT 7"

Figure 8. Visual Basic Exception handling sentences.

Try
Rewrite(f);

Except On exception Do
Begin
Showhlessage('Im possible write in the file' + Name +'7;
ErrorWiite := True,

End;

End,

Figure 9. Delphi Exception handling sentences.

2.2.1. Database definition sentences.

This sublanguage is defined as containing sentences that can create, modify and destroy a
variety of database objects, such as tables, views, indexes and database procedures. (See
figure 10.)

Create table dept (dname char(10),
location cha(10),
budget m oney,
Expensesmoney,
constraint check_amound check

(budget > 0 and expenses # budget),

Figure 10. CA-Openlngres/SQL database definition sentences
2.2.2. Database manipulation sentences

This sublanguage is defined as containing the sentences that enable you to manipulate data

http://www.shef.ac.uk/~is/publications/infres/Martinez.htm 13/10/99

Evaluation criteria for information retrieval systems. Pagina 5 de 14

in the tables. (See figure 11.)

Select ename from employees

Where edept ismll and hiredate = date (‘today’)

Figure 11. CA-Openlngres/SQL database manipulation sentences
2.2.3. Security control sentences

This sublanguage is defined as containing the sentences that enable you to control access to
database objects, roles and DBMS resources. (See figure 12.)

CGrant select, update (depart) antable employees

to acconting_supervisor with grant option;

Figure 12. CA-Openlngres/SQL security control sentences
2.2.4. Transaction control sentences
This sublanguage contains the sentences that help to manage transactions (e.g. rollback).

3. Metrics for 4GLs

Different kinds of metrics can be defined for 4GL’s. At the moment, some work has been
done in order to estimate the development effort and to correlate it to program size (Dolado,
1997; Verner and Tate, 1988), but more work is necessary in order to control the quality of
4GL programs.

The problem is, as we have mentioned, that the heterogeneity of 4GL statements invalidates
global measures so different sublanguages must be taken into account in order to get a more
precise measure. In this way, different measures for size, length, complexity, cohesion and
coupling could be defined for all 4GL sublanguages, and summarized in one global
measure. For example, application program size could be defined as:

SIZE = Wp PCS + W, -VCS + wy, EHS + w DDS + w,, [DMS + w .VCS + w . TCS

Where PCS, VCS, EHS, DDS, DMS, VCS and TCS are procedural control size, visual
control size, exception handling size, database definition size, database manipulation size,
security control size and transaction control size respectively. Woe. Wye. Wen Wpb. WpM

Wge Wrc are 4GL-dependent weights, which must be adjusted for each different 4GL (CA-

Openlngres, Delphi, Visual Basic, Open Road, Powerbuilder, etc.) and also for each
organization. As an example we will present the procedural control sentences and the
database manipulation sentences.

In Martinez and Piattini (1998) we provide a first approximation to these metrics, adapting
several other classical metrics as: lines of code, depth of nesting, McCabe cyclomatic
complexity, Bieman and Ott’s cohesion (1994), Fenton and Pfleeger’s coupling (1996), etc.

3.1.1 Procedural control size (PCS)

The procedural control size (PCS) is detined as the sum of the lines of code (LOC).

http://www.shef.ac.uk/~is/publications/infres/Martinez. htm 13/10/99

Evaluation criteria for information retrieval systems. Pagina 6 de 14

PCS =X LOC

The definition of LOC is controversial (Fenton and Pfleeger, 1996). We adopted the
following definition of line of code: A line of code is any line of program text that contain
executable statements finished in a semicolon excluding blank lines, comment lines, data
declarations, program headers, non- executable statements and compile directives. The

statements taking more than one line count as only one line. In appendix A, a complete
example for an Ingres program is shown.

3.1.2. Procedural control length (PCL)

We use depth of nesting to measure the length of a program. Depth of nesting of a program
can be defined using graph theory (Fenton and Pfleeger, 1996). Program can be modeled by
flowgraphs. We calculate the application length adding 1 to maximum of the depth of
nesting of its program. In appendix A, a complete example for an Ingres program is shown.

