

1

UP

GRADE is the European Journal for the
Informatics Professional, published bimonthly at
<http://www.upgrade-cepis.org/>

Publisher
UP

GRADE is published on behalf of CEPIS (Council of
European Professional Informatics Societies,
<http://www.cepis.org/>) by NOVÁTICA
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS
society ATI (Asociación de Técnicos de Informática
<http://www.ati.es/>).

UP

GRADE is also published in Spanish (full issue printed, some
articles online) by NOVÁTICA, and in Italian (abstracts and some
articles online) by the Italian CEPIS society ALSI
<http://www.alsi.it> and the Italian IT portal Tecnoteca
<http://www.tecnoteca.it/>.

UP

GRADE was created in October 2000 by CEPIS and was first
published by NOVÁTICA and INFORMATIK/INFORMATIQUE,
bimonthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>).

Editorial Team

Chief Editor: Rafael Fernández Calvo, Spain, <rfcalvo@ati.es>
Associate Editors:
• François Louis Nicolet, Switzerland, <nicolet@acm.org>
• Roberto Carniel, Italy, <carniel@dgt.uniud.it>

Editorial Board

Prof. Wolffried Stucky, CEPIS Past President
Prof. Nello Scarabottolo, CEPIS Vice President
Fernando Piera Gómez and
Rafael Fernández Calvo, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

English Editors:

 Mike Andersson, Richard Butchart, David
Cash, Arthur Cook, Tracey Darch, Laura Davies, Nick Dunn,
Rodney Fennemore, Hilary Green, Roger Harris, Michael Hird,
Jim Holder, Alasdair MacLeod, Pat Moody, Adam David Moss,
Phil Parkin, Brian Robson.

Cover page

 designed by Antonio Crespo Foix, © ATI 2003

Layout:

 Pascale Schürmann

E-mail addresses for editorial correspondence:
<rfcalvo@ati.es>, <nicolet@acm.org> or
<rcarniel@dgt.uniud.it>

E-mail address for advertising correspondence:
<novatica@ati.es>

Up

grade

 Newslist

 available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright

© NOVÀTICA 2004. All rights reserved. Abstracting is permitted
with credit to the source. For copying, reprint, or republication
permission, write to the editors.

The opinions expressed by the authors are their exclusive
responsibility.

ISSN 1684-5285

Vol. V, No. 2, April 2004

2 From the Editors’ Desk
The

UP

GRADE European Network:

N przywitanie

 / Welcome!

The members of the Editorial Team of

UP

GRADE describe the aims and scope of the network of journals
of CEPIS member societies, whose contents will enrich ours and offer a broader European view of ICT
to our readership.

Joint issue with N

OVÁTICA

*

3 Presentation
UML: The Standard Object Modelling Language

– Jesús García-Molina, Ana Moreira,
and Gustavo Rossi

The guest editors introduce the monograph, that includes a series of papers that reflect the state of the art
of UML (Unified Modeling Language). These papers illustrate different aspects of UML, ranging from
use cases to UML formalization, meta-modelling, profile definition, model quality, model engineering and
MDA (Model Driven Architecture.)

6 An Introduction to UML Profiles

 – Lidia Fuentes-Fernández and Antonio Vallecillo-
Moreno

This paper describes a set of steps to create a profile and argue the importance of profiles in MDA.

14 Aspect-Oriented Design with Theme/UML

 – Siobhán Clarke

The author describes her approach “Theme” to extending the UML in order to support the
modularisation of a designer’s concerns, including crosscutting ones.

21 In Search of a Basic Principle for Model Driven Engineering

 – Jean Bézivin

This article offers an interesting look at the essential features of this new software development paradigm.

25 The Object Constraint Language for UML 2.0 – Overview and Assessment

 – Heinrich
Hussmann and Steffen Zschaler

This paper, authored by members of the OCL 2.0 team, gives an overview of the new aspects of the second
version of this language and also provides a critical discussion of a few selected aspects of it.

29 Developing Security-Critical Applications with UMLsec. A Short Walk-Through

 – Jan
Jürjens

The problems of creating high-quality critical systems is analysed in this paper, that shows how using
UML modelling can help solve them and presents a tool to support the proposed approach.

36 On the Nature of Use Case-Actor Relationships

 – Gonzalo Génova-Fuster and Juan
Llorens-Morillo

In this paper some issues are addressed that regard the relationships in which use cases and actors may
take part, presently defined in UML as associations.

