
www.elsevier.com/locate/infsof

Information and Software Technology 49 (2007) 108–121
Early detection of COTS component functional suitability

Alejandra Cechich a,*, Mario Piattini b,1

a Departamento de Ciencias de la Computación, Universidad Nacional del Comahue, Buenos Aires 1400 (8300) Neuquén, Argentina
b Escuela Superior de Informática, Universidad de Castilla-La Mancha, Paseo de la Universidad 4, (13701) Ciudad Real, Spain

Received 11 March 2005; received in revised form 13 March 2006; accepted 22 March 2006
Available online 13 June 2006
Abstract

The adoption of COTS-based development brings with it many challenges about the identification and finding of candidate compo-
nents for reuse. Particularly, the first stage in the identification of COTS candidates is commonly carried out by dealing with unstructured
information on the Web, which makes the evaluation process highly costly when applying complex evaluation criteria. To facilitate this
process, our proposal introduces an early measurement procedure for suitability of COTS candidates. Considering that filtering is about
a first-stage selection, functionality evaluation might drive the analysis, proceeding with the evaluation of other properties only on the
pre-selected candidates. In this way, a few candidates are fully evaluated making in principle the whole process more cost-effective. In this
paper, we illustrate how functional measures at an initial state are calculated for an E-payment case study.
� 2006 Elsevier B.V. All rights reserved.

Keywords: COTS (Commercial Off-The-Shelf) components; Component-based system development; COTS component selection; Quality attributes; Six-
Sigma
1. Introduction

COTS-based development changes the focus of software
engineering from one of traditional system specification
and construction to one requiring simultaneous consider-
ation of the system context (system characteristics such as
requirements, cost, schedule, operating and support envi-
ronments), capabilities of products in the marketplace,
and viable architectures and designs. The impact of this
fundamental change is profound. Not only must engineer-
ing activities such as requirements specification change to
support these simultaneous consideration, but so must
acquisition processes and contracting strategies.

It is clear that COTS-Based Software Engineering affects
software quality in several ways, ranging from introducing
0950-5849/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2006.03.008

* Corresponding author. Tel.: +54 299 4490312; fax: +54 299 4490313.
E-mail addresses: acechich@uncoma.edu.ar (A. Cechich), Mario.

Piattini@uclm.es (M. Piattini).
1 Tel.: +34 926 295300; fax: +34 926 295354.
new methods for selecting components to defining a wide
scope of testing principles and measurements [1]. Today,
software quality staff must rethink the way software is
assessed, including all life-cycle phases – from requirements
to evolution.

When selecting COTS components, there is usually a
quick first effort intended to determine very rapidly which
products are unsuitable in the current context. This process
can be initiated as soon as there is at least one relevant
alternative to consider. This initial filtering may be carried
out based on different information to be collected, includ-
ing vendor capability, legal aspects on the use of the com-
ponent, offered functionality, etc.

One of the reasons of not using a formal selection pro-
cess for filtering lies in the key motivation of using COTS
components in the system [2,3]. Usually, it is to increase
time-to-market and reduce cost, therefore composers do
not spend much effort on evaluating all candidate compo-
nents by using a formal selection process because it does
not look cost-effective.

mailto:acechich@uncoma.edu.ar
mailto:Mario.Piattini@uclm.es
mailto:Piattini@uclm.es

A. Cechich, M. Piattini / Information and Software Technology 49 (2007) 108–121 109
The point is that many methods include complex cri-
teria and qualifying thresholds for filtering. For example,
during the activity ‘‘Collect Measures’’ of the COTS
Acquisition Process [4], data according to a measurement
plan and based on a taxonomy are collected on a set of
COTS software alternatives. However, considering that
filtering is about a first-stage selection, functionality eval-
uation might drive the first analysis, proceeding with the
evaluation of other properties only on the pre-selected
candidates.

Then, we mirror some efforts in literature [5–7], meaning
that functionality is our main concern, but addressing how
functional suitability might be quantified at early stages of
the selection process. Differently from those proposals, our
metrics [8] are defined considering that only a high-level
description of the COTS components is available, without
further details on data and control execution. This assump-
tion is supported by fundamentals of the filtering process,
and by the characteristics of information provided by most
component suppliers [9,10].

Our process [11,12] aims at reducing the number of can-
didates by selecting some of them very quickly based on a
brief review on key functional issues. These aspects, along
with some cost and market issues, may help introduce a
more formal review later on. In this case, only a few candi-
dates are fully evaluated making in principle the whole pro-
cess more cost-effective.

We should note that although functionality guides our
process, the problem of ensuring component and compo-
nent composition quality is exacerbated by the multiplicity
of potential problems with COTS components. Whether
you have built your system using COTS components from
many vendors, or a single vendor has provided you with an
integrated solution, many of the risks associated with sys-
tem management and operation are not in your direct con-
trol [13].

Therefore, a quality assessment team usually launches
its efforts by identifying major organizational processes
and their customers. At this point, the objective is to pre-
pare a list of activities related top COTS component selec-
tion, where spiral approaches define a series of iterations to
mitigate risk while addressing the most critical functions
[14,15]. Similarly, our measurement process is immerse into
a broader iterative approach supported on Six-Sigma
[16–19] precepts. Our approach defines five-phases for the
pre-selection process; however in this paper we focus
on the second phase only: measurement of functional
suitability. We refer the reader to [11,12] for a description
of the whole process and other architectural measures
calculated during filtering.

In this paper, we introduce the functional measurement
of COTS components as follows. Firstly, Section 2 presents
some related works. Then, Section 3 introduces our suite of
metrics; and Section 4 shows how those metrics are applied
to a case study. Section 5 addresses lessons learned; and
finally, we draw conclusions as well as present future work
in this domain.
2. Related works

So far, many methods and techniques have emerged to
address the evaluation and selection of COTS candidates
[1]. In spite of that fact that an exhaustive review is out
of the scope of this paper, we would like to introduce those
proposals that we consider closer to ours.

A first related work by Bianchi et al. [6] defines the qual-
ity characteristic ‘‘adequateness’’ of a COTS product by
considering the application domain, the functionality pro-
vided by the COTS product, and its effective usage within
the Component-Based System (CBS). Authors have intro-
duced two metrics – ‘‘Functional Coverage’’ and ‘‘Compli-
ance’’ – to refer to the concept of functionality as broadly
as possible. The former expresses the percentage capability
of each COTS product to support the functionality
required by the CBS; the latter expresses the effective usage
of each COTS product within CBS. For example, the value
of the Functional Coverage metric for the ith COTS prod-
uct is calculated from the number of functionality provided
to the CBS by the ith COTS product, and the total number
of functionality provided by all the COTS products to the
CBS. The rationale behind our proposal is similar to those
considerations; however, they do not address the problem
of calculating ‘‘the number of functionality’’ as required
by the metrics. Our approach builds upon the functional
view of this proposal, but details calculations by abstractly
defining functionality as well as data required for
measurement.

The proposal by Albert et al. [15], called Evolutionary
Process for Integrating COTS-Based Systems (EPIC),
builds upon of the elements of the Rational Unified Process
[20], and disciplined spiral engineering practice [14]. Partic-
ularly interesting to our work is the ‘‘Inception Phase’’,
which establishes a common understanding among stake-
holders of what the solution will do. It ends when it is dem-
onstrated that one or more candidate solutions can be
integrated into the organization’s architecture. This phase
accumulates information to identify measurable criteria
that correspond to preliminary expectations; however, the
lack of particular measurement procedures – and metrics
– makes this process a candidate to improvement. Our
approach for COTS component filtering is build upon the
notion of improvement, but explicitly including measure-
ment during the process. We immerse our techniques into
a Six-Sigma-based process, aiming at defining what is rele-
vant for filtering, measuring it, and improving the filtering
practices. We limit the scope of this paper to only one cal-
culation during this process, that is functional suitability
measurement.

