
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2006; 36:283–304
Published online 22 November 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.697

Applying a framework for the
improvement of software
process maturity

Gerardo Canfora1, Félix Garcı́a2,∗,†, Mario Piattini2, Francisco Ruiz2 and
C. A. Visaggio1

1RCOST—Research Centre on Software Technology, Department of Engineering, University of the Sannio,
Palazzo ex Poste, viale Traiano, 82100 Benevento, Italy
2Alarcos Research Group, University of Castilla-La Mancha, Paseo de la Universidad, 4,
13071 Ciudad Real, Spain

SUMMARY

This article presents the results and lessons learned in the application of the Framework for the Modelling
and Measurement of Software Processes (FMESP) in a software company dedicated to the development
and maintenance of software for information systems. The aim of FMESP is to provide companies with a
conceptual and technological framework for the management of their process models and measurement
models in an integrated way. Modelling and measurement are two key factors to promote continuous
process improvement. As a result, important benefits were obtained. The company improved the maturity
of its processes which allowed it to obtain the ISO 9000 certification. From a research point of view,
Action-Research was successfully applied and as a result the framework was improved and important
feedback was obtained, bringing to light new important issues which will be tacked in future
work. Copyright c© 2005 John Wiley & Sons, Ltd.

KEY WORDS: software process modelling; measurement; improvement

INTRODUCTION

Software process improvement has received a great deal of attention in the last few years. As a matter
of fact, continuous software process improvement is a fundamental goal for organizations which
want to reach high levels of maturity. To support software process assessment and improvement,
numerous initiatives have proposed reference models. Among these initiatives, the most widespread

∗Correspondence to: Félix Garcı́a, Alarcos Research Group, University of Castilla-La Mancha, Paseo de la Universidad, 4,
13071 Ciudad Real, Spain.
†E-mail: felix.garcia@uclm.es

Contract/grant sponsor: MAS; contract/grant number: TIC 2003-02737-C02-02
Contract/grant sponsor: MECENAS

Copyright c© 2005 John Wiley & Sons, Ltd.
Received 4 August 2004

Revised 7 April 2005
Accepted 26 April 2005



284 G. CANFORA ET AL.

are Capability Maturity Model for Software (SW-CMM) [1], Capability Maturity Model Integration
(CMMI) [2] and Software Process Improvement and Capability Determination (SPICE), which has
been standardized as ISO 15504 [3].

Nowadays, it is common for customers to demand companies to be certified according to quality
standards such as ISO 9000:2000 [4] or that they have high maturity levels in their processes
in accordance with assessment models such as CMMI or ISO 15504. For this reason, software
organizations are increasingly focusing on the management of their processes.

Management of software processes requires that four key responsibilities be assumed [5]: definition,
measurement, control and improvement of processes. It is very important to consider the integrated
management of two key aspects.

• Process modelling. Process models constitute the starting point for analysing, enacting
and improving processes. Bearing in mind that there is a huge diversity among existing
process modelling proposals, a reference process metamodel should be helpful. The Object
Management Group has recently proposed the Software Process Engineering Metamodel
Specification (SPEM) metamodel [6], which defines a reference language for process
modelling.

• Process evaluation. The first step in software processes improvement is its evaluation. Due to the
vast diversity of elements which could be measured in the context of software process evaluation
(process models, projects and products), the establishment of an homogeneous terminology for
the definition, calculation and exploitation of metrics is needed for the integrated and effective
management of the measurement process.

In this paper we present the results and lessons learned from the application of the Framework for
the Modelling and Evaluation of Software Processes (FMESP) in a software company. The FMESP
framework includes the conceptual and technological elements which are needed to facilitate the
management of the definition and evaluation of software processes.

The rest of the paper proceeds as follows. We first describe the characteristics of the framework
FMESP. Then we present a general overview of the software company in which FMESP was applied.
This is followed by a detailed description of the application of FMESP in the software company.
Next we highlight the benefits for the company and the lessons learned. The final section outlines
conclusions and further work.

FMESP

FMESP was developed in order to provide conceptual and technological support for the modelling and
measurement of software processes in order to promote their improvement.

The research method used for the definition, refinement and application of FMESP was Action-
Research (A-R). A-R is a collaborative research method which aims to merge theory and practice.
A-R is focused on building new knowledge through the identification of solutions to real problems [7].
This is achieved by the intervention of researchers in the real world of practitioners and the results of
this experience must be equally beneficial to both groups (see, for example, [8]).

The application of A-R was based on continuous feedback between the researchers and the company.
As a result, a solution was found for the improvement of software process management in the company.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



A FRAMEWORK TO IMPROVE SOFTWARE PROCESS MATURITY 285

This solution consisted of managing, in an integrated way, the modelling and measurement of software
processes, taking into account that it is not possible to carry out the measurement of software processes
if a suitable process definition has not been previously established. From a measurement point of view,
the following entities were identified as candidates for measurement: process models, projects and
products. The measurement of projects and products might be easily supported given the vast diversity
of proposals which exist in the literature, but we noted the non-existence of proposals related to the
measurement of process models, and for this reason a set of metrics was defined and empirically
validated [9].

Consequently the FMESP framework was developed and it is basically composed of two elements,
namely a Conceptual Framework and a Software Engineering Environment (SEE).

FMESP conceptual framework

The FMESP Conceptual Framework, largely described in [10] provides the necessary support for the
representation and management of the knowledge related to software processes from the modelling and
measurement perspectives, by integrating the two. Figure 1 illustrates the structure and main elements
of the conceptual framework.