43 Metrics for UML Models

 – Marcela Genero, Mario Piattini-Velthuis, José-Antonio
Cruz-Lemus, and Luis Reynoso

This paper offer a vision of the state of the art of metrics for measuring quality of some basic UML
diagrams (such as class, state and use case diagrams) and OCL expressions.

49 Using Refactoring and Unification Rules to Assist Framework Evolution

 – Mariela I.
Cortés, Marcus Fontoura, and Carlos J.P. de Lucena

In their paper the authors use UML-F, a UML designed for describing frameworks, to present two
techniques aimed at facilitating framework maintenance and evolution.

UP

GRADE European Network

From “Pro Dialog” (Poland):

56 Parallel Programming Support System for Transputers – Educational Software

– Mikolaj
Szczepanski and Rafal Walkowiak

The paper presents a method for integrating applications data, aimed at data aggregation and transfer in
software applications when integration of those applications has to be fast and should be done with
minimum source code modifications.

News Sheet

61 ENISA: The European Network and Information Security Agency created

61 News from EUCIP and ECDL

* This monograph will be also published in Spanish (full issue printed; summary, abstracts and some articles online) by
NOVÁTICA, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de Informática) at <http://www.ati.es/
novatica/>, and in Italian (online edition only, containing summary abstracts and some articles) by the Italian CEPIS society
ALSI and the Italian IT portal Tecnoteca at <http://www.tecnoteca.it>.

UML and Model Engineering

Guest Editors:

Jesús García-Molina, Ana Moreira, and Gustavo Rossi

Mosaic

Next issue (June 2004):
“Digital Signature”
(The full schedule of UPGRADE is
available at our website)

http://www.upgrade-cepis.org
http://www.upgrade-cepis.org
http://www.upgrade-cepis.org
http://www.upgrade-cepis.org
http://www.ati.es/novatica/infonovatica_eng.html

UML and Model Engineering

© Novática UPGRADE Vol. V, No. 2, April 2004 43

Metrics for UML Models

Marcela Genero, Mario Piattini-Velthuis, José-Antonio Cruz-Lemus, and Luis Reynoso

Due to the important role played by models obtained in the early stages of the development of Object-
Oriented (OO) systems, special attention has been paid to the quality of such models in recent years. While
it is commonly believed that UML (Unified Modeling Language) is an aid to building better quality software
systems, we need to have quantitative and objective measurement instruments to gather empirical evidence
of this. The idea that the use of metrics for UML models can help designers make better decisions is also
gaining importance in the field of software measurement, which has led to an increasing demand for metrics
for UML models in recent years. The main aim of this paper is, therefore, to present a broad overview of the
most relevant proposals related to metrics for UML models at a conceptual level, to give researchers and
practitioners a broader insight into the work already done and still to be carried out in the field of UML
model quality. This paper will hopefully also give researchers a more comprehensive view of the direction
OO measurement is taking.

Keywords: Characteristics, Conceptual Models, Empirical
Validation, Model Quality, Object-Oriented Metrics, UML
Models, Theoretical Validation.

Introduction
In recent years, software developers have paid special

attention to guaranteeing the quality characteristics of Object-
Oriented (OO) systems from the first stages of their lifecycle,

with a special focus on the quality of conceptual models.
Although the conceptual modelling phase represents only a
small part of the overall OO system development effort, its
impact on the system finally implemented is probably greater
than that of any other phase.

Recently, paradigms such as Model-Driven Development [1]
and Model-Driven Architecture [27] consider conceptual

1

Marcela Genero is an assistant professor in the Department of
Computer Science at the Universidad de Castilla-La Mancha,
Ciudad Real, Spain. She received her MSc degree in Computer
Science from the Department of Computer Science of the Universi-
dad del Sur, Argentina, in 1989 and her PhD from the Universidad
de Castilla-La Mancha. Her research interests are: advanced data-
base design, software metrics, conceptual data model quality, and
database quality. She has published several papers in prestigious
conferences and journals such as CAiSE, E/R, OOIS, METRICS,
ISESE, SEKE, Journal of Systems and Software, International Jour-
nal of Software Engineering and Knowledge Engineering, Informa-
tion and Software Technology, Software Quality Journal, etc. She is
co-editor of the books “Information and database quality”, 2002,
Kluwer Academic Publishers, USA, and “Metrics for Software
Conceptual Models”, 2004, Imperial College Press, UK.
<Marcela.Genero@.uclm.es>