The Function Fit Analysis [7] consists of five primary
steps. Firstly, the Requirements Function Point Analysis is
used to identify and document what functionality is neces-
sary to meet the customer needs. The analysis focuses on
quantifying user requirements and the result is a develop-
ment function point count and a detailed listing of the
functions necessary to meet the requirements. Secondly,

Architecture A

Specification for abstract
component C requiredfor
“plug-in” toArchitecture A

Specification SC

Interface

Behavioral
(Semantics)

K1 Kn. . .

What component most
closely matches the desired

idealized abstract specification Sc ?

Concrete instances
potentiallysatisfying
specification Sc

Fig. 1. Instantiation of an abstract component specification.

110 A. Cechich, M. Piattini / Information and Software Technology 49 (2007) 108–121
the COTS Functional Evaluation step involves reviewing
the various COTS candidates and comparing their func-
tionality to the requirements previously documented.
Thirdly, the Functional Fit Analysis applies a percentage
of ‘‘fit’’ between the requirements and the COTS product.
In Function Fit Analysis, ‘‘fit’’ is defined as the amount
of out-of-the-box functionality that can be used without
any modifications. Using this definition, a comparison of
the requirements function point count to the COTS func-
tion point count results in calculating the ‘‘fit’’ percentage
of the COTS. However, differently from our proposal,
what functionality means is not explicitly addressed.

PORE (Procurement-Oriented Requirement Engineering)
[21] selects products by rejection, i.e., products that do not
meet core customer requirements are selectively and itera-
tively rejected and removed from the candidate list. This
process shows that increasing the number and detail of
requirement statements will decrease the number of COTS
candidates. For requirements acquisition, PORE divides
the process into stages and provides three templates for
three key stages of the process [22]. Particularly, the first
template is used during early stages of COTS component
selection, when the evaluation team deals with Web site
information, technical documents, market analyses, etc.,
which are characterized by the lack of detailed data.

One of the problems of the PORE method is that the
iterative process of requirements acquisition and product
evaluation/selection is very complex. At any point, a large
number of possible situations can arise, or a large number
of processes and techniques to use in a single situation can
be recommended. To handle this scale of complexity, a
prototype tool known as PORE Process Advisor has been
developed. The main components of the tool are a process
engine which analyses the current set of goals to be
achieved, model properties (inferred by the situation infer-
ence engine) and instructions from the requirements engi-
neering team to recommend process advise. Complexity
of filtering is precisely the point to discuss here. Although
PORE provides a tool for supporting the search, complex-
ity of the procedure itself may not look cost-effective.

Finally, our measures on functional suitability might
provide a more precise indicator when calculating the
maintenance equilibrium value as introduced by Abts in
[5]. In this proposal, the number of components in the solu-
tion should be minimized and the contribution of function-
ality should be maximized to satisfy the CBS Functional
Density Rule of Thumb: ‘‘Maximize the amount of func-

tionality in your system provided by COTS components but

using as few COTS components as possible’’ [5]. However,
there is no further detail on what ‘‘amount of functional-
ity’’ is.

3. Measuring COTS component functional suitability

To ensure that decisions are fact based, it is important
that definitions used during the process be reinforced.
Although it is always important to understand the current
process and the problem to be solved, the importance is
greater when filtering COTS components because require-
ments and services must be balanced as part of a negotia-
tion procedure.

Firstly, a COTS component’s required functionality
should be expressed to define search goals and criteria for
evaluation. To do so, we have adapted the model in [23],
which explores the evaluation of components using a spec-
ification-based testing strategy, and proposes a semantics
distance measure that might be used as the basis for evalu-
ating a component from a set of candidates. This model
supposes that there is an architectural definition of a sys-
tem, whose behavior has been depicted by scenarios or
using an architecture description language (ADL). Precise-
ly, the possibility of combining more formal descriptions of
functional requirements and scenarios, motivated us to
choose this approach as a starting point. This combination
allows us to split complexity from a functional point of
view (by using scenarios) and reason about the needs of
information processing in terms of provided and required
data. Let us briefly discuss the model.

According to Alexander [23], a system can be extended
or instantiated through the use of some component type.
Though several instantiations might occur, an assumption
is made about what characteristics the actual components
must possess from the architecture’s perspective. Thus,
the specification of the architecture A (SA) defines a speci-
fication SC for the abstract component type C (i.e.,
SA) SC). Any component Ki, that is a concrete instance
of C, must conform to the interface and behavior specified
by SC, as shown in Fig. 1 (from [23]).

The process of composing a component K with A is an
act of interface and semantic mapping. There are many
techniques currently addressing interface mapping, hence
in this paper, only the semantic mapping will be addressed.
We focus on incompatibilities derived from behavioral dif-
ferences between the specification of a component Ki ðSKiÞ
and the specification SC. Another necessary condition for
using K (or a combination of Ki) to satisfy SC is that the
input and output domains of K include some of those spec-
ified by SC. An additional necessary condition is that K

)(CSran

β

α

)(KSran

φ

εδ

χ

)(KSdom

f

)(CSdom

d c

b

a

e

SK(i)

SC(i)

Fig. 2. Functional mappings of SC and SK.

A. Cechich, M. Piattini / Information and Software Technology 49 (2007) 108–121 111
provides at least some functional mappings between the
domains as specified by SC.

The model, as illustrated in Fig. 2, helps us to identify
inconsistencies and reason about required and provided
services abstractly. Precisely, this abstract view is what
we need to deal with coarse-grained information at the fil-
tering level. A typical situation for inconsistency in the
functional mappings between SK and SC is illustrated in
Fig. 2 (from [23]), where the dashed lines indicate mappings
with respect to SC, and the solid lines are mappings with
respect to SK. Note that the input (dom) and output
(ran) domains of SK and SC are not equal. Also, the
domain of SC is not included in the domain of SK, and vice
versa for the ranges.

3.1. The measurement phase

Let us present our case. Suppose that before starting the
evaluation procedure, a committed specification of the
component (SC) is defined as a reference to be used when
comparing candidates [24]. Once committed goals have
been achieved, we may proceed with the filtering process
by applying different measures on COTS component
candidates.

For the measure definitions, we assume a conceptual
model with universe of scenarios S, an abstract specifica-
tion of a component C, a set of components K relevant
to C called candidate solution SO, a set of pre-selected
components from SO, called solution SN, and a
mapping component diagram MCD as we introduced
previously (Fig. 2). In this diagram, SC (i) represents the
map associated to the input value i defined in the domain
of SC. This map should provide a valid value on the
output domain of SC, i.e., there is no empty maps or
invalid associations. A similar assumption is made on the
mappings of SK.

We should note that perception of a composer will be
affected by many factors such as his own capability and
experience in searching and using COTS components;
the complexity of the particular domain application; the
granularity of the component he/she is looking for; and
so forth. Therefore, mappings are instantiated during a
particular filtering letting composers adapt it to different
levels of COTS-based development maturity. For exam-
ple, let us consider a possible instantiation of the func-
tional description case – abstractly ‘‘scenarios’’ of our
process. A particular organization might use recommen-
dations from the ISO/IEC 19761 standard – Software
engineering – COSMIC-FFP, which introduces a func-
tional size measurement method [25] to instantiate the
definition of scenarios. The method considers that the
functionality delivered by software to its users is described
through the Functional User Requirements (FUR) docu-
ments. These state ‘‘what’’ the software must do for the
users and exclude any technical or quality requirements
that say ‘‘how’’ the software must perform. In practice,
FUR sometimes exist in the form of a specific document
(requirements specifications, for instance), but often they
have to be derived from other software engineering arti-
facts. FUR can be derived from software engineering arti-
facts that are produced before the software exists
(typically from architecture and design artifacts). Thus,
the functional size of software can be measured prior to
its implementation on a computer system. In other cir-
cumstances, software might be used without there being
any, or with only a few, architecture or design artifacts
available, and the FUR might not be documented (legacy
software, for instance). In such circumstances, it is still
possible to derive the software FUR from the artifacts
installed on the computer system even after it has been
implemented.