(a) A conceptual metadata architecture of four abstraction layers. This architecture realizes the
integration of modelling and measurement by means of the representation of the elements in
different abstraction layers.

(b) A collection of ontologies.

• Descriptive software process modelling ontology. This ontology was defined to clarify the
domain of the descriptive modelling of software processes and the SPEM specification [6]
was used as a reference.

• Software measurement ontology [11]. With this ontology the software measurement
domain was clarified by identifying its existing concepts and relationships. As a result,
a consistent measurement terminology was provided which enabled us to consequently
define a suitable measurement metamodel.

(c) A collection of metamodels. The conceptual architecture includes the following metamodels.

• A process modelling language (PML). The PML considered in the framework was SPEM.
• A software measurement metamodel. We defined a measurement metamodel based on the

software measurement ontology.
• Metamodels for the definition of the software-process related entities. These metamodels,

called ‘domain metamodels’, represent the kind of entities which are candidates for
measurement in the context of software process evaluation.

FMESP SEE

The FMESP SEE comprises two integrated tools which provide the technological support for the
conceptual framework: METAMOD for the definition and management of the metadata conceptual
architecture; and GenMETRIC to support the development of measurement models. In Figure 2, a
general overview of the SEE is shown.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



286 G. CANFORA ET AL.

Figure 1. FMESP Conceptual Elements.

(a) A metadata repository. The repository is the key component of the SEE and it provides the
tools for metadata management, including the derivation of concrete models. The models and
metamodels are stored in the repository as XMI documents [12].

(b) Software components for the management and storage of metadata.

• MOFImplementation manages the representation of metamodels and models in
accordance with the MOF [13] standard.

• RepManager [14] deals with the XMI representation and the storage of metadata.

(c) Software tools.

• METAMOD [15] supports the definition, query and storage of the models and metamodels
of the repository by using the services of the components MOFImplementation and
RepManager.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



A FRAMEWORK TO IMPROVE SOFTWARE PROCESS MATURITY 287

Figure 2. FMESP SEE.

• GenMETRIC [16] supports the measurement of software entities. GenMETRIC permits
the measurement of any software entity, which must be stored in the repository, in
accordance with the domain metamodel’s definition. Furthermore, the definition of any
software metric is also possible.

With the proposed framework, the management of the modelling and measurement of software
processes is supported by including a metadata repository in which a knowledge base concerning the
process is established for its evaluation and improvement.

DESCRIPTION OF THE COMPANY

FMESP was applied to a Spanish company, Cronos Iberica S.A., whose main activity is the
development and maintenance of software for information systems. A summary of its characteristics is
provided in Table I.

FMESP was applied in order to provide the necessary support to satisfy the quality goals of Cronos
Iberica, especially with regards to process improvement.

FMESP: CASE STUDY

In this section we describe how FMESP was applied to Cronos Iberica in order to improve its software.
The steps followed in the application are represented in Figure 3.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



288 G. CANFORA ET AL.

Table I. General characteristics of the company ‘Cronos Iberica’.

Creation date May 1989

Number of employees ∼100

Main areas of
professional activity

• Customized development of software applications for public administration and
the private sector

• System plans and strategic consultancy
• Database development

Quality policy • To apply the necessary means to assure that products and services satisfy the
requirements and expectations of customers

• To develop information systems following all their lifecycle phases, in
accordance with established schedules and costs

• To promote continuous improvement

Figure 3. FMESP application in Cronos Iberica.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



A FRAMEWORK TO IMPROVE SOFTWARE PROCESS MATURITY 289

1. Process representation. First of all, the SPEM metamodel was used for the representation of
the software processes of Cronos Iberica in order to facilitate its understanding, evaluation and
automated support.

2. Definition of measurement models. After the definition of the software processes of Cronos, the
relevant entities related to these processes and candidates for measurement (E/R diagrams and
relational schemes) were identified. Measurement models of these entities were defined to satisfy
the information needs of the company.

3. Project evaluation. Finally, two projects carried out in Cronos (in accordance with its software
processes), were evaluated. This evaluation consisted of the application and calculation of the
metrics included in the measurement models; these models were defined relying on the relevant
work products (E-R model and relational database scheme) produced by these projects.

A more detailed description of the steps carried out in the application of FMESP is provided in the
following subsections.

Process representation with SPEM

The first step in the FMESP application was the representation using the SPEM metamodel of
the software processes of the company. Cronos Iberica has a defined software process for the
development of its professional activities. The software process of Cronos is based on the Spanish
public methodology METRICA v3.0 [17], but it is particularly adapted to the development of database
applications. The main process is ‘Development’, in which the technical processes related to product
development, from requirement management to the installation and delivery to the customer, are
included. Apart from the main development process, two supporting processes were defined: ‘project
planning’ and ‘configuration management’.

The SPEM definition of the processes was performed by examining the existing textual
documentation and after some meetings with the project managers of the company in which some
doubts related to the documentation (deriving from existing inconsistencies) were resolved and new
knowledge which was not included in the documentation (but was considered in the execution of
the projects) was obtained. To provide a graphical representation of the processes, the UML class,
state chart and activity diagrams stereotyped with SPEM were used. In Figure 4, the activity diagram
developed to represent the activity ‘Analysis and Design’ (belonging to the ‘Development’ process)
is shown and in Figure 5 the diagram class which defines the structure of the work product ‘analysis
document’ is represented.