Mario Piattini-Velthuis has an MSc and PhD in Computer
Science from the Universidad Politécnica de Madrid and is a Certi-
fied Information System Auditor Manager by ISACA (Information
System Audit and Control Association). He is a full professor in the
Department of Computer Science at the Universidad de Castilla-La
Mancha, Ciudad Real, Spain. He has authored several books and
papers on databases, software engineering and information systems,
and leads the ALARCOS research group of the Department of
Computer Science at the same university. His research interests are:
advanced database design, database quality, software metrics, and

software maintenance and security in information systems. He has
co-edited several books: “Advanced Databases: Technology and
Design”, 2000. Artech House. UK; “Auditing Information Systems”
Idea Group Publishing, 2000, USA; “Information and database
quality”, 2002, Kluwer Academic Publishers, USA, etc. and “Met-
rics for Software Conceptual Models”, 2004, Imperial College
Press, UK. He is co-editor of the Database section of Novática.
<mario.piattini@uclm.es>

José-Antonio Cruz-Lemus is an assistant professor in the Depart-
ment of Computer Science at the Universidad de Castilla-La
Mancha, Ciudad Real, Spain. He received his MSc degree in
Computer Science and is currently a Ph.D. student at the same
university. His research interests are: metamodelling using UML,
metrics for UML models, etc. <joseantonio.cruz@uclm.es>

Luis Reynoso is an assistant professor at the Universidad Nacion-
al de Comahue, Neuquen, Argentina. He received his MSc degree in
Computer Science from the Universidad Nacional del Sur, Argenti-
na, in 1993. He also obtained a Magister in Computer Science from
the same university in 2003. He was a fellow of the International
Institute of Software Technology, one of the Research and Training
Centres of the United Nations University, researching on a project
about object-oriented design patterns. He has published papers in
several international conferences. His research interests are focused
on object oriented metrics and the combination of formal and infor-
mal methods applied to software engineering.
<lreynoso@uncoma.edu.ar>

http://www.upgrade-cepis.org/issues/2004/2/upgrade-vV-2.html
http://www.ati.es/novatica/infonovatica_eng.html

UML and Model Engineering

44 UPGRADE Vol. V, No. 2, April 2004 © Novática

models as the backbone of OO system development and stress
the importance of building ‘good’ conceptual models.

While the appearance of UML as a modelling language has
been a quantum leap for building higher quality models, the
truth of the matter is that a modelling language can only give us
syntax and semantics to work with, but cannot tell us whether
or not a ‘good’ model has been produced. Naturally, even when
a language is mastered there is no guarantee that the models
produced with it will be good. It is rather like writing a story in
a natural language: the language is merely a tool that the author
has to master. It is still up to the author to write a good story.

Quality in conceptual modelling has traditionally been a
poorly understood area. In practice, the evaluation of the qual-
ity of conceptual models is performed in an ad hoc manner, if
at all. There are no generally accepted guidelines for evaluating
the quality of conceptual models, and little agreement, even
among experts, as to what makes a model ‘good’. As a result,
the quality of conceptual models produced in practice is almost
entirely dependent on the competence of the modeller.

Expert modellers know intuitively what makes a data model
good, but this knowledge can generally be acquired only
through experience. However, for conceptual modelling to
progress from a ‘craft’ to an engineering discipline, the desira-
ble qualities of conceptual models need to be made explicit.

Some interesting frameworks have been proposed [21] [19]
[26] [31]. While these frameworks have contributed to a better
understanding of the concept of quality in conceptual model-
ling, they lack the quantitative and objective measures required
to reduce the level of subjectivity and bias in the quality evalu-
ation process.

It is widely recognised that, in practice, quality criteria are
not in themselves enough to ensure quality, because people will
generally interpret the same concept in different ways. Accord-
ing to TQM (Total Quality Management) literature, measurable
criteria for assessing quality is necessary to avoid “style argu-
ments”. This is where software measurement plays an impor-
tant role. A metric is a way of measuring a quality factor in a
consistent and objective manner. It is therefore essential to have
metrics which allow us to evaluate the characteristics that
ensure the quality of conceptual models (in our case, metrics
for UML models) and thereby help us to develop good quality
OO systems by eliminating incorrect design attributes and
reducing unnecessary complexity from the first stages of the
development cycle, leading to a major reduction in extra work
during and after implementation.

We should also bear in mind that in many cases UML models
need to be complemented with OCL (Object Constraint Lan-
guage) specifications which allow certain constraints to be
defined that cannot be expressed by diagrammatic notation
alone.

The main aim of this paper is to present an overview of
current literature on metrics applicable to the measurement of
quality attributes for UML structural diagrams (class dia-
grams), UML behavioural diagrams (use case diagrams, state-
chart diagrams) and OCL expressions.