Finally, let us briefly clarify the concepts associated to
SO and SN. Candidate components, selected from differ-
ent sources for evaluation, constitute the members of the
set SO. It could be the case that one of these members does
not offer any functionality required by C. Hence, an evalu-
ator should not spend more time and effort evaluating
other properties or requirements on that component, i.e.,
the component should be withdrawn from analysis. Then,
the solution in which all components potentially contribute
with some functionality to fulfil the requirements of C is
called here SN.

Table 1
Description of the Functional Suitability measures

Measure Id. Description

Component-level
CFC Compatible Functionality The number of functional mappings provided by SK and required by SC in the scenario S

MFC Missed Functionality The number of functional mappings required by SC in the scenario S and NOT provided by SK

AFC Added Functionality The number of functional mappings NOT required by SC in the scenario S and provided by SK

CCF Component Contribution Percentage in which a component contributes to get the functionality required by SC in the scenario S

Solution-level
SNCF Candidate Solution The number of components that contribute with compatible functionality to get the requirements of SC

in the scenario S

CFS Compatible Functionality The number of functional mappings provided by SN and required by SC in the scenario S

MFS Missed Functionality The number of functional mappings required by SC in the scenario S and NOT provided by SN

AFS Added Functionality The number of functional mappings NOT required by SC in the scenario S and provided by SN

SCF Solution Contribution Percentage in which a solution contributes to get the functionality required by SC in the scenario S

2 www.componentsource.org

112 A. Cechich, M. Piattini / Information and Software Technology 49 (2007) 108–121
3.1.1. Functional suitability measures

In the following definitions, we use the symbol # for the
cardinality of a set. To simplify the analysis, we also
assume input/output data as data flows, i.e., data that
may aggregate some elemental data. It means that the
particular data composition, such as iterative or alternative
structures, is actually hidden.

Table 1 lists our suite of functional suitability measures.
The measures have been grouped into two main groups:
component-level measures and solution-level measures.
The first group of metrics aims at detecting incompatibili-
ties on a particular component K, which is a candidate
to be analyzed. However, it could be the case that we need
to incorporate more than one component to satisfy the
functionality required by the abstract specification C. In
this case, the second group of metrics evaluates the domain
compatibility of all components that constitute the candi-
date solution SO, as we previously defined.

For example, CFC measures the number of functional
mappings provided by SK and required by SC in the scenar-
io S; SNCF measures the number of components that
contribute with compatible functionality to get the require-
ments of SC in the scenario S; and so forth.

Note that CCF is an indirect measure, i.e. a measure of
an attribute that is derived from measures of one or more
other attributes. Also, note that the CCF metric contains
all information we need during the functional suitability
analysis. However, the other metrics are useful in order
to identify needs of adaptation later on during our filtering
process [12].

A more formal definition of the measures is shown in
Table 2, where comparison between output domain values
has been simplified by considering equality. A more
complex treatment of output values might be similarly
specified, for example, by defining a set of data flows relat-
ed by set inclusion.

The metrics listed here are calculated during the first
stage of our filtering process, aiming at providing a coarse
indicator of suitability on analyzed components. Measur-
ing other aspects is still a remaining issue, which might
be addressed by measuring architectural features at early
stages. We refer the interested reader to [11,12,26] for a
detailed definition of the process and the use of architectur-
al metrics during filtering.

Another interesting discussion will be on analyzing the
representation of the input/output domain, trying to close
the gap between the information provided by component
vendors and the information required for evaluation, as
the work in [9] remarks. Additionally, we should remark
the importance of standardizing and evaluating informa-
tion sources. Further discussion will be introduced in Sec-
tion 5.

4. Case study – E-payment by credit card

The functional suitability measurement is studied
through analyzing different kinds of document material
related to the COTS candidates. It includes material on
the Web collected from portals for searching components;
particularly in our case, information from the component-
Source organization.2

In choosing the case, the most important criteria is that
we should maximize what we can learn through the case
[27]. Eisenhardt [28] has suggested that cases should be
chosen for theoretical, not statistical reasons. The case is
to be selected so that it is a typical or representative of
other cases. However, no matter how much effort is put
into finding a typical case, it is unlikely that we can accom-
plish a strong representation of others. Especially with
COTS components, which are developed to supply very
simple services as well as to support entire domain
applications.

In our case study, we want to analyze a specific case in
order to learn more about other cases as well. Thus, a cer-
tain amount of typicality is needed in selecting the case.
However, determining the criteria for ‘typicality’ may, of
course, be a complex task. In this, the most important
guideline is the purpose of the study, which should form
the basis for determining the case selection criteria. In addi-
tion to this, other very important issues influencing the
selection are factors such as time limitations and access.

http://www.componentsource.org

Table 2
Functional Suitability measures

Measurement element Measure Id. Measure definition

Component K and component C CFC #{df: data j df 2 (dom SC \ dom SK) � SK(df) = SC(df)}
Component K and component C MFC #{df: data j CFC(K, C) P 1 � df 2 dom SC � (SC(df)„SK(df) � df 62 dom SK)}
Component K and component C AFC #{df: data j CFC(K, C) P 1 � df 2 dom SK � (SC(df) „ SK(df) � df 62 dom SC)}

CFC and component C CCF
CF C

#ðSCÞ
Solution SO and component C SNF #{SK j (CFC(K, C) P 1)"K 2 SO}
Solution SN and component C CFS #{df: data j df 2 (dom SC \ ¨ (dom SK)"K 2 SN) � (SK(df) = SC(df))$K 2 SN)}
Solution SN and component C MFS #{df: data j df 2 (dom SCn ¨ (dom SK)"K 2 SN) � (df 2 dom SC \ ¨ (dom SK)"K 2 SN �

(SC(df)„SK(df))"K 2 SN)}
Solution SN and component C AFS #{df: data j df 2 ¨ (dom SK)"K 2 SN n dom SC � (SK(df))$K 2 SN)}

CFS and component C SCF
CF S

#ðSCÞ

A. Cechich, M. Piattini / Information and Software Technology 49 (2007) 108–121 113
The purpose of this research is to calculate an early mea-
sure of COTS functional suitability. In this case, a typical
situation and an appropriate case is one where:

(1) the domain application is broad enough to detect dif-
ferent COTS candidates on the market.

(2) knowledge needed to detect candidates is not specific or
requires in-depth training on the particular domain.

(3) the component granularity is middle-grained, which
means that a component supplies several functions
but not so many that a composer would not be able
to handle their complexity.

On the basis of the discussed criteria for finding the case,
we will focus on E-payment by credit card. Electronic pay-
ment accomplishes the criteria afore mentioned since there
are more than enough COTS candidates on the market;
knowledge is broad enough to be easily understood; and
functionality is split into authorization and capture, which
in turn imply the existence of several functions.

Table 3 shows the contextual use case, using a basic tem-
plate for use cases matching the document ‘‘Structuring
Use Cases with Goals’’.3 The template has the following
sections: name (which is the goal), goal in context, scope,
level, trigger, pre- and post-conditions, main course, exten-
sions, sub-variations, and other characteristic data for the
use case.

From action 3 in Table 3, a service provider intermedi-
ates in credit card transaction processing. It implies that
the service provider validates credit card numbers and expi-
ration dates, obtains authorization from the credit card
issuers and issues confirmation numbers to taxpayers at
the end of the payment transaction.

For the sake of this example, we suppose that the
required functionality will be supplied by COTS compo-
nents in a marketplace. So, the next step is to define map-
pings for the filtering process.

Generally speaking, Authorization and Capture are the
two main stages in the processing of a card payment over
the Internet. Authorization is the process of checking the
3 Available at http://alistair.cockburn.us/spstab3s/uctempla.htm
customer’s credit card. If the request is accepted the cus-
tomer’s card limit is reduced temporarily by the amount
of the transaction. Capture is when the card is actually deb-
ited. This may take place simultaneously with the authori-
zation request.