Measurement model definition

After the SPEM representation of Cronos’s software processes, the software measurement models were
defined. Two work products were chosen as the most relevant to be measured: conceptual and logic data
models, which were represented by using entity/relationship diagrams and relational database schemes.
These artefacts were chosen because the main professional activity of Cronos is the development of
database applications.

The metric definition was performed by analysing the metamodels which represent the process
entities (domain metamodels). This analysis is based on the definition of the direct metrics based on the

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



290 G. CANFORA ET AL.

Figure 4. SPEM representation of the activity ‘analysis and design’.

classes (constructors) and relationships included in the metamodel. There were no explicit metamodels
in Cronos to represent their conceptual and logical data models, e.g. the E/R metamodel and the
relational metamodel. These metamodels were defined and incorporated into the XMI repository by
using the METAMOD tool. In Figure 6 the UML graphical representation (MOF compliant) which
represents the E/R metamodel elements and their relationships is shown.

The next step was the definition of the measurement models: we established which ‘information
needs’ had to be satisfied by the measurement of the relevant work products. One significant
requirement of the company was to know how easy it would be to maintain these artifacts, given
the need to maintain the database applications, especially those developed for Spanish Public
Administrations (who are very important customers of the company). These kinds of applications
are very likely to evolve due to changes in regulations, new laws, etc. To satisfy information needs,
two proposals of metrics to evaluate the maintainability of conceptual and logical data models were
considered [18,19] and the metrics were included in the measurement models.

The model definition was performed according to the measurement metamodel and GenMETRIC
was used to perform the model definition. In Appendix A, the measurement model defined for the

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



A FRAMEWORK TO IMPROVE SOFTWARE PROCESS MATURITY 291

Figure 5. SPEM representation of the work product structure ‘analysis document’.

E/R diagrams is shown. The metrics used for the measurement models of E/R diagrams are those
which were proposed by Genero et al. [18]. According to the FMESP measurement metamodel, metric
definition is performed in the following order depending on the kind of metrics (see Appendix A):

• Direct metrics were defined on the domain metamodel which represents the software entity.
For example, the direct metric ‘number of entities’ is defined on the E/R metamodel constructor
‘entity’ by applying the measurement method ‘count’.

• Indirect metrics are calculated by applying a measurement function on other direct/indirect
metrics. For example, the number of relationships in an E/R diagram (NNR) is calculated
on the metrics NBinaryR (number of binary relationships) and NN-AryR (number of n-ary
relationships) by applying the function: NNR = NbinaryR + NN-AryR.

• Indicators were obtained by applying an analysis model on other direct and/or indirect
metrics. For example, the indicator Entity Maintenance Index (IME) was defined as the
proportion of entities and attributes of the diagram and some decision criteria were defined.
Before the application of the FMESP framework, Cronos had defined a set of project indicators.
The experience of the company in the development and maintenance of database applications and
in the definition of indicators was required to establish the decision criteria associated with the
indicators defined in the measurement models for E/R and relational artefacts. For example, for
the IME indicator the following decision criteria were used by the company experts: If IME > 15
then IME = ‘very high’; ‘If 10 < IME ≤ 15 then EMI = ‘high’ and so on.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



292 G. CANFORA ET AL.

Figure 6. E/R matamodel defined.

Using the measurement metamodel of FMESP, Cronos obtained a consistent representative
metamodel together with the following: the existing, but not entirely documented, indicators, the
satisfied information needs of the company, the metrics (direct and indirect) they referred to, the
associated decision criteria, etc. Additionally, Cronos performed the measurement of these indicators
which were based only on project information, but product measurements were not carried out.
The same steps were followed in order to define the measurement model for the relational schemes.

After the definition of the measurement models, the evaluation of the project took place.
This evaluation consisted of calculating the metrics (direct, indirect, indicators) defined in the
measurement model on the E/R diagrams and relational schemes obtained in the projects considered in
the case study.

Project evaluation

After having defined the domain metamodels of the E/R diagrams and relational schemes and the
measurement models of these entity types, two small projects were evaluated (see Table II).

With regard to the application of FMESP, the (conceptual and logical) data models obtained as a
result of these projects were evaluated. The measurement was based on the calculation of the metrics

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



A FRAMEWORK TO IMPROVE SOFTWARE PROCESS MATURITY 293

Table II. Projects evaluated.

Expenses Management System Complaint Files Management System

Client Spanish Public Administration∗
Start date 14 October 2002 31 March 2003
End date 30 December 2002 3 July 2003
General
description

Expenses management (authorizations, costs
and expenses) of the administration
personnel

Management and tracking of European
Commission files relative to infractions

Development
environment

Oracle/Developer 8 Oracle/Developer 8

Development
type

Adaptation and functional enhancement of a former system developed with ‘Clipper’ and ‘Dbase’

Subsystems Trips
Table maintenance
Administration
Report

Complaints
Table maintenance
Report
Statistics

∗Name not provided to preserve the confidentiality.

with the aim of satisfying the information needs in accordance with the measurement models defined.
The tool GenMETRIC was used for the automatic calculation of the metrics.

With regard to the evaluation of the E/R diagrams, the E/R diagrams obtained as instances of
the defined E/R metamodel were represented. Figure 7 illustrates the E/R diagram obtained in the
‘Expenses Management System’ (Oracle Designer Notation).