A number of experts in software measurement put special
emphasis on certain issues that must be taken into account
when defining metrics for software, such as:
• Metrics must be defined with clear aims in mind.
• Metrics must be theoretically validated, by addressing the

question “is the metric actually measuring the attribute it is
supposed to be measuring?”.

• Metrics must be empirically validated, by addressing the
question “is the metric of practical use?” (in the sense that
it is related to other external quality attributes as intended.)

• The calculation of the metrics must be easy and should
ideally be automated by means of a tool.

We will consider these suggestions when presenting each of
our proposals.

The rest of the paper is organised as follows: Sections 2 to 4
outline our different proposals for UML diagram metrics (use
cases diagrams, class diagrams and statechart diagrams,
respectively). Metrics for OCL expressions are presented in
Section 5. The final section presents some concluding remarks
and briefly describes future and emerging trends in the field of
metrics for UML models.

Metrics for UML Use Case Diagrams
UML actually only focuses on the diagrammatic notation

of use cases. As several authors have remarked, use case
diagrams must be understood as nothing more than a table of
contents of use cases, not as an alternative to their textual spec-
ification. In use case diagrams, only the name of the use case,
the participating actors and some use case relationships are
shown. The essence of use cases, i.e. their sequence of
actor–system interactions, can in no way be derived from use
case diagrams. It is therefore necessary to complement use case
diagrams with use case textual specification.

There are a number of proposals for specific metrics for use
case diagrams, such as [23] and [30]. There are also some
others which are specifically used for use cases, among others
[14] [18] [4]. A thorough study of metrics for use cases can be
found in [15].

Our aim here is to describe existing metrics for use case
diagrams, so we will go on to outline the metrics put forward
by Marchesi [23] and Saeki [30].

Marchesi [23] proposed a set of metrics to measure use case
diagram complexity. He stated that the number of use cases
(NCU), the number of actors (Na) and the number of include
and extend relationships are good indicators of system com-
plexity.

In [30] a set of metrics for use cases diagrams are defined to
obtain an indicator of modifiability. The basic idea behind the
defined metrics is that if a use case needs to be changed, other
use cases will probably also need to be changed: i.e. those that
have a relationship with the originally changed use case. In
short, include and extend relationships and control and data
dependency relationships are considered. Intuition suggests
that the more relationships there are in the model, the more
difficult it will be to make any change.

The type of use case is another factor that has an influence on
the modifiability of use cases. In simple terms, if a use case has

2

http://www.upgrade-cepis.org/issues/2004/2/upgrade-vV-2.html
http://www.ati.es/novatica/infonovatica_eng.html

UML and Model Engineering

© Novática UPGRADE Vol. V, No. 2, April 2004 45

several goals (or types according to Saeki), it is more suscepti-
ble to change than if it only has one goal. In order to evaluate
modifiability, the defined metrics are NOD (Number of
Dependencies) and NUCT (Number of Use Case Types). What
the author achieved was to define an indicator (0 ≤ MODIFIA-
BILITY ≤ 1) that would show the degree of modifiability of a
use case model.

To our knowledge there is no evidence of any theoretical or
empirical validation of these two proposals. Neither is there
any automated support for the metrics calculation.

Metrics for UML Class Diagrams
The main purpose of this section is to present a summary

of the most important proposals for metrics1 currently applica-
ble to UML class diagrams at a conceptual level, with an anal-
ysis of their strengths and weaknesses. Most of the metric
proposals we consider (listed below, identified by their
author(s)) were not originally defined to measure UML class
diagrams, though they can be adapted for this purpose:
• Chidamber and Kemerer [12]. These metrics, also called CK

metrics, were defined at class level and their purpose is to
measure design complexity in relation to their impact on
external quality attributes such as maintainability, reusabili-
ty, etc. This proposal is one of the most widely known and
used. Only three of the six CK metrics are available for a
UML class diagram at conceptual level (see Table 1.)

• Li and Henry [20]. These metrics measure different internal
attributes such as coupling, complexity and size, and were

successfully used to predict maintenance effort. They were
defined at class level.

• Brito e Abreu and Carapuça [8]. They were defined to meas-
ure the use of OO design mechanisms such as inheritance,
information hiding, coupling and polymorphism and the
consequent relationship with software quality and develop-
ment productivity. They can be applied at class diagram
level.

• Lorenz and Kidd [22]. They were defined at class level to
measure the static characteristics of software design, such as
the use of inheritance, the number of responsibilities in a
class, etc.

• Briand et al. [5]. These metrics were defined at class level
and are counts of interactions between classes. Their pur-
pose is to measure coupling between classes.