By using a traditional technique for deriving goals from
scenarios, we might produce a simplified abstract specifica-
tion of the input and output domains of SC as follows.
Combination of and relationships among different scenari-
os might be similarly treated by following the guidelines of
derivation introduced in [29].

• Input domain:

(AID) Auth_IData{#Card, Cardholder_Name, Exp_Date,
Bank_Acc, Amount};
(CID) Capture_IData {Bank_Acc, Amount}.

• Output domain:

(AOD) Auth_OData{ok_Auth};
(COD) Capture_OData{ok_capture, DB_update}.

• Mapping: {AID ´ AOD; CID ´ COD}.

The component source for this study includes all COTS
components catalogued as members of the ‘‘Credit Card
Authorization’’ group by the ComponentSource organiza-
tion. The following sections introduce some examples of
our analysis, which was developed during October, 2004
[30]. For brevity reasons, we show how measures were cal-
culated for only five components, considering that a similar
treatment was given to all components in the group. Table
5 lists all components surveyed and analyzed; however note
that some of them, such as CCValidate, are not longer
available.

4.1. The AcceptOnline case

AcceptOnline is a COM object that provides credit card
processing functionality for developers. It connects to the
credit card processor server through the Internet via SSL
protocol which guarantees secure data transfer. To mini-
mize fraud transactions Address Verification Service
(AVS) is supported. AcceptOnline COM object provides
the ability to accept credit or debit cards from Web-site
or Internet-enabled applications. Credit card transactions

http://alistair.cockburn.us/spstab3s/uctempla.htm

Table 3
Contextual use case

USE CASE Pay taxes by credit card

Goal in context Individual taxpayers can e-file and make a payment by credit card
Scope & Level Department of the Treasury, USA Primary Task
Preconditions We know taxpayers and the amount of tax owed
Success End Condition Credit card approval: the taxpayer’s account has money for the payment
Failed End Condition Taxes are not paid. The taxpayer has not spent the money
Primary, Secondary Actors Individual taxpayer, any agent acting for the taxpayer. Department of the Treasury, Payment service

provider
Trigger Payment request comes in

Description Step Action

1 Taxpayer calls in with a payment request
2 Department of the Treasury captures primary

SSN, secondary SSN, credit card number,
credit card expiration date, etc

3 Service provider intermediates in credit card transaction processing
4 Department of the Treasury gives taxpayer

information about convenience fees, interest, service provider fee, etc
5 Taxpayer accept payment
6 Service provider issues a confirmation number

EXTENSIONS Branching action

1a Rejected e-file and e-pay
1a1. Renegotiate payment

SUB-VARIATIONS
1 Taxpayer may use

Phone in,
Web page form

114 A. Cechich, M. Piattini / Information and Software Technology 49 (2007) 108–121
are processed through the secure Internet connection (with
aid of the SSL protocol). For a credit card processor, the
ECHO4 is used. All major credit cards are supported. To
accept credit cards from a customer we should get the mer-
chant account from credit card processor.

Properties of AcceptOnline are grouped into the follow-
ing classes: merchant fields, transaction fields, and response
fields. From those classes, we identify:

• transaction_type: this field identifies the type of transac-
tion being submitted. Valid transaction types are:
– ‘‘CK’’ (System check),
– ‘‘AD’’ (Address Verification),
– ‘‘AS’’(Authorization),
– ‘‘ES’’ (Authorization and Deposit),
– ‘‘EV’’ (Authorization and Deposit with Address

Verification),
– ‘‘AV’’ (Authorization with Address Verification),
– ‘‘DS’’ (Deposit), and
– ‘‘CR’’ (Credit).
• cc_number: the credit card number to which this trans-
action will be charged,

• cc_exp_month and cc_exp_year: the numeric month
(01–12) and the year (formatted as either YY or CCYY)
in which this credit card expires,

• billing_phone: the shopper’s telephone number,
4 www.echo-inc.com
• grand_total: the total amount of the transaction,
• merchant_email: this is the Email address of the

merchant,
• order_type: this field determines which fields are used to

validate the merchant and/or hosting merchant,
• transactionStatus: Transaction Status. Valid values are:

G – Approved, D – Declined, C – Cancelled, T – Time-
out waiting for host response, R – Received.

Methods of AcceptOnline are specified in terms of their
main focus and required input. Particularly, the SendPac-

ket method is used to send the transaction information to
the ECHOOnline server, and required properties should
be filled as shown in Table 4 (requirements for CR are par-
tially listed). Note that order_type, transaction_type, and
merchant_email should be always filled before calling the
method SendPacket of AcceptOnline, so they are not listed
on Table 4.

From the AcceptOnline (AOnline) description above, we
might derive the following mappings related to our authori-
zation (AS) and capture (DS) required functionality:

• Input domain (from Table 4)
– (AOnline.ASI) {billing_phone, cc_number, cc_exp_-

month, cc_exp_year, counter, debug, grand_total,
merchant_email};

– (AOnline.DSI) {authorization, cc_number, cc_exp_-
month, cc_exp_year, counter, debug, grand_total,
merchant_email}.

http://www.echo-inc.com

Table 4
Required fields by transaction type of AcceptOnline

Field CK AD AS ES EV AV DS CR

authorization Y
billing_address1 Y Y Y
billing_address2
billing_zip Y Y Y
billing_phone Y Y Y Y
cc_number Y Y Y Y Y Y Y
cc_exp_month Y Y Y Y Y Y Y
cc_exp_year Y Y Y Y Y Y Y
counter Y Y Y Y Y Y
debug Y Y Y Y Y Y Y
grand_total Y Y Y Y Y Y
merchant_email Y Y Y Y Y Y Y
order_number Y Y
.

A. Cechich, M. Piattini / Information and Software Technology 49 (2007) 108–121 115
• Output domain
– (AOnline.ASO) {TransactionStatus};
– (AOnline.DSO) {TransactionStatus}.
• Mapping
– {AOnline.ASI ´ AOnline.ASO};
– {AOnline.DSI ´ AOnline.DSO}.

There are also other possible functional mappings as
follows:

{AOnline.ADI ´ AOnline.ADO;
AOnline.EVI ´ AOnline.EVO;
AOnline.AVI ´ AOnline.AVO;
AOnline.CRI ´ AOnline.CRO};

which represent address verification, authorization and
deposit with address verification, and so forth.

After comparing AID, CID (from specification SC) to
AOnline.ASI and AOnline.DSI, we can establish the fol-
lowing correspondences:

• AID vs. AOnline.ASI
– Cardholder_name ´ billing_phone
– #Card ´ cc_number
– Exp_Date ´ cc_exp_month, cc_exp_year
– Bank_Acc ´ merchant_email
– Amount ´ grand_total.
• CID vs. AOnline.DSI
– Bank_Acc ´ authorization and data from

AOnline.ASI
– Amount ´ grand_total

We should note that values of the domains do not
exactly match: billing_phone is used instead of
Cardholder_name to identify cardholders; and merchant_
email is used for Bank_Acc. Similarly, ok_Auth, ok_
Capture, and BD_Update might correspond to the different
values of TransactionStatus.
However, matching is possible since purpose is similar.
Then, similarity is basically determined by analyzing seman-
tics of concepts with respect to their use. This aspect intro-
duces one of the key points that will be further discussed
later. Just remember that some knowledge is needed to per-
form the matching, and consequently, calculate metrics.

Now, computing measures from Table 2 produces the
following results;

CFC(AcceptOnline) = 2, MFC(AcceptOnline) = 0,
AFC(AcceptOnline) = 4, and CCF(AcceptOnline) = 1.

These results indicate that the AcceptOnline component
is 100% (CCF = 1) functionally suitable, and thus a candi-
date for further evaluation during the filtering process.
Measures also indicate that there are four added functions
(AFC = 4), which deserve more careful examination. How-
ever, after a closer look at those functions, we realized that
many of them allow for possible variations of the authori-
zation and capture functionalities – by considering ‘‘Ad-
dress Verification’’ as complementary to other functions;
for example, ‘‘Authorization with Address Verification’’.