The definition of the E/R model as an instance of the ‘E/R metamodel’ was performed considering
the graphical representation of the model (Figure 7) and the entities list, which is another work product
of the Cronos software process. The Metamod tool was used to carry out such a definition (Figure 8).
At the time of the FMESP application, a tool did not exist for the definition of E/R diagrams with XMI
exportation capability, and for this reason we had to define the E/R metamodel.

Table III gives the results for the measurements carried out in accordance with the defined E/R
measurement model (see Appendix A). This measurement model belongs to the E/R diagram of the
‘Expenses Management System’ project and was supported by GenMETRIC.

The measurement metamodel (‘Measurement Action’ package) was used to represent, in a consistent
way, the results of the measurement. The measurement of the relational schemes of the projects
evaluated was performed in the same way.

The same process was followed in order to measure the ‘relational databases’ by defining the
relational metamodel, the measurement model (which was based on the metrics proposed by Calero
et al. [19]) and the evaluation of the relational schemes obtained as a result of the projects considered.

By using the FMESP framework for performing the measurement process, the results are not
registered in an isolated way, but are related with all the necessary metadata (attributes, metrics,
information needs, tools, etc.). This constitutes a suitable and necessary context for performing the
measurement process in an effective way.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



294 G. CANFORA ET AL.

Figure 7. E/R diagram of the project ‘Expenses Management System’ represented using the Oracle Designer.

CONTRIBUTIONS AND LESSONS LEARNED

The lessons learned as a result of the utilization of FMESP can be tackled from two different points of
view: company and researchers.

From the company perspective, the main contributions provided can be listed as follows.

Software process modelling

• The SPEM process representation provided Cronos with an efficient and homogeneous definition
of its own processes, relying on a consistent and simple terminology. In addition, the existing
textual documentation was complemented with a graphical view which facilitates the correct
understanding of the processes. Adaptation and modification of the defined processes and
improvement opportunities are thus eased.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



A FRAMEWORK TO IMPROVE SOFTWARE PROCESS MATURITY 295

Figure 8. Definition with METAMOD of the E/R diagram obtained in the project ‘Expenses Management System’.

• The use of SPEM as a PML required a systematic definition of the processes which was not
provided by a pure textual representation. As a result, some faults and inconsistencies were
detected and removed and also additional process information (some activities, work products,
roles and dependences among them) was explicitly represented. This additional information was
not registered but the people responsible took it into account when carrying out the processes.
This can facilitate the awareness and consciousness of the process.

• Cronos’s software processes were represented in an automated way which allowed the company
to develop tools for the management of these processes. Previously, any process change was
included in an ‘ad hoc’ manner by modifying textual documents. With the assistance of proper
software tools these tasks could be enormously facilitated and improved.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



296 G. CANFORA ET AL.

Table III. Measurement results of the E/R diagram obtained in the
‘Expenses Management System’ project.

Measurement Attribute Metric Measure

1 Size NE 23
2 Size NAS 82
3 Size NCA 0
4 Size NDA 0
5 Complexity NM:NR 0
6 Complexity N1:NR 17
7 Complexity NbinaryR 17
8 Complexity NN-AryR 0
9 Complexity NIS AR 6

10 Complexity NrefR 0
11 Size NA 82
12 Complexity NNR 17
13 Size IME 3,56 (‘Low’)
14 Complexity IC 0,74 (‘Low’)
15 Complexity IH 0,26 (‘Medium’)
16 Complexity INM 0 (‘Low’)
17 Complexity CI 0 (‘Low’)

• The current representation facilitates the evolution of processes and it will be very advantageous
for the company, especially at this particular moment when it is adapting its software processes in
order to support (in its database development methodology) three-tier client–server architectures.

Measurement

• A consistent and unique terminology is provided in order to manage and carry out the
measurement process in an effective way.

• The former measurement system of Cronos was based only on the calculation of some project
indicators. Now, it has been complemented and improved with a more complete measurement
template. The current measurement process in Cronos has been enriched with information and
tools for computing and interpreting the indicators.

• The measurement metamodel applied is based on ISO/IEC 15939 [20], which provides Cronos
with a measurement process compatible with the most representative measurement standard.
Standards provide organizations with agreed and well-recognized practices and technologies,
which assist them to interoperate and to work using engineering methods, reinforcing the
software engineering as an ‘engineering’ discipline, instead of a ‘craft’ [21]. With a successful
measurement process, the measurement is embedded in the organization and performance
improves because people are making fact-based decisions [22].

• Two measurement models (E/R diagrams and relational databases) have been provided and as a
result Cronos currently has two consistent models to measure the most relevant work products

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



A FRAMEWORK TO IMPROVE SOFTWARE PROCESS MATURITY 297

obtained in their processes in an integrated and systematic way. This is very important as it
allows Cronos to guarantee the quality of its software products according to its policy.

Technological support

• A SEE composed of two software tools has been provided to support the process definition and
measurement.

• The SEE can be easily extended with new tools to automatically manage aspects related to
process improvement.

• This SEE constitutes a starting point for the development of other tools in order to completely
install the technological framework of FMESP in an industrial environment.

As a result of the quality policy of the company and the contributions of FMESP, the company has
improved the maturity of its processes. This improvement has been shown in the following aspects.

• The company has obtained the ISO 9001:2000 quality certification. Taking into account the
existing correlation between maturity models as CMM or CMMI and the ISO 9000:2000
standard [23,24], Cronos could be considered to reach a maturity level between levels 2 and
3 of CMMI.