3.1.3. Procedural control complexity (PCC)

The metric used to measure the complexity in procedural control sentences is McCabe’s
cyclomatic complexity (McCabe, 1976):

V(GHRI - [E] + 2p
Where:

G: is the graph of the program composed with the procedural control
sentences

[R|: is the number of edges in the graph
|E|: is the number nodes
p: is the number of connected components of G.
In appendix A , a complete example for an Ingres program is shown.
3.2 Database manipulation sentences metrics

We have studied different kinds of metrics for this sublanguage (Martinez and Piattini,
1999). The best metrics for characterised the SELECT sentence are:

3.2.1 Database manipulation size (DMS)
Metrics NT
Expresses the number of tables that the SELECT sentence contains. (See figure 13.)

DMS=Z NT

http://www.shef.ac.uk/~is/publications/infres/Martinez.htm 13/10/99

Evaluation criteria for information retrieval systems. Pagina 7 de 14

select f.p0_nom_nomi, p.mam_ficha, pfecha
fram prueba p, fper020 £, hor_personal b
where pnif not it (select hunif
from prueba p, fper020 £, hor_personal h
whete pnum_fichs=hnum ficha

and £ p0_nif=h nif

and paif=f.p) _nif

and p fecha="171298"

and p.control="SM’

and p.estado="4"

and fp0_sexo="V~’

and p hora in (select hora

from prueba p, Fper020 f,
hor_personal b
where p.oum_ficha=hnum_ficha

and Fp0_pif=hnif
and p.nif=Ff p0_nif
and p.fecha="17129%
and p.control="3M"
and p.tipo="A0"
and h saldot=0

)
and p.fecha="151298"
and p.rom_ficha=hnum_ficha
and p.rif=Fpl_nif
and fp0_nif=h.mif
group by £.p0_nom _nomd, pnum_ficha, p fecha

Figure 13. SELECT sentence example

We can caracterise SELECT sentence in base to the values NT=3.
5.Conclusions and future work

Fourth Generation Languages are acquiring big importance in some installations,
substituting slowly existing Third Generation Languages.

Metrics are useful mechanisms in improving the quality of software products, specially
maintenance, which is the most important problem of software development, ranging
between 60 and 90 percent of life- cycle costs (Card and Glass, 1990; Pigoski, 1997).
Software measurement is widely recognised as an effective means to understand, monitor,
control, predict and improve software development and maintenance projects (Briand et al.,
1996). Measurement is used not only for understanding, controlling, and improving
development, but also for determining the best ways to help practitioners and researchers.

Maintainability is achieved by means of three factors: understandability, modifiability and
testability, which are in turn influenced by complexity (Li and Cheng, 1987). However, a
general complexity is "the impossible holy grail” (Fenton, 1994). Henderson- Sellers
(1996) distinguishes three types of complexity: computational, psychological and
representational, and for psychological complexity he considers three components: problem
complexity, human cognitive factors and product complexity. The last one is our focus.

At this moment, we are defining metrics for each one of the sublanguages that we have
identified in this paper. We are also verifying these measures in different formal frameworks
as Zuse (1998), Weyuker (1988) and Briand et al. (1996) (1997).

As formal verification is not enough, we are also validating these metrics empirically using
both controlled experiments with students and real cases in different organisations. These
metrics are confronted with maintenance cost, morcover limits for these measures (as
programme guidelines) are to be established in order to control application production.

http://www.shef.ac.uk/~is/publications/infres/Martinez.htm 13/10/99

Evaluation criteria for information retrieval systems. Pagina 8 de 14

Future research will consists in the definition of metrics for object-oriented 4GL, based on
those proposed by Chidamber and Kemerer (1994) and Henderson-Sellers (1996).

References

+ Bieman J.M., and Oft L.M. (1994) "Measuring Functional Cohesion". [EEE Trans. On Software
Engineering 20, 8,644-657.

e Briand, L.C., Morasca, S. and Basili, V. (1996). Property-based sofiware engineering
measurement. IEEE Transactions on Software Engineering, 22(1): 68-85.

e Briand, L.C. and Morasca, S. (1997). Towards a Theoretical Framework for measuring
softv.;azrg attributes. Proceeding of the Fourth International Software Metrics Symposium,
119-126.

e Card, D.N. y Glass, R.L. {(1990). Measuring Software Design Quality . Englewood Cliffs.