On the other hand, ‘‘Credit’’ is actually adding function-
ality, since this function reimburses payments to the card-
holder. This function has not been considered as relevant
to our case because credit card payments cannot be can-
celled. Taxpayers can call the credit card issuer or credit
card payment service provider’s customer service number
to report problems such as unauthorized charges or con-
cerns regarding payment errors.

Finally, the function ‘‘CK’’ checks the system – a useful
supporting function but not domain-oriented, and there-
fore not relevant to our case.

Note here that different interpretations of what is rel-
evant for a particular case, and what is considered as a
supporting function introduces ambiguity to the calcula-
tion process. Calculations are affected by the level of
detail (abstractness) of the required scenarios. Our sec-
ond case illustrates this point more clearly. So, let us
introduce our second example – the Energy Credit Card
component.

4.2. The Energy Credit Card case

Energy Credit Card by Energy Programming Limited, is
a COM object that allows users to accept credit card data
via magnetic readers or keyed input. All data is validated to
ensure authenticity and reduce chargebacks from the
banking community. The Energy Credit Card component
provides two functions described as follows:

(1) Functionality ‘‘Extract_Card_Data’’, which provides
the ability to decode the magnetic data on the swipe
card; and

(2) Functionality ‘‘Validate_Card_Details’’, which pro-
vides the ability to validate keyed entry data from
other systems.

116 A. Cechich, M. Piattini / Information and Software Technology 49 (2007) 108–121
To accomplish both functionalities, input data is
required as follows:

• Input: {surname, initials, salutation, card_number,
card_type, startDate, expiryDate, issue}

• Output: {error_number, error_text}

As we easily can see, this second component does not
provide the required functionality of our scenario.
Although the component is classified as a member of the
‘‘Credit Card Authorization’’ group, functionalities show
that only validation of credit card data is provided. There-
fore, calculating measures from Table 2 produces the fol-
lowing results:

CFC(EnergyCreditCard) = 0, MFC (EnergyCreditCard) = 2,
AFC (EnergyCreditCard) = 0, and CCF (EnergyCredit-

Card) = 0.

These results indicate that the Energy Credit Card
component is 0% (CCF = 0) functionally suitable, and
we should not invest more time and effort in more
evaluation. However, note that functionalities provided
by the Energy Credit Card component might be part
of the required functionality associated to the ‘‘Au-
thorization’’ scenario. To make this point explicit, if
necessary, evaluators should expose the different func-
tionalities through a more detailed description of the
required scenario; hence calculation of partially satis-
fied functionality would be possible. In our example,
‘‘Authorization’’ could be expressed as two sub-func-
tions: ‘‘Credit Card Validation’’ and ‘‘Amount
Authorization’’.

In this way, functionality supplied by the EnergyCredit-
Card would fit the functionality required by ‘‘Credit Card
Validation’’; thus calculating measures for the Energy
Credit Card component would result in:

CFC(EnergyCreditCard) = 1, MFC (EnergyCreditCard) = 2,
AFC (EnergyCreditCard) = 0, and CCF (EnergyCredit-

Card) = 0.33.

These results would indicate that the Energy Credit
Card component might be a candidate to be combined
along with other components to provide the required func-
tionality (and not necessarily discharged).

Of course, decisions on how detailed a scenario
should be depend on the requirements of a particular
domain; i.e. components that do not provide the whole
authorization procedure might not be useful in a partic-
ular case. We suppose here that balanced requirements
among all stakeholders have been considered to provide
the appropriated scenarios [24]. Note that domain
knowledge to define scenarios is also an important influ-
encing factor.

Now, let us consider a third component for our evalua-
tion procedure.
4.3. The PaymentCardAssist case

The PaymentCardAssist component by Aldebaran, sup-
ports Email verification, event logging, data encryption, file
compression, and payment card detail validation. The Pay-
mentCard object within the DeveloperAssist Object
Library validates payment card (credit, debit and charge
card) information. The DeveloperAssist object library
exposes a number of objects that can be used within ASP
scripts. These objects are documented below.

• 7Email Validation. Provides the ability to check that an
SMTP address is valid. It improves on typical JavaScript
syntax checks by providing rigorous syntax checking and
ensuring that the domain is configured to accept mail.

• Encryption. Performs data encryption and decryption,
using the TwoFish algorithm from Counterpane
Systems.

• Event Log. Writes to the Windows NT event log. Infor-
mation, warning, error, success audit and failure audit
events are all supported.

• File Compression. PKZip compatible file compression
functions. The compressed data is fully compatible with
other PKZip implementations.

• PaymentCard. Validates payment card (credit, debit and
charge card) information.

The PaymentCard object does not provide authorization
or clearing functionality, rather provides a means to vali-
date payment information entered by a site visitor, before
pursuing a full authorization.

After considering detailed data to be validated, our mea-
sures resulted as:

CFC (PaymentCard) = 0, MFC (PaymentCard) = 2,
AFC (PaymentCard) = 4, and CCF (PaymentCard) = 0.

Or after considering a more detailed scenario, in which
card data validation is made explicit, measures resulted as:

CFC (PaymentCard) = 1, MFC (PaymentCard) = 2,
AFC (PaymentCard) = 4, and CCF (PaymentCard) = 0.33.

Here, we find a typical case in which added function-
ality is actually extra functionality. The metric AFC(Pay-

mentCard) reveals four added functions, similarly to our
AcceptOnline case. However, far from being complemen-
tary functions, this case illustrates the possibility of deal-
ing with COTS components that are meant to be used in
possibly different domains, and therefore, designed as
‘‘auxiliary’’ components, i.e. one in which we find differ-
ent ‘‘oriented’’ functions, such as we see in this case –
‘‘validate’’ functions (email and payment card valida-
tion); ‘‘security’’ functions (encryption, event log); and
‘‘performance’’ functions (file compression). Thus, careful
analysis of added functionality is necessary to make a
decision on how to score it.

Table 5
Measurement results for components of the ‘‘Credit Card Authorization’’
category

Component CFC MFC AFC CCF

AcceptOnline 2 0 4 1

EnergyCreditCard 0 2 0 0
PaymentCardAssist 0 2 4 0
CCProcessing 2 0 2 1

CCValidate 0 2 0 0
CreditCardPack 0 2 0 0
IBiz 2 0 2 1

InaCardCheck 0 2 0 0
IPWorks 2 0 0 1

LuhnCheck 0 2 0 0
SafeCard 0 2 0 0
ComponentOne Studio 0 2 — 0

A. Cechich, M. Piattini / Information and Software Technology 49 (2007) 108–121 117
4.4. The CCValidate case

This component is not longer available; and unfortu-
nately this is not the only case. The CCValidate COM
object validated credit card numbers from applications
and websites. CCValidate was an ActiveX DLL compo-
nent that provided an Industry-approved validation algo-
rithm (MOD 10 checksum). All major credit card types
were supported, including VISA, Master Card, Amex, Dis-
cover, and more. Measures for this case resulted as:

CFC (CCValidate) = 0, MFC (CCValidate) = 2,
AFC (CCValidate) = 0, and CCF (CCValidate) = 0.

This case illustrates another problem that composers usu-
ally face: the integration of vendor business continuity capa-
bility assessment as part of the filtering process. Although
this analysis is not the main focus of our work, it deserves
a few comments. The integration of business continuity met-
rics in the procurement process might be particularly
interesting and should be related to the key elements of the
filtering process. Incorporating the business continuity capa-
bility assessment at each phase of the selection process would
help identify vulnerabilities, develop consequence manage-
ment strategies, and implement mitigation strategies.

We would like to remark that the CCValidate compo-
nent, and some others of our study, have dramatically
changed during the last four months. In such a short period
of time, some of them have migrated into a new version or
even the provider company not longer exists. Further
details on these changes will be described in Section 5.1.