• In addition, the application of the FMESP framework provides the company with the necessary
support to fulfil the requirements of higher maturity levels, namely:

— process definition support: the FMESP framework provides the means necessary to satisfy
the general goal of a CMMI level 3: ‘Institutionalize a defined process’.

— process measurement support: the FMESP framework supports the measurement of
projects, products and processes by providing a suitable measurement metamodel (CMMI,
ISO 15939 and PSM compliant [22]) and a flexible method to measure these kinds of
artifacts at metamodel scope; it provides companies with the initial support necessary to
sustain the measurement process, thus enabling satisfaction of the CMMI measurement-
related key process areas (levels 3, 4 and 5) [25].

From the research perspective, this experience has allowed us to validate and refine the proposal by
successfully applying the A-R method. It has allowed us to confirm the importance of the following
aspects.

• Rigorous definition of the software processes as a prerequisite for their evaluation and
improvement.

• Effective and integrated representation of the measurement process related information by means
of a suitable metamodel based on a consistent terminology, given the diversity of process-related
entities that are candidates for measurement.

• Application of the measurement process not in an isolated way, but integrated in the context of
evaluation and improvement of software processes by identifying the relevant entities which are
necessary to measure and registering the results obtained in a homogeneous and consistent way.

• Suitable software tools to automate and manage the software processes in order to promote
their improvement. The FMESP application has allowed the researchers to refine the developed
software prototypes.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



298 G. CANFORA ET AL.

CONCLUSIONS AND FUTURE WORK

In this paper we have presented an experience in which the framework FMESP was applied in
a software company in order to improve their software processes. This framework integrates the
modelling and measurement of software processes by providing the conceptual and technological
support necessary to successfully manage these two key responsibilities of the process management.
As a result of the application of the framework, important benefits were obtained.

From an industrial point of view, the support for the consistent representation of software processes
was provided and Cronos’s processes were represented with SPEM. One of the most relevant benefits of
FMESP is to provide a consistent and effective way to perform the measurement process. The metrics
(direct and indirect) applied in the case study were previously validated empirically through families of
experiments in which students and professionals were involved, as described in more detail in [19,26],
and following the method proposed in [27]. Therefore, as a result, the company applied in the real
environment a set of metrics the utility of which was previously validated. Additionally, application of
the measurement models for E/R and relational schemes in Cronos provided useful feedback in order
to refine and improve the metrics and indicators defined.

The framework has also enabled Cronos to obtain the ISO 9000 quality certification. In addition, it
provides Cronos with the needed support to reach higher maturity levels according to models such as
CMMI.

From the research perspective this experience has contributed to validating the FMESP proposal,
by providing important evidence of its practical usefulness. Furthermore, some important ideas and
improvements for the future have been discovered.

• A fundamental issue to consider will be the support necessary to refine the base and derived
measures defined for maintainability of the E/R and relational schemes. This refinement will be
based on the results of applying the measures in maintenance projects of database applications
in Cronos. Besides, refinement of the values of the decision criteria associated to the defined
indicators and the proposal of new indicators will be tackled in order to facilitate decision
making.

• Development of new measurement models for object-oriented work products (based on the
metrics proposed by Manso et al. [28]) and for data warehouse models (metrics proposed
by Serrano et al. [29]) to complete the integration of the measurement of the work products,
especially given the current adaptation of Cronos’s processes to object-oriented technologies.

• Carrying out the required actions to continue to improve the process maturity level of Cronos.

Other relevant future works include the following.

• Measurement metamodel: it would be useful to develop a graphical notation for the
representation of measurement models according to the measurement metamodel of FMESP.
As a result, a software tool which extends the functionality of GenMETRIC should be
incorporated into the SEE.

• SEE: the tools developed must be refined in order to develop a more robust environment which
can be used in an industrial setting.

• Apply the FMESP framework in more cases in order to confirm its advantages.
• Software process improvement based on knowledge management: one important future area of

research is knowledge management application to promote software process improvement [28].

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



A FRAMEWORK TO IMPROVE SOFTWARE PROCESS MATURITY 299

The FMESP framework is suitable for this application because it provides an open repository
in which the metadata relating to the definition and measurement of software processes are
included. This information can be used by a system of intelligent agents in order to derive
improvement actions. We are currently defining a prototype for this [30].

In summary, if an organization wants to effectively manage its processes, it needs to define
its processes in an understandable and homogeneous way and to collect and analyse the different
metrics necessary in an integrated way. Otherwise the company would have tools and techniques to
evaluate the aspects of the process separately. FMESP provides the necessary tools for integration and
support. The suitability of this framework is reinforced by the current trend for ‘model-based process
engineering’ [31] in order to manage the special complexity of software processes.

APPENDIX A. MEASUREMENT MODEL FOR E/R DIAGRAMS

Table AI. E/R measurement model. Instance of the package ‘Characterization and Objectives’.