• Marchesi [23]. The aim of these metrics is to measure
system complexity, the balance of responsibility between
packages and classes, and cohesion and coupling between
system entities.

• Harrison et al. [17]. They proposed the Number of Associa-
tions per Class metric as an inter-class coupling metric.

• Genero et al. [15] [16]. They defined a set of metrics for
structural complexity of UML class diagrams due to the use
of UML relationships, such as: associations, generaliza-
tions, dependencies and aggregations (see Table 2). The
authors suppose these metrics to be good indicators of UML
class diagram maintainability characteristics.

• Bansiya et al. [2] [3]. These metrics were defined at class
level for assessing design properties such as encapsulation,
coupling, cohesion, composition and inheritance.

Table 3 shows whether there are published studies relating to
the theoretical and empirical validation of the abovementioned

1. Given the huge number of metrics that can be applied to UML
class diagrams at a conceptual level it is impossible to list all of
them here, so we have included only a sample of them. Further
details regarding definition and validity can be found in the origi-
nal papers.

3

Metric name Definition

WMC The Weighted Methods per Class metric is defined as
follows:

Where c1, ..., cn is the complexity of the methods of a
class with methods M1, ...,Mn.

If all method complexities are considered as unity, WMC
= n, the number of methods.

DIT The Depth of Inheritance of a class is the DIT metric for
a class. In cases involving multiple inheritance, the DIT
will be the maximum length from the node to the root of

the tree.

NOC The Number of Children is the number of immediate
subclasses subordinated to a class in the class

hierarchy.

WMC Ci
i 1=

n

∑=

Table 1: CK Metrics [12].

Metric name Metric definition

Nassoc The total number of associations.

Nagg The total number of aggregation relationships within a
class diagram (each whole-part pair in an aggregation

relationship).

Ndep The total number of dependency relationships.

Ngen The total number of generalisation relationships within
a class diagram (each parent-child pair in a

generalisation relationship).

NaggH The total number of aggregation hierarchies (whole-
part structures) within a class diagram.

NgenH The total number of generalisation hierarchies within a
class diagram.

MaxDIT The maximum DIT (Depth of Inheritance Tree) value
obtained for each class of the class diagram. The DIT
value for a class within a generalisation hierarchy is the
longest path from the class to the root of the hierarchy.

MaxHAgg The maximum HAgg value obtained for each class of
the class diagram. The HAgg value for a class within
an aggregation hierarchy is the longest path from the

class to the leaves.

Table 2: Metrics for Measuring the Structural Complexity of
UML Class Diagrams.

http://www.upgrade-cepis.org/issues/2004/2/upgrade-vV-2.html
http://www.ati.es/novatica/infonovatica_eng.html

UML and Model Engineering

46 UPGRADE Vol. V, No. 2, April 2004 © Novática

proposals for metrics. The last column indicates if any auto-
matic calculation tool is included.

Metrics for UML Statechart Diagrams
Metrics for UML statechart diagrams are scant. Derr [13]

defined the number of states and the number of transitions as
metrics to measure the complexity of OMT (Object Modelling
Technique) statechart diagrams (although they can also be
applied to UML.)

Carbone and Santucci [11] have proposed two metrics:
totSta(c) (total number of states for a class), and totAction(c)
(total number of actions for a class). These and other metrics
are used for class diagrams, use case diagrams, etc. in order to
determine the total complexity of an OO system.

However neither Carbone and Santucci’s nor Derr’s propos-
als have gone beyond mere definition.

The work of Miranda et al. [25] is perhaps the most
complete. Based on the hypothesis that the size and structural
complexity of UML statechart diagrams may influence their
understandability (and therefore their maintainability), they
defined a set of metrics for the structural complexity and size
of UML statechart diagrams.

As size metrics they defined:
• NEntryA. The total number of entry actions, i.e. the actions

performed each time a state is entered
• NExitA. The total number of exit actions, i.e. the actions

performed each time a state is left.
• NA. The total number of activities (do/activity).
• NSS. The total number of states also considering the simple

states within the composites states
• NCS. The total number of composite states
• NE. The total number of events.
• NG. The total number of guard conditions.

As structural complexity metrics they defined:
• NT (Number of Transitions). Counts the total number of

transitions, considering common transitions (in which

source and target states are different), and final transitions,
self-transitions (in which source and target states are the
same) and internal transitions (transitions within a state
responding to an event but without leaving the state).