4.5. The ComponentOne Studio Enterprise case

A special remark should be made on values assigned to
the ComponentOne Studio Enterprise: this component is a
combination of four individual components that support
reporting, charting, data manipulation, and user interface
capabilities for .NET, ASP.NET, and ActiveX applica-
tions. As we easily can see, this component essentially dif-
fers from the others in the group, and for this reason,
additional functionality (AFC) has not been scored. How-
ever, note that the ComponentOne Studio is classified as
a ‘‘Credit Card Authorization’’ component by the Compo-
nentSource organization.

Now, we will discuss the results particular to our case
study in the following section.

5. Discussion

From 22 components surveyed in October 2004, we con-
sidered 12 for pre-filtering since the other 10 components
only differed in terms of their implementations, preserving
the same functionality.

Results of our calculations are shown in Table 5. Note
that only four components provide the functionality
required by our scenario. This fact would indicate that
those components are pre-selected for more evaluation,
since they are 100% functionally suitable.

Scenarios have been widely used during design as a
method to compare design alternatives and to express the
particular instances of each quality attribute important to
the customer of a system. Scenarios differ widely in breadth
and scope, and its appropriate selection is not straightfor-
ward. Our use of scenarios is a brief description of some
anticipated or desired use of a system. The process of
choosing scenarios for analysis forces designers to consider
the future uses of, and changes to, the system. In some
cases, this diversity of concerns produces fine-grained func-
tionality described by scenarios, but coarse-grained func-
tionality might be described as well.

As a consequence, our measures are affected by a particu-
lar scenario’s description since calculation refers to the num-
ber of functions – without further discussion about their
particular specification. For example, in our case study, ‘‘val-
idation with address’’ and ‘‘reverse authorization’’ might be
considered as part of an ordinary credit card authorization
process. Assuming that, scores for added functionality
(AFC) would be decreased (only ‘‘credit’’ would be consid-
ered as added functionality). As another example, we could
choose a more detailed description of the functionality and
decompose Authorization into ‘‘Credit Card Validation’’
and ‘‘Amount Authorization’’. In this case, calculation of
provided and missed functionality would be different and
contribution (CCF) would show which components partially
contribute to reach credit card authorization.

Table 6 shows our measures considering the last two
assumptions: (1) including ‘‘validation with/without
address’’ and ‘‘reverse authorization’’ as part of the proce-
dure, and (2) splitting Authorization into two processes –
validation and authorization itself. By comparing scores
from Tables 5 and 6 we illustrate the importance of stan-
dardizing the description of required functionality, as well
as providing a more formal definition of scenarios.

Also, note that components providing all required func-
tionality remain unchanged on both tables: only four com-
ponents provide authorization and capture as required in
our case (4/12 = 33%). It would indicate that searching a cat-
alogue by category is not enough to find appropriate compo-

Table 6
Measurement results after changing scenarios

Component CFC MFC AFC CCF

AcceptOnline 3 0 1 1
EnergyCreditCard 1 2 0 0.33
PaymentCardAssist 1 2 4 0.33
CCProcessing 3 0 1 1
CCValidate 1 2 0 0.33
CreditCardPack 1 2 0 0.33
IBiz 3 0 1 1
InaCardCheck 1 2 0 0.33
IPWorks 3 0 0 1
LuhnCheck 1 2 0 0.33
SafeCard 1 2 0 0.33
ComponentOne Studio 0 3 — 0

5 Accessed on February 25th, 2005. The following message is returned
when accessing some of the components’ former websites: ‘‘Sorry . . . The
link that you have used is either incorrect or the product has been
discontinued.’’

118 A. Cechich, M. Piattini / Information and Software Technology 49 (2007) 108–121
nents. In our example, better categorizations would help dis-
tinguish credit card validation from authorization. More-
over, a better categorization would help avoid the situation
where a component that does not provide any functionality
(accordingly to the category), like ComponentOneStudio, is
catalogued as a member of any of those classes.

Our measures indicate that four components are candi-
dates to be accepted for more evaluation, i.e. the components
are functionally suitable, but there is some additional func-
tionality that could inject harmful side effects into the final
composition. Identifying and quantifying added functional-
ity are subject to similar considerations – essentially, the
number of functions is a rough indicator that might be
improved by weighting functionality; i.e. clearly the four
functions added by PaymentCardAssist are different in scope
and meaning from the functions added by the other compo-
nents. However, just counting functions would help decide
on which components the analysis should start.

Table 6 also shows that there are some candidates which
are able to provide some required functionality – ‘‘credit card
validation’’. But making this functionality more visible does
not necessarily indicate the type of validation that actually is
taking place, for example, whether or not a MOD10/Luhn
check digit validation is carried out. Our measures are just
indicators of candidates for further evaluation, on which
additional effort might be invested. Nevertheless, our mea-
sures do not detect the best candidates at a first glance but
a possible interesting set. The process guides calculations
so ambiguity is decreased, but committed scenarios still
depend on a particular system’s requirements.

5.1. Lessons learned

(1) Early measurement of functional suitability can reduce

the number of candidates allowing a more objective value for

decision making. Our case study shows that measurement is
possible at early stages by analyzing information of COTS
components: from 12 COTS candidates, only four were
pre-selected to be subjected to further analyses. However,
we are aware that more experimental results are needed
to be more conclusive about the applicability of our filter-
ing process. Difficulties when applying the process might
hinder its application, as the following lessons show.
(2) Early detection of functionality requires that standards

on how COTS components are documented be reinforced.
Information gathered from COTS candidates ranged from
description of methods and properties in natural language
to description by programming code. Certainly, this fact
introduces ambiguity in some cases, complicates reading
in some others, increases understanding effort, and makes
the actual effectiveness of the filtering process dependent
on the composer’s expertise to detect candidates. Searching
and gathering COTS component information must be sup-
ported by automatic tools. The lack of standard documen-
tation not only hinders the matching of candidates, but
also their classification and storing.

(3) Requirements expressed as scenarios might facilitate
searching and filtering, but a common understanding about

the required level of detail (abstractness) must be specified.
Besides, classification of functionality to detect domain-
oriented functions is necessary to separate concerns and
identify added functionality, as the cases of AcceptOnline,
EnergyCreditCard, CCProcessing, and PaymentCardAssist
showed. The last case introduces some other considerations
– not only functionality should be split to identify
‘‘auxiliary’’ functions, but also extra functionality should
be weighted to indicate its relationship with the main
function we are looking for (credit card payment in our
case). Extra functionality, such as compressing files in
PaymentCardAssist, requires careful examination. As a
consequence, understanding functionality – and effectively
identifying main/auxiliary/supporting functions – still
depends on the scenario’s specification and the composer’s
background and expertise. Similarly, careful examination is
needed to identify partial functionality such as CeditCard-
Pack, LuhnCheck, and other components supply. Here,
further knowledge on how validation should be carried
out would help candidate identification.

(4) Composer’s skills actually lead the search. Of course,
processes, techniques, and supporting tools are being defined
to improve the filtering process, such as the ones defined in
this paper. However, considering the previous lessons
learned, they still rely on how a composer perceives require-
ments and offerings. Although every human-intensive pro-
cess – such as the ones involved in software engineering – is
always affected by human perception, ambiguity of the pro-
cesses is usually decreased by using particular notations and
standards. Unfortunately, they are not available for COTS
component searching and filtering yet.

(5) Assessing vendor’s reliability is as much important as the

identification of functional candidates itself. We only have to
look at our case study and the componentSource catalogue
again5. From there and browsing the Web, we realized that
the Bahs Software company is not a component supplier
any more, and consequently AcceptOnline, CCProcessing,

6 www.ecots.org

A. Cechich, M. Piattini / Information and Software Technology 49 (2007) 108–121 119
and CCValidate were withdrawn from the marketplace.
Additionally, the Energy Programming Ltd. has changed
its EnergyCreditCard component to the ‘‘Starfish EFT’’
component, which is an ActiveX component for validating
credit card data; and PaymentCardAssist by Aldebaran
has ‘‘evolved’’ into a complete suite called ‘‘Internet Com-
merce Toolkit’’. Then, from 11 COTS candidates in October
2004 (we exclude here ComponentOneStudio), only five of
them remain available, and only one is suitable for our case
– note that the IPWorks component is now only supplied as
IBiz component. Then, our case study seems typical enough
to sustain this lesson.