Measurement
metamodel
elements
(MOF classes)

E/R measurement model
(instances M2)

Measurement
metamodel relations
(MOF associations)

E/R measurement model
(links M2)

Attribute Size Complexity Includes
(subentity)

Entity class —

Entity class E/R diagram Defined for Quality model ISO 9126
Entity class E/R diagram

Measurable
concept

Maintainability Evaluates Quality model ISO 9126

Measurable
concept

Maintainability

Entity E/R diagram of the
‘Expenses
Management System’

Belongs to Entity E/R diagram of
the ‘Expenses
Management
System’

E/R diagram of
the ‘Complaint
Files
Management
System’

E/R diagram of the
‘Complaint Files
Management System’

Entity class E/R diagram

Quality model ISO 9126 Relates Attribute Size Complexity
Measurable
concept

Maintainability

Information
need

To know the E/R diagram’s
maintainability

Is associated
with

Measurable
concept

Maintainability

Information
need

To know the E/R diagram’s
maintainability

Submeasurable
concept

Measurable
concept

—

Has Entity class E/R diagram
Attribute Size Complexity

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



300 G. CANFORA ET AL.

Table AII. Direct metrics and measurement methods defined to measure E/R diagrams.

Metric
(Genero) Description Measurement method

Definition of the metric on the E/R
metamodel (see Figure 6)

NE Number of entities ‘Count the number of entities of
the E/R diagram’

‘Count’ measurement method on
the metamodel MOF class Entity
(e.g. count the number of instances
of this class in the E/R model)

NAS Number of simple
attributes

‘Count the number of simple
attributes of the E/R diagram’

‘Count’ measurement method on the
metamodel MOF class Simple
Attribute

NCA Number of
composite
attributes

‘Count the number of composite
attributes of the E/R diagram’

‘Count’ measurement method on the
metamodel MOF class Composite
Attribute

NDA Number of derived
attributes

‘Count the number of derived
attributes of the E/R diagram’

‘Count’ measurement method on the
metamodel MOF class Derived
Attribute

NM:NR Number of M:N
relationships

‘Count the number of M:N
relationships of the E/R diagram’

‘Count’ measurement method on the
metamodel MOF class Binary
Relationship with the following
constraint: the ‘Arity’ property of
the Binary Relationship has value
‘M:N’

N1:NR Number of 1:N
relationships
(including 1:1
relationships)

‘Count the number of 1:N
relationships of the E/R diagram’

‘Count’ measurement method on the
metamodel MOF class Binary
Relationship with the following
constraint: the ‘Arity’ property of
the Binary Relationship has value
‘1:N’ or ‘1:1’

NBinaryR Number of binary
relationships

‘Count the number of binary
relationships of the E/R diagram’

‘Count’ measurement method on the
metamodel MOF class Binary
Relationship

NN-AryR Number of N-Ary
(no binary)
relationships

‘Count the number of N-Ary
relationships of the E/R diagram’

‘Count’ measurement method on the
metamodel MOF class N-Ary
Relationship

NIS AR Number of IS A
relationships
(generaliza-
tion/especialization)

‘Count the number of IS A
relationships of the E/R diagram’

‘Count’ measurement method on the
metamodel MOF-Association
Parent Of (e.g. count the number of
links of this association in the E/R
model)

NrefR Number of
reflexive
relationships

‘Count the number of reflexive
relationships of the E/R diagram’

‘Count’ measurement method on the
metamodel MOF class Binary
Relationship with the following
constraint: ‘the Binary Relationship
has two Relationship Ends which
reference the same entity’

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



A FRAMEWORK TO IMPROVE SOFTWARE PROCESS MATURITY 301

Table AIII. Indirect metrics and measurement functions defined to measure E/R diagrams.

Metric Description Measurement function

NA Total number of attributes in an E/R diagram, considering the
entities and relationships attributes. This total includes simple,
composite and derived attributes, each of them takes the value 1

NA = NAS + NCA + NDA

NNR Total number of relationships in an E/R diagram (without
considering IS A relationships)

NNR = NbinaryR + NN-AryR

Table AIV. Indicators, analysis models and decision criteria to evaluate E/R diagrams.

Metric Description Analysis model Decision criteria

IME Entity maintenance
indicator: ratio of
attributes and entities of
the diagram. The higher
the value, the higher the
maintenance difficulty

IME = NA/NE If IME > 15 → IME = ‘Very High’
If 10 < IME ≤ 15 → IME = ‘High’
If 5 < IME ≤ 10 → IME = ‘Medium’
If 0 ≤ IME ≤ 5 → IME = ‘Low’

IC Diagram connectivity
indicator: ratio of
relationship and entities of
the diagram. The higher
the value, the higher the
maintenance difficulty

IC = NNR/NE If IC ≥ 2 → IC = ‘Very High’
If 1, 5 ≤ IC < 2 → IC = ‘High’
If 1 < IC < 1, 5 → IC = ‘Medium’
If 0, 5 ≤ IC ≤ 1′ → IC = ‘Low’
If 0 < IC < 0, 5 → IC = ‘Very Low’

IH Diagram inheritance
indicator: ratio of
inheritance relationships
and total number of
relationships (including
inheritance). The higher
the value, the higher the
maintenance difficulty

IH = NIS AR

NNR + NIS AR
If IH ≥ 0, 5 → IH = ‘High’
If 0, 1 < IH < 0, 5 → IH = ‘Medium’
If 0 ≤ IH ≤ 0, 1′ → IH = ‘Low’

INM N:M relationship
indicator: ratio of N:M
relationships. The higher
the value, the higher the
maintenance difficulty

INM = NM : NR/NNR If INM ≥ 0, 5 → INM = ‘High’
If 0, 25 < INM < 0, 5 → INM = ‘Medium’
If 0 ≤ INM ≤ 0, 25 → INM = ‘Low’

CI Relationship complexity:
this indicator represents
the ratio of N-Ary
relationships. The higher
the value, the higher the
maintenance difficulty

CI = NN-AryR/NNR If CI ≥ 0, 2 → CI = ‘Very High’
If 0, 1 < CI < 0, 2 → IH = ‘High’
If 0, 05 < CI < 0, 1 → IH = ‘Medium’
If 0 ≤ CI ≤ 0, 05′ → IH = ‘Low’

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



302 G. CANFORA ET AL.

Table AV. E/R measurement model. Instance of the package ‘Metrics’.