• CC (McCabe’s Cyclomatic Complexity) [24]2. Defined as
|NSS-NT|+2

The proposed metrics were theoretically validated following
the framework proposed by Briand et al., concluding that NA,
NSS, NCS, NE, NEntryA, NExitA and NG are size metrics,
and NT and CC are complexity metrics. The use of DISTANCE
framework [28] also ensures that metrics can be used as ratio
scale measurement instruments.

Their hypothesis was to some extent empirically corroborat-
ed by a controlled experiment and its replication. As a result of
all this experimental work, we can conclude that metrics NA,
NSS, NG and NT seem to be highly correlated with the under-
standability of UML statechart diagrams. Nevertheless, these
findings must be considered as preliminary.

Metrics for OCL Expressions
The only proposal of metrics for OCL expressions is the

one put forward by Reynoso et al. [29], who hypothesized that
OCL expression structural properties have an impact on the
cognitive complexity of modellers, due to the fact that when
developers try to understand an OCL expression (considered in
our study as a single mental abstraction: a chunk) they apply
cognitive techniques, such as ‘chunking’ and ‘tracing’. These
techniques are concurrently and synergistically applied in
problem solving and are part of the Cognitive Complexity
Model (CMM model) defined by Cant et al. [9] [10], which
gives a general cognitive theory of software complexity that

4

2. Although McCabe’s Cyclomatic Complexity was originally defi-
ned to calculate single module complexity and entire system com-
plexity, we have adapted it to measure the structural complexity
of UML statechart diagrams.

5

SOURCE

 VALIDATION

TOOLEMPIRICAL THEORETICAL

Experiments Case Studies Property-Based
Approaches

Measurement Theory
Based- Approaches

Chidamber and
Kemerer [12] YES YES YES YES YES

Li and Henry [20] YES YES

Brito e Abreu and
Carapuça [8] YES YES YES

Lorenz and Kidd [22] YES YES

Briand et al. [5] YES YES YES

Marchesi [23] YES YES

Harrison et al. [17] YES

Bansiya et al. [2] [3] YES YES

Genero et al. [15] [16] YES YES YES YES

Table 3: Summary of Proposals for UML Class Diagram Metrics.

http://www.upgrade-cepis.org/issues/2004/2/upgrade-vV-2.html
http://www.ati.es/novatica/infonovatica_eng.html

UML and Model Engineering

© Novática UPGRADE Vol. V, No. 2, April 2004 47

elaborates on the impact of structure on understandability.
‘Chunking’ involves the recognition of a set of declaration and
extraction information, which is remembered as a chunk,
whereas ‘tracing’ involves scanning, either forward or back-
wards, in order to identify relevant ‘chunks’. ‘Tracing’ has
been observed as a fundamental activity in software compre-
hension. For this reason, they have defined metrics related to
these cognitive techniques, grouping them into three major
groups of OCL concepts (see Table 4.)

Although OCL expressions can be added to any UML
diagram, [29] have begun by defining metrics for OCL expres-
sions that can be used in a UML class diagram.

Examples of metrics related to ‘tracing’ are (among others):
• Number of Navigated Relationships (NNR). This metric

counts the total number of relationships navigated in an
expression. If a relationship is navigated twice, for example
using different properties of a class or interface, this rela-
tionship is counted only once. Whenever an association
class is navigated we will consider the association to which
the association class is attached.

• Number of Attributes referred through Navigations (NAN).
This metric counts the total number of attributes referred
through navigations in an expression.

• Number of Navigated Classes (NNC). This metric counts
the total number of classes, association classes or interfaces
to which an expression navigates. If a class contains a reflex-
ive relation and an expression navigates it, the class will be
considered only once in the metric. Also, as a class may be
reachable from a starting class/interface by different forms
of navigations (i.e. following different relationships), we
must consider this situation as a special case: if a class is
used in two (or more) different navigations the class is
counted only once.

These metrics were also theoretically validated using the
framework of Briand et al. [6] [7]. For example, NNR, NNC
and NAN metrics are validated as interaction-based coupling
metrics. Intuition has it that metrics related to tracing could
have more influence on the understandability and modifiability
of OCL expressions. But this needs to be demonstrated by
empirical studies, and, as yet, there is no such no empirical
validation. Nevertheless, the authors are planning a controlled
experiment aimed at validating some of the proposed metrics as
indicators of the understandability and modifiability of OCL
expressions.

Conclusions
The main purpose of this paper is to provide a survey of

the most important work available on metrics for quality
attributes of UML diagrams and OCL expressions. It aims to
provide practitioners with an overall view of what has been
done in the field and what metrics are available to help them to
take decisions in the early phases of OO development. This
work should also help researchers obtain a more comprehen-
sive view of the direction that work in UML model measure-
ment is taking. Further details of some of the proposals present-
ed in this paper can be found either in the bibliographical
references where the metrics were originally proposed, or in
[15].