(6) Classification is not straightforward. As we have seen,
our twelve components were catalogued as members of the
‘‘Credit Card Authorization’’ group by componentSource.
From them, four components supply authorization and
capture; seven components supply credit card validation;
and one component – ComponentOneStudio – supplies
many kinds of functionalities, not necessarily related to a
credit card payment. Therefore, better classifications are
needed. They might help facilitate the filtering process by
using information about the catalogue itself. However,
producing well-structured catalogues is not an easy task
– component’s granularity and several possibilities in clas-
sification make the process difficult.

5.2. Technical implications

As a first technical implication we argue that perception
of what a COTS component is able to provide is not con-
sistent. It means that the development of a COTS compo-
nent market can be understood through the complexity of
interchanging heterogeneous information between compos-
ers and suppliers. And here, ‘‘heterogeneous’’ may refer to
different meanings for the same concept as well as different
concepts addressing the same meaning. This conceptualiza-
tion is currently researched as part of traditional ontology-
based approaches. However, definitive solutions for solving
semantic heterogeneity are far from achieved.

A second implication is on the need of homogeneous
understanding to provide meaningful measurements
– and therefore, to set a basis for improvement. In our
research, this necessity was seen as an important pre-requi-
site for the calculations. Many research efforts are currently
advocated to the development of ontologies and taxono-
mies to help identification and classification of COTS com-
ponents [6,31–37]; and many others to better understand
how a knowledge-based portal might be defined
[36,38,39]. This paper notes the importance of both issues,
which constitute the main technical implications.

6. Conclusion and future work

In the field of software engineering, there has been a
strong emphasis on component-based software engineering,
which means that software systems are developed based on
pieces of software that can be independently deployed and
developed. These pieces, or components, can either be devel-
oped by the company itself or more importantly, bought
from an external component provider. This development
in relation to software engineering methods has been accom-
panied by supplier companies entering the scene, offering
commercial software components and suggesting that their
products could provide customers with benefits such as cost
reductions, higher quality and faster software development.

Then, software engineering practices have changed to
face the challenge of identifying suitable COTS compo-
nents from such a marketplace. As a consequence, during
the last years, we witnessed the emergence and prolifera-
tion of COTS selection and integration methods. However,
from the composer’s perspective, although the possible
benefits of the use of COTS selection methods are assumed
to be many, in practice we face a lot of difficulties of vary-
ing degrees of importance and magnitude. Defining search-
ing criteria is not such an easy task as it supposed to be;
integration of candidates largely relies on exhaustive anal-
ysis of interface’s compatibility; and few methods actually
address measurement of candidates.

Our proposal was elaborated by defining particular
techniques and metrics aiming at reducing the number of
candidates by selecting some of them very quickly based
on a brief review of key functional issues. Then, we have
faced one of the current challenges during filtering: provid-
ing simple practices that help institutionalize formal selec-
tion procedures. Our functional suitability measures might
drive a simple filtering process; however we are aware that
lessons learned should not be neglected; then, we should
base our filtering procedure on a more formal description
of COTS components’ properties.

To do so, we have firstly classified some current efforts
that try to describe COTS components [40]. In this context,
some proposals use description logics to develop an ontology
for matching requested and provided components, or pro-
pose taxonomies for classification [31,33,34,36,37,41,42];
others suggest extending the identification stage with a learn-
ing phase, which provides support to the COTS component
discovery process [6,43]; and some other approaches try to
measure the semantic distance between required and offered
functionality [23,44], although these measures usually need
detailed information as input to the calculations.

Secondly, we have looked at some current catalogs on
the Web. However, in spite of several catalogues’ existence,
a common description model is still an open issue – cur-
rently some portals only get an overview of the technical
and legal features of the software; others focus only on a
particular type of component; and others only contain
Web services descriptions. Motivated by this situation,
the eCots6 project aims at developing an open information
portal for COTS components, in which we deal with infor-
mation about products, and possibly between their users,
or between users and producers [39].

http://www.ecots.org

120 A. Cechich, M. Piattini / Information and Software Technology 49 (2007) 108–121
Particularly, the information of this portal will give us
the opportunity to use (and extend) our research as a con-
tribution to guide the filtering process. Hopefully, empiri-
cal cases will be conducted in the near future based on
the use of the eCots platform. However, several aspects
need further discussion before using such a portal. For
example, what kind of information will characterize a
COTS product? Should this information be based on prop-
erties of COTS products? Are there many COTS products
sharing similar properties? Can they be generalized?

Then, from limitations discussed above, lessons learned,
and main implications, we aim at improving the measure-
ment phase by including ontology- and taxonomy-based
matching. In this way, a more formal definition and stan-
dard information of components’ services would facilitate
filtering.

Acknowledgements

We thank anonymous reviewers for their valuable com-
ments. This work is partially supported by the CyTED
(Ciencia y Tecnologı́a para el Desarrollo) project
506PI287 CompetiSoft; the UNComa project 04E/059,
and the MAS project supported by the Dirección General
de Investigación of the Ministerio de Ciencia y Tecnologı́a,
Spain (TIC 2003-02737-C02-02).

References

[1] A. Cechich, M. Piattini, A. Vallecillo (Eds.), Component-Based
Software Quality: Methods and Techniques, Lecture Notes in
Computer Science, vol. 2693, Springer-Verlag, Berlin, 2003.

[2] J. Li, F. Bjornson, R. Conradi, V. Kampenes, An empirical study on
COTS component selection process in Norwegian IT companies, in:
Proceedings of the First ICSE International Workshop on Models
and Processes for the Evaluation of COTS Components, IEE,
Edinburgh, Scotland, 2004, pp. 27–30.

[3] M. Torchiano, M. Morisio, Overlooked aspects of COTS-based
development, IEEE Software 21 (2) (2004) 88–93.

[4] M. Ochs, D. Pfahl, G. Chrobok-Diening, Nothhelfer-Kolb, A method
for efficient measurement-based COTS assessment and selection –
method description and evaluation results, Tech. Rep. IESE-055.00/
E, Fraunhofer Institut Experimentelles Software Engineering, 2000.

[5] C. Abts, COTS-based systems (CBS) functional density – a
heuristic for better CBS design, in: Proceedings of the 1st
International Conference on COTS-Based Software Systems,
Lecture Notes in Computer Science, vol. 2255, Springer-Verlag,
Orlando, Florida, 2002, pp. 1–9.

[6] A. Bianchi, D. Caivano, R. Conradi, L. Jaccheri, M. Torchiano, G.
Visaggio, COTS products characterization: proposal and empirical
assessment, in: Proceedings of ESERNET 2001–2003Lecture Notes in
Computer Science, vol. 2765, Springer-Verlag, Orlando, Florida,
2003, pp. 233–255.

[7] L. Holmes, Evaluating COTS Using Function Fit Analysis, Q/P
Management Group, INC – <http://www.qpmg.com/>.

[8] A. Cechich, M. Piattini, On the measurement of COTS functional
suitability, in: Proceedings of the Third International Conference on
COTS-Based Software Systems, Lecture Notes in Computer Science,
vol. 2959, Springer-Verlag, Los Angeles, USA, 2004, pp. 31–40.

[9] M. Bertoa, J. Troya, A. Vallecillo, A survey on the quality
information provided by software component vendors, in: Proceed-
ings of the 7th ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering (QAOOSE 2003), Darmstadt,
Germany, 2003, pp. 25–30.

[10] P. Ulkuniemi, V. Seppäanen, COTS component acquisition in
emerging markets, IEEE Software 21 (6) (2004) 76–82.