Measurement
metamodel
elements
(MOF classes)

E/R measurement model
(instances M2)

Measurement
metamodel relations
(MOF associations)

E/R measurement model
(links M2)

Scale
(type)

Integers from
0 to infinity

(ratio)

Defined for Metric NE, NA, NAS
NCA, NDA,

IME

N1:NR
NM:NR

NBinaryR
NNA-ryR
NIS AR
NRefR
NNR

IC, IH, INM,
CI

Attribute Size Complexity

Metric
(unit)

(see direct
metric,

indirect metric
and indicator)

Transformation Metric —

Metric —

Direct metric
(unit)

NE (entity)
NAS

(attribute)
NCA

(attribute)
NDA

(attribute)
NM:NR

(relationship)
N1:NR

(relationship)
NbinaryR

(relationship)
NN-AryR

(relationship)
NIS AR

(relationship)
NrefR

(relationship)

Has Metric NE, NAS,
NCA,
NDA,

NM:NR,
N1:NR,

NbinaryR,
NN-AryR,
NIS AR,
NrefR,

NA, NNR

IH, INM,
CI

IME, IC

Scale Integers
from 0 to
infinity

Reals
between 0

and 1

Real from
0 to

infinity

Indirect metric
(unit)

NA (attribute)
NNR

(relationship)
Indicator IME (%)

IC (%)
IH

INM
CI

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



A FRAMEWORK TO IMPROVE SOFTWARE PROCESS MATURITY 303

Table AVI. E/R measurement model. Instance of the package ‘Measurement Approaches’.

Measurement
metamodel
elements

(MOF classes)

E/R
measurement

model
(instances M2)

Measurement metamodel
relations

(MOF associations)
E/R measurement model

(links M2)

Measurement
method

See Table AII Uses Direct metric See Table AII

Measurement
method

Measurement
function

See Table AIII Calculated with Indirect metric See Table AIII

Measurement
function

Analysis
model

See Table AIV Uses Measurement
function

NA = NAS +
NCA + NDA

NNR =
NbinaryR +
NN-AryR

Direct metric NAS, NCA,
NDA

NbinaryR,
NN-AryR

Measurement
instrument

GenMETRIC
tool

Decision criteria See Table AIV
Metric See Table AII Uses Measurement

function
—

Indirect metric
Direct metric See Table AII Uses Analysis model See Table AIV
Indirect metric See Table AIII Decision criteria
Indicator See Table AIV Satisfies Indicator IME, IC, IH, INM, CI

Information
need

To know the E/R diagram’s
maintainability

ACKNOWLEDGEMENTS

This research is partially supported by the MAS project ‘Dirección General de Investigación of the Ministerio
de Ciencia y Tecnologı́a’ (TIC 2003-02737-C02-02) and by the MECENAS project ‘Consejerı́a de Ciencia y
Tecnologı́a, Junta de Comunidades de Castilla-La Mancha’. We would also like to thank professionals of Cronos
Iberica S.A. for their active participation and collaboration and anonymous reviewers for their comments and
suggestions that have helped us to improve this work.

REFERENCES

1. The Capability Maturity Model: Guidelines for Improving the Software Process. Software Engineering Institute: Carnegie
Mellon University, Pittsburgh, PA, 1995.

2. Capability Maturity Model Integration (CMMI), version 1.1. Software Engineering Institute: Carnegie Mellon University,
Pittsburgh, PA, 2002.

3. Software Process Assessment—Part 7: Guide for Use in Process Improvement. ISO IEC 15504 TR2:1998, International
Organization for Standardization: Geneva, 1998.

4. Quality Management Systems—Fundamentals and Vocabulary. ISO/IEC 9000:2000, International Organization for
Standardization: Geneva, 2000.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304



304 G. CANFORA ET AL.

5. Florac WA, Carleton AD. Measuring the Software Process. Statistical Process Control for Software Process Improvement.
Addison-Wesley: Reading, MA, 1999.

6. Software Process Engineering Metamodel (SPEM), adopted specification. Object Management Group, 2002.
7. Avison D, Lan F, Myers M, Nielsen A. Action research. Communications of the ACM 1999; 42(1):94–97.
8. Polo M, Piattini M, Ruiz F. Using a qualitative research method for building a software maintenance methodology. Software

Practice and Experience 2002; 32(13):1239–1260.
9. Garcı́a F, Ruiz F, Piattini M. Definition and empirical validation of metrics for software process models. Proceedings of

the 5th International Conference Product Focused Software Process Improvement (PROFES’2004), Kansai Science City,
Japan (Lecture Notes in Computer Science, vol. 3009). Springer: Berlin, 2004; 146–158.

10. Garcı́a F. FMESP: Marco de Trabajo Integrado para el Modelado y la Medición de los Procesos Software. PhD Thesis,
University of Castilla-La Mancha, Spain, 2004.