USA.

¢ Codd, E.F. (1970). A Relational Model of Data for Larged Shared Data Banks. CACM | 13
{6), 377-387.

e Chidamber, S.R. & Kemerer, C.F. (1991). A metrics suite for object-oriented design. IEEE
Trans. On Software Engineering 20 (6) 476-483.

o Dolado, J.J. {1997). A Study of the Relationships among Albrecht and Mark |l Function Points,
Lines of Code 4GL and Effort J. Systems Software, 37:161-173.

s Fenton, N. (1994). Software Measurement. A Necessary Scientific Basis. /EEE Transactlions
on Software Engineering , 20 (3); 199-206.

e Fenton, N. & Pfleeger, S.L. (1996). Software Metrics: A Rigorous Approach and Practical
Approach. London: International Thomson Computer Press.

e Hendersen-Sellers, B. (1996). Object-oriented Metrics - Measures of complexity. Upper
Saddle River, New Jersey: Prentice-Hall.

s Holloway, S. (ed.) (1990). Fourth-Generation Systems, their scope application and methods of
evaluation. London: Chapman and Hall.

e Li, H.F. and Chen, W.K. (1987). An empirical study of software metrics. IEEE Trans. on
Software Engineering , 13 (6): 679-708.

» Martinez, A. and Piattini, M. (1998). Validation of 4GL metrics, proceedings in United Kingdom
Software Metrics Association (UKSMA), 13-22.

e Martinez A., and Piattini M. (1999) " Experimental validation of SQL metrics", accepted in
FESMA.

s McCabe, T.J. (1976). A complexity measure. /IEEE Trans. Software Engineering 2(5): 308-
320.

o Pigoski, T.M. (1997). Practical Soffware Maintenance . Wiley Computer Publishing. New
York, USA.

e Verner J. and Tate G.(1988) "Estimating Size and Effort in Fourth-Generation Development”.
IEEE Trans. On Software Engineering . July, 15-22 .

» Weyuker, E.J. (1988). Evaluating software complexity measures. [EEE Transactions on
Software Engineering 14(9).1357-1365.

s Zuse, H. (1998). "A framework of software measurement” , Ed. Walter De Gruyter.

Appendix A

/**/

J* ¥/

* SOURCE --=-=-- > cont413.0sq */

/* DATE --=---- > 26/Abril/96 */

* DESCRIPTION ---> Altas Servicios */
f* */

/**/

initialize ()=
declare

mes=integer not null,

http://www.shef.ac.uk/~is/publications/infres/Martinez.htm 13/10/99

Evaluation criteria for information retrieval systems. Pagina 9 de 14

campo=integerl not null,
errorIng=integer not null,

tecla=integer not null,

filas=integer not null,

error=integer1 not null,
inicia_campos=procedure returning none

begin

set_forms frs(timeout=300);

set_forms frs (activate(nextfield)=1,
activate(previousfield)=1,
activate(keys)=1);

callproc inicia_campos();

set_forms field " (reverse(cod_servicio)=1);
redisplay;

resume field cod_servicio;

end

'‘Ayuda’, key frskeyl=
begin

callproc inicia_campos();

if campo=1 then

message 'Codigo del Servicio.;

sleep 2;

set_forms field " (reverse(cod _servicio)=1);
resume field cod_servicio;

elseif campo=2 then

message 'Nombre descriptivo del Servicio.';
sleep 2;

set_forms field " (reverse(nom_centro)=1);
resume field nom_centro;

endif; /* campo */

end /* Ayuda */

'Grabar’, key frskeyd4=
begin

callproc inicia_campos();
if (cod_servicio=" or

nom_servicio=") then

callproc beep();

message 'ERROR --> NO introducidos datos necesarios’;
sleep 2;