[11] A. Cechich, M. Piattini, Managing COTS components using a Six
Sigmabased process, in: Proceedings of the Fifth International
Conference on Product Focused Software Process Improvement,
Lecture Notes in Computer Science, vol. 3009, Springer-Verlag, Nara,
Japan, 2004, pp. 556–567.

[12] A. Cechich, M. Piattini, Filtering COTS components through an
improvement-based process, in: Proceedings of the Fourth Interna-
tional Conference on COTS-Based Software Systems, Lecture Notes
in Computer Science, vol. 3412, 2005, pp. 112–121.

[13] H. Lipson, N. Mead, A. Moore, Can we ever build survivable systems
from COTS components? in: Proceedings of CAiSE 2002LNCS, vol.
2348, Springer-Verlag, Orlando, Florida, 2002, pp. 216–229.

[14] B. Boehm, A spiral model of software development and enhancement,
IEEE Computer (1998) 61–72.

[15] C. Albert, L. Brownsword, Evolutionary process for integrating
COTS-based systems (EPIC): an overview, Tech. Rep. 20030TR-009,
SEI, 2002.

[16] R. Biehl, Six Sigma for software, IEEE Software 8 (2) (2004) 68–70.
[17] J.D. Feo, Z. Bar-El, Creating Strategic change more efficiently with a

new Design for Six Sigma process, Journal of Change Management 3
(1) (2002) 60–80.

[18] A. Gack, K. Robinson, Integrating improvement initiatives: connect-
ing Six Sigma for software, CMMI, personal software process and
team software process, Software Quality Journal 5 (4) (2003) 5–13.

[19] C. Tayntor, Six Sigma Software Development, AUERBACH Publi-
cations, 2003.

[20] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Development
Process, Addison-Wesley, Boston, MA, 1999.

[21] C. Ncube, N. Maiden, Guiding parallel requirements acquisition and
COTS software selection, in: Proceedings of the IEEE International
Symposium on Requirements Engineering, 1999, pp. 133–141.

[22] N. Maiden, C. Ncube, Acquiring COTS software selection require-
ments, IEEE Software 15 (2) (1998) 46–56.

[23] R. Alexander, M. Blackburn, Component assessment using specifi-
cation-based analysis and testing, Tech. Rep. SPC-98095-CMC,
Software Productivity Consortium, 1999.

[24] A. Cechich, M. Piattini, Balancing Stakeholders preferences on
measuring COTS component functional suitability, in: Proceedings of
the Sixth International Conference on Enterprise Information
Systems, Porto, Portugal, 2004, pp. 115–122.

[25] ISO/IEC, Software engineering – COSMIC-FFP – a functional size
measurement method, International Standard ISO/IEC 19761, Inter-
national Standards Organization, Geneva, Switzerland, 2003.

[26] A. Cechich, M. Piattini, Quantifying COTS component functional
adaptation, in: Proceedings of the Eight International Conference on
Software ReuseLecture Notes in Computer Science, vol. 3107,
Springer-Verlag, Madrid, Spain, 2004, pp. 195–204.

[27] R. Stake, The Art of Case Study Research, Sage Publications, 1995.
[28] K. Eisenhardt, Building theories from case study research, Academy

of Management Review 14 (4) (1989) 532–550.
[29] C. Rolland, C. Souveyet, C.B. Achour, Guiding goal modelling using

scenarios, IEEE Transactions on Software Engineering 24 (12) (1998)
1055–1071.

[30] A. Cechich, M. Piattini, Early detection of COTS functional
suitability for an E-payment case study, in: 7th International
Conference on Enterprise Information Systems, Miami, USA, 2005.

[31] T. Asikainen, T. Soinien, T. Mäannistö, A Koala-based ontology for
configurable software product families, in: Proceedings of the
Workshop on Configuration in Conjunction with the Eighteenth
International Joint Conference on Artificial Intelligence, 2003.

[32] C. Ayala, P. Botella, X. Franch, On goal-oriented COTS taxonomies
construction, in: Proceedings of the Fourth International Conference
on COTSBased Software Systems, Lecture Notes in Computer
Science, vol. 3412, 2005, pp. 90–100.

http://www.qpmg.com

A. Cechich, M. Piattini / Information and Software Technology 49 (2007) 108–121 121
[33] R. Braga, M. Mattoso, C. Werner, The use of mediation and
ontology technologies for software component information retrieval,
in: Proceedings of the 2001 Symposium on Software Reusability:
Putting Software Reuse in Context, ACM Press, 2001, pp. 19–28.

[34] J. Carvallo, X. Franch, C. Quer, M. Torchiano, Characterization of a
taxonomy for business applications and the relationships among
them, in: Proceedings of the Third International Conference on
COTS-Based Software SystemsLecture Notes in Computer Science,
vol. 2959, Springer-Verlag, Orlando, Florida, 2004, pp. 221–231.

[35] P. Fettke, P. Loos, Specification of business components, in:
Proceedings of NetObjectDays 2002Lecture Notes in Computer
Science, vol. 2591, Springer-Verlag, 2003, pp. 62–75.

[36] S. Overhage, UnSCom: a standardized framework for the specifi-
cation of software components, in: 5th Annual International
Conference on Object-Oriented and Internet-Based Technologies,
Concepts, and Applications for a Networked World (NODe
2004)Lecture Notes in Computer Science, vol. 3263, Springer-
Verlag, 2004, pp. 169–184.

[37] C. Pahl, Ontology-based description and reasoning for component-
based development on the Web, in: Proceedings of SAVCBS’03-
ESEC/FSE’03 Workshop, ACM, 2003.

[38] M. Hristozova, L. Sterling, Experiences with ontology development
for value- added publishing, in: OAS 2003 – Workshop on Ontologies
in Agent Systems, 2nd International Joint Conference on Autono-
mous Agents and Multi-Agent Systems, 2003. URL <http://oas.otag-
o.ac.nz/oas2003//>.

[39] J.-C. Mielnilk, B. Lang, S. Lauriére, J.-G. Schlosser, V. Bouthors,
eCots platform: an inter-industrial initiative for COTS-related infor-
mation sharing, in: Proceedings of the Second International Confer-
ence on COTS-Based Software Systems, Lecture Notes in Computer
Science, vol. 2580, Springer-Verlag, 2003, pp. 157–167.

[40] A. Cechich, A. Requilé, J. Aguirre, J. Luzuriaga, Trends on COTS
component identification, in: Proceedings of the 5th IEEE Interna-
tional Conference on COTS-Based Software Systems, IEEE Com-
puter Science Press, 2006, pp. 90–99.

[41] T. Asikainen, T. Soinien, T. Männistö, Representing software product
family architectures using a configuration ontology, in: Proceedings of
the Workshop on Configuration in conjunction with the 15th European
Conference on Artificial Intelligence (ECAI-2002), 2002.

[42] C. Pahl, An ontology for software component matching, in:
Proceedings of the Sixth International Conference on Fundamental
Approaches to Software EngineeringLecture Notes in Computer
Science, vol. 2621, Springer-Verlag, 2003, pp. 6–21.

[43] L. Jaccheri, M. Torchiano, A Software Process Model to Support
Learning of COTS Products, Tech. rep., IDI NTNU, 2002.

[44] L. Jilani, J. Desharnais, Defining and applying measures of distance
between specifications, IEEE Transactions on Software Engineering
27 (8) (2001) 673–703.

http://oas.otago.ac.nz/oas2003/
http://oas.otago.ac.nz/oas2003/

	Early detection of COTS component functional suitability
	Introduction
	Related works
	Measuring COTS component functional suitability
	The measurement phase
	Functional suitability measures

	Case study - E-payment by credit card
	The AcceptOnline case
	The Energy Credit Card case
	The PaymentCardAssist case
	The CCValidate case
	The ComponentOne Studio Enterprise case

	Discussion
	Lessons learned
	Technical implications

	Conclusion and future work
	Acknowledgements
	References