11. Garcı́a F et al. An ontology for software measurement. Technical Report UCLM DIAB-04-02-2, Computer Science
Department, University of Castilla-La Mancha, Spain, 2004. Available at:
http://www.info-ab.uclm.es/trep.php?&codtrep=DIAB-04-02-2.

12. XML Metadata Interchange (XMI) specification, version 1.2. Object Management Group, 2002.
13. Meta Object Facility (MOF) specification, version 1.4. Object Management Group, 2002.
14. Ruiz F, Piattini M, Garcı́a F, Polo M. An XMI-based repository for software process meta-modeling. Proceedings of

the Product Focused Software Process Improvement (PROFES’2002), Rovaniemi, Finland (Lecture Notes in Computer
Science, vol. 2559). Springer: Berlin, 2002; 546–558.

15. Garcı́a F, Ruiz F, Piattini M, Polo M. Conceptual Architecture for the Assessment and Improvement of Software
Maintenance (Enterprise Information Systems IV), Piattini M, Filipe J (eds.). Kluwer Academic: Dordrecht, 2002;
219–226.

16. Garcı́a F, Ruiz F, Cruz JA, Piattini M. Integrated measurement for the evaluation and improvement of software processes.
Proceedings of the 9th European Workshop on Software Process Technology (EWSPT’9), Helsinki, Finland (Lecture Notes
in Computer Science, vol. 2786). Springer: Berlin, 2003; 94–111.

17. METRICA version 3.0. Metodologı́a de Planificación, Desarrollo y Mantenimiento de sistemas de información. Ministerio
de Administraciones Públicas, Spain, 2000. Available at: http://www.csi.map.es/csi/metrica3/.

18. Genero M, Jiménez L, Piattini M. Measuring the quality of entity relationship diagrams. Proceedings of the 19th
International Conference on Conceptual Modeling (ER 2000), Salt Lake City, UT (Lecture Notes in Computer Science,
vol. 1920), Laender AHF, Liddle SW, Storey VC (eds.). Springer: Berlin, 2000; 513–526.

19. Calero C, Piattini M, Genero M. Empirical validation of referential integrity metrics. Information Software and Technology.
Special Issue on Controlled Experiments in Software Technology 2001; 43(15):949–957.

20. Software Engineering—Software Measurement Process. ISO/IEC 15939, International Organization for Standardization:
Geneva, 2002.

21. Garcı́a F, Bertoa M, Calero C, Vallecillo A, Ruiz F, Piattini M, Genero M. Towards a consistent terminology for software
measurement. Information and Software Technology (submitted).

22. Jones C. Making measurement work. CROSSTALK The Journal of Defense Software Engineering 2003; 16(1):15–19.
23. Paulk MC. A comparison of ISO 9001 and the capability maturity model for software. Technical Report

CMU/SEI-94-TR-12, Software Engineering Institute (SEI), Carnegie Mellon University, Pittsburgh, PA, 1994.
24. Mutafelija B, Stromberg H. Systematic Process Improvement Using ISO 9001:2000 and CMMI. Artech House: Norwood,

MA, 2003.
25. Goldenson D, Jarzombek J, Rout T. Measurement and analysis in capability maturity model integration models and

software process improvement. CROSSTALK The Journal of Defense Software Engineering 2003; 6(7):20–24.
26. Piattini M, Genero M, Jiménez L. A metric-based approach for predicting conceptual data models maintainability.

International Journal of Software Engineering and Knowledge Engineering 2001; 11(6):703–729.
27. Genero M, Piattini M, Calero C (eds.). Metrics for Software Conceptual Models. Imperial College Press: London, 2005.
28. Manso E, Genero M, Piattini M. No-redundant metrics for UML class diagrams structural complexity. Proceedings of the

15th International Conference on Advanced Information Systems Engineering (CAiSE 2003), Klagenfurt/Velden, Austria,
2003; 127–142.

29. Serrano M, Calero C, Trujillo JC, Luján-Mora S, Piattini M. Empirical validation of metrics for conceptual models of data
warehouses. Proceedings of the 16th International Conference on Advanced Information Systems Engineering (CAiSE
2004), Riga, Latvia (Lecture Notes in Computer Science, vol. 3084). Springer: Berlin, 2004; 506–520.

30. Aurum A, Jeffery R, Wohlin C, Handzic M. Managing Software Engineering Knowledge. Springer: Berlin, 2003.
31. Vizcaino A, Favela J, Piattini M, Garcı́a F. Supporting software maintenance in Web repositories through a multi-agent

system. Proceedings of the Atlantic Web Intelligence Conference (AWIC’03), Madrid, Spain (Lecture Notes in Computer
Science, vol. 2663). Springer: Berlin, 2003; 307–317.

32. Bezivin J, Breton E. Applying the basic principles of model engineering to the field of process engineering. UPGRADE:
European Journal for the Informatics Professional 2004; V(5):27–33. Available at:
http://www.upgrade-cepis.org/issues/2004/5/upgrade-vol-V-5.html.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:283–304


	INTRODUCTION
	FMESP
	FMESP conceptual framework
	FMESP SEE

	DESCRIPTION OF THE COMPANY
	FMESP: CASE STUDY
	Process representation with SPEM
	Measurement model definition
	Project evaluation

	CONTRIBUTIONS AND LESSONS LEARNED
	CONCLUSIONS AND FUTURE WORK
	APPENDIX A. MEASUREMENT MODEL FOR E/R DIAGRAMS