As this study shows, UML class diagrams have been the
subject of the most extensive research from the measurement
point of view. Metrics for UML use case diagrams, UML state-
chart diagrams and OCL expressions have been proposed and,
to a lesser extent, validated. Other UML models covering
dynamic aspects of OO systems, such as sequence diagrams,
activity diagrams, etc., have been largely ignored.

Although the number of metrics that have been proposed for
UML diagrams at conceptual level is low compared to the large
number defined for code or advanced design, we believe a shift
in effort is required, from defining new metrics to investigating
their properties and applications in replicated studies. We need
to have a better understanding of what metrics are really
capturing, whether they are really different, and whether they
are useful indicators of external quality attributes such as main-
tainability, productivity, etc. The need for new measurements
will then arise from, and be driven by, the results of such
studies.

In this area designers also ask for desirable values for each
measure. However, we must be aware that the hard part is to
associate the qualifications ‘good’ and ‘bad’ to numeric ranges.
This makes metrics all the more useful for OO system design-
ers, to help them make better decisions in their design tasks,
which is ultimately the most important goal of any worthwhile
measurement proposal.

As a final remark we would conclude by saying that clearly
the field of quality metrics for UML models needs to mature.
We believe that further empirical validation is necessary, in
particular by applying metrics to models obtained from real
projects, in order to build up a solid body of knowledge about
the usefulness of metrics in practical situations.

6

Cognitive technique Common characteristics of each group of OCL concepts Samples of OCL concepts related to each group

Tracing OCL concepts which allow an expression to use properties
belonging to other classes or interfaces, different from the

type used in the contextual instance

Navigation and collection operation, Messaging,
parameter whose types are Classifiers defined in the

class diagram, etc.

Chunking Group 1 OCL facilities related to the language itself. Variables defined by let expressions, If conditional
expressions, predefined iterator variables, literals, etc.

Chunking Group 2 OCL concepts related to the contextual instance and some of
its properties.

Reference to attributes or operations of the contextual
instance, values postfixed with @pre, variables defined

through <<definition>> constraints, etc..

Table 4: OCL Concepts Grouped According to Their Cognitive Techniques.

http://www.upgrade-cepis.org/issues/2004/2/upgrade-vV-2.html
http://www.ati.es/novatica/infonovatica_eng.html

UML and Model Engineering

48 UPGRADE Vol. V, No. 2, April 2004 © Novática

References
[1]

C. Atkinson and T. Kühne. Model-Driven Development: A Meta-
modeling Foundation. IEEE Software, 20(5), pp. 36– 41, 2003.

[2]
J. Bansiya and C. Davis C. A Hierarchical Model for Object-
Oriented Design Quality Assessment. IEEE Transactions on Soft-
ware Engineering, 28(1), pp. 4–17, 2002.

[3]
J. Bansiya, L. Etzkorn, C. Davis and W. Li. A Class Cohesion
Metric For Object-Oriented Designs, The Journal of Object-Ori-
ented Programming, 11(8), pp. 47–52, 1999.

[4]
B. Bernárdez, A. Durán, and M. Genero. An empirical review of
use cases metrics for requirements verification. Proceedings of
the Software Measurement European Forum (SMEF’04), 2004.

[5]
L. Briand, W. Devanbu and W. Melo. An investigation into
coupling measures for C++, 19th International Conference on
Software Engineering (ICSE 97), Boston, USA, pp. 412–421,
1997.

[6]
L. Briand, S. Morasca and V. Basili. Property-Based Software
Engineering Measurement. IEEE Transactions on Software Engi-
neering, 22(1), pp. 68–86, 1996.

[7]
L. Briand, S. Morasca and V. Basili. Defining and validating
measures for object-based high level design. IEEE Transactions
on Software Engineering, 25(5), pp. 722–743, 1999.

[8]
F. Brito e Abreu and R. Carapuça. Object-Oriented Software
Engineering: Measuring and controlling the development proc-
ess, Proceedings of the 4th Int. Conference on Software Quality,
McLean, VA, USA, pp. 3–5, 1994.

[9]
S. Cant, B. Henderson-Sellers and R. Jeffery. Application of
Cognitive Complexity Metrics to Object-Oriented Programs.
Journal of Object-Oriented Programming, 7(4), pp. 52–63, 1994.