set_forms field " (reverse(cod_servicio)=1);

resume field cod_servicio;

endif;
insert into hor_servicios

(cod_servicio, nom_servicio, cod_centro)
values
(:cod_servicio, :nom_servicio, :cod_centro);
errorlng=callproc errorlc
(filasE4=byref(filas);

http://www shef.ac.uk/~is/publications/infres/Martinez.htm 13/10/99

Evaluation criteria for information retrieval systems. Pagina 10 de 14

operacionE1="INSERT",
programab2="cont413";
notasE3="Inserto Servicio en la tabla.";
if erroring>0 then
redisplay;
rollback;
return 1;
else
commit;
endif;
return 0;

end /* Ejecutar */

'Salir', key frskey3 (activate=0)=
begin

return 1;
end /* Salir */

RO RS KRR R O KA OKHR AR R OISR R R Rk Kk Rk ok
[REEREREE SRR R R R RV gl idacion de campos FEEEFREE Rk E ok kK ok f
R L e S LT TR Y

field 'cod_servicio'=
begin
campo=1,
if cod_servicio!=" then
cod_servicio=danumero(cod_servicio,3);
select nom_servicio
from hor_servicios
where cod_centro=:cod_centro
and cod _servicio=:cod_servicio;
erroring=callproc errorlc
(filasE4=byref(filas),
operacionE1="SELECT",
programaE2='cont413";
notasE3="Compruebo si YA existe el Servicio.");
if errorIng>0 then
redisplay;
rollback;
elseif filas>0 then
rollback;
callproc beep();
message 'ERROR --> Servicio YA existe.';
sleep 3;
cod_servicio=";
nom_servicio=";
resume;
else
comimit;
endif;/* errorlng */
endif;
set_forms field " (reverse(cod_servicio)=0 ,
reverse(nom_servicio)=1);
resume next;
end /* cod_servicio*/
field 'nom_servicio'=
begin
campo=2;
set_forms field " (reverse(nom_servicio)=0 ,

http://www.shef.ac.uk/~is/publications/infres/Martinez.htm 13/10/99

Evaluation criteria for information retrieval systems. Pagina 11 de 14

reverse(cod_servicio)=1Y,
resume next:
end /* nom servicio */

/*************************/

{¥¥** PROCEDURE ****/

JAR A kR ARk kA ok

procedure inicia_campos()=
begin
set_forms field " (reverse(cod servicio)=0,
reverse(nom_servicio}=0);
end

1. SIZE PROGRAM (PCS)
LOC of procedural control sentences = 29

2- LENGTH (DEPTH OF NESTING)

The tree of the frame is the following:

The depth of nesting is = 5
3- COMPLEXITY

3.1 Procedural control sentences

http://www.shef ac.uk/~is/publications/infres/Martinez. htm 13/10/99

[

Evaluation criteria for information retrieval systems. Pagina 12 de 14

V(G) = IR] - |E| +2p
p=1

IR| =22

lEl =18

V{G) = 22-18+2 = 6

Complexity procedural control sentences: 6

mes=integer not null,
campo=integerl not null,
errorlng=integer not null,
tecla=integer not null,
filas=integer not null,
error=integer1 not null,

inicia_campos=procedure returning none

set_forms frs(timeout=300);

set_forms frs (activate(nextfield)=1,
activate(previousfield)=1,
activate(keys)=1);

callproc inicia_campos();

set_forms field " (reverse(cod_servicio)=1);

redisplay;

resume fleld cod_servicio;

callproc beep();
message 'ERROR --> NO introducidos datos necesarios',
sleep 2;
set_forms field " (reverse(cod_servicio)=1);
resume field cod_servicio;

(cod_servicio, nom_servicio, cod_centro)
values
(:cod_servicio, :nom_servicio, :cod_centro);
errorlng=callproc errorlic
(filasE4=byref{filas);
operacionE1="TNSERT";
programaE2="cont413';
notasE3="Inserto Servicio en la tabla."};

http://www.shef.ac.uk/~is/publications/infres/Martinez.htm 13/10/99