[10]
S. Cant, R. Jeffery and B. Henderson-Seller. A Conceptual Model
of Cognitive Complexity of Elements of the Programming Proc-
ess. Information and Software Technology, 7, pp. 351–362, 1992.

[11]
M. Carbone and G. Santucci. Fast&&Serious: a UML based
metric for effort estimation. 6th International ECOOP Workshop
on Quantitative Approaches in Object-Oriented Software Engi-
neering (QAOOSE’2002), pp. 35–44, 2002.

[12]
S. Chidamber. and C. Kemerer. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineering,
20(6), pp. 476–493, 1994.

[13]
K. Derr. Applying OMT. SIGS Books, Prentice Hall. New York,
1995.

[14]
P. Feldt. Requirements metrics based on use cases. Master’s
thesis, Department of Communication Systems, Lund Institute of
Technology, Lund University, Box 118, S-221 00 Lund, Sweden,
2000.

[15]
M. Genero, M. Piattini and C. Calero (Eds.) Metrics For Software
Conceptual Models. Imperial College Press, UK, 2004.

[16]
M. Genero, M. Piattini and C. Early Measures for UML Class
Diagrams. L’Objet, 6(4), Hermes Science Publications, pp.
489–515, 2000.

[17]
R. Harrison, S. Counsell and R. Nithi. Coupling Metrics for
Object-Oriented Design. 5th International Software Metrics
Symposium Metrics, pp. 150–156, 1998.

[18]
B. Henderson-Sellers, D. Zowghi, T. Klemola and S. Parasuram.
Sizing use cases: How to create a standard metrical approach. 8th
Object–Oriented Information Systems, Lecture Notes in Compu-
ter Science, 2425, Springer–Verlag, pp. 409–421, 2002.

[19]
J. Krogstie, O. Lindland and G. Sindre. Towards a Deeper Under-
standing of Quality in Requirements Engineering. 7th Interna-
tional Conference on Advanced Information Systems Engineer-
ing (CAISE), Jyvaskyla, Finland, June, 82-95, 1995.

[20]
W. Li and S. Henry. Object-Oriented metrics that predict main-
tainability. Journal of Systems and Software, 23(2), pp. 111–122,
1993.

[21]
O. Lindland, G. Sindre and A. Solvberg. Understanding Quality
in Conceptual Modelling. IEEE Software, 11(2), pp. 42–49,
1994.

[22]
M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A
Practical Guide. Prentice Hall, Englewood Cliffs, New Jersey,
1994.

[23]
M. Marchesi. OOA Metrics for the Unified Modeling Language.
2nd Euromicro Conference on Software Maintenance and Reen-
gineering, pp. 67–73, 1998.

[24]
McCabe T. A Complexity Measure. IEEE Transactions on Soft-
ware Engineering. 2(4), pp. 308–320, 1976.

[25]
D. Miranda, M. Genero and M. Piattini. Empirical validation of
metrics for UML statechart diagrams. Fifth International Confer-
ence on Enterprise Information Systems (ICEIS 03), 1, pp. 87-95,
2003.

[26]
L. Moody, G. Shanks and P. Darke. Improving the Quality of
Entity Relationship Models – Experience in Research and Prac-
tice. 17th International Conference on Conceptual Modelling
(ER ’98), Singapore, pp. 255–276, 1998.

[27]
Object Management Group. MDA–The OMG Model Driven
Architecture. Available at <http://www.omg.org./mda/>, August
1st, 2002.

[28]
G. Poels and G. Dedene. DISTANCE: A Framework for Software
Measure Construction. Research Report DTEW9937, Dept. Ap-
plied Economics, Katholieke Universiteit Leuven, Belgium, p.
46, 1999.

[29]
L. Reynoso, M. Genero and M. Piattini. Measuring OCL Expres-
sions: An Approach Based on Cognitive Techniques. Chapter 5 in
“Metrics for Software Conceptual Models” (Eds. Genero M.,
Piattini M. and Calero C.). Imperial College Press, UK. 2004.

[30]
M. Saeki. Embedding Metrics into Information System Develop-
ment Methods: An Application of Method Engineering Tech-
nique. Lecture Notes in Computer Science, 2681, pp. 374–389,
2003.

[31]
R. Schuette and T. Rotthowe. The Guidelines of Modelling – An
Approach to Enhance the Quality in Information Models. 17th In-
ternational Conference on Conceptual Modelling (ER ’98), Sin-
gapore, pp. 240–254, 1998.

http://www.upgrade-cepis.org/issues/2004/2/upgrade-vV-2.html
http://www.ati.es/novatica/infonovatica_eng.html

