
1

2

3

4

5

6
7

8
9

10

11
12
13
14
15
16
17
18
19
20
21
22

23
24

25

26
27
28
29

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
Information Sciences xxx (2007) xxx–xxx

www.elsevier.com/locate/ins
R
O

O
FManaging software process measurement:

A metamodel-based approach

F. Garcı́a *, M. Serrano, J. Cruz-Lemus, F. Ruiz, M. Piattini,
ALARCOS Research Group

Technologies and Information Systems Department, UCLM-Soluziona Research and Development Institute, University of Castilla-La

Mancha, Paseo de la Universidad, 4 – 13071 Ciudad Real, Spain

Received 15 March 2006; received in revised form 20 October 2006; accepted 20 January 2007
P

R
R

E
C

T
E
DAbstract

The evaluation of software processes is nowadays a very important issue due to the growing interest of software com-
panies in the improvement of the productivity and quality of delivered products. Software measurement plays a fundamen-
tal role here. Given the great diversity of entities which are candidates for measurement in the software process
improvement context (process models, projects, resources, products) this measurement must be performed in a consistent
and integrated way. This will facilitate the making of decisions in process improvement. In this paper, a proposal for the
integrated management of the software measurement is presented. The goal is to provide companies with a generic and
flexible environment for software measurement which facilitates and establishes the basis for a common and effective mea-
surement process and which is not restricted to only one kind of software entity or to a single quality or evaluation model.
In order to achieve this, the proposal adopts the Model Driven Engineering philosophy and provides: a metamodel for the
definition of software measurement models; a flexible method to measure any kind of software entity represented by its
corresponding metamodel and GenMETRIC, which is the software tool that supports the framework.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Software process; Measurement; Metamodelling
N
C

O1. Introduction

Software measurement plays a fundamental role in Software Engineering [8]. Measurement can help to
address some critical issues in software development and maintenance by facilitating the making of decisions.
Software measurement provides a support for planning, monitoring, controlling and evaluating the software
process.
U

0020-0255/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2007.01.018

* Corresponding author. Tel.: +34 926295300; fax: +34 926295354.
E-mail addresses: Felix.Garcia@uclm.es (F. Garcı́a), Manuel.Serrano@uclm.es (M. Serrano), JoseAntonio.Cruz@uclm.es (J. Cruz-

Lemus), Francisco.RuizG@uclm.es (F. Ruiz), Mario.Piattini@uclm.es (M. Piattini).

Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

mailto:Felix.Garcia@uclm.es
mailto:Manuel.Serrano@uclm.es
mailto:JoseAntonio.Cruz@uclm.es
mailto:Francisco.RuizG@uclm.es
mailto:Mario.Piattini@uclm.es

30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

2 F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

It is, specifically, the evaluation of software processes that has become a very important issue recently, due
to the growing interest of software companies in the improvement of the productivity and quality of delivered
products. Moreover, the current competitive marketplace forces software organizations to improve their pro-
cesses on a continual basis. To achieve this, successful management is necessary [9], and this involves the def-
inition, measurement, control and improvement of the process.

Companies therefore require the carrying out of the software measurement process to be made in an effec-
tive and consistent way. The quantitative basis necessary for the identification of the areas which are candi-
dates for improvement can thus be established. This implies the need for a disciplined approach to
measurement and data analysis, if a software or systems engineering enterprise is to succeed [4].

In the context of software process measurement the following basic types of entities can be identified as
candidates:

• Software Process Models. These models constitute the starting point for the understanding and carrying out
of the software process through their enactment in concrete projects. Software process modelling has
become a highly acceptable solution for treating the inherent complexity of software processes, and a great
variety of modelling languages and formalities, known as ‘‘Process Modelling Languages’’ (PML), can be
found in the relevant literature. With a software process model (SPM) the different elements related to a
software process are represented precisely and without ambiguity.

• Software Projects. These are concrete enactments of software process models and their measurement is fun-
damental if we are to know how they perform, and are measured mainly through schedule and cost and
resource-related metrics.

• Software Products. As a result of carrying out software projects, different products may be obtained and
these are also candidates for measurement. The quality of the process has to be reflected in the products
obtained and that is why software products themselves must be measured.

The great diversity in the kinds of entities which are candidates for measurement in the context of the soft-
ware processes points to the importance of providing the means necessary to define measurement models in
companies in an integrated and consistent way. This involves providing companies with a suitable and con-
sistent reference for the definition of their software measurement models as well as the necessary technological
support to integrate the measurement of the different kinds of entities.

In addition, we are currently witnessing a new focus in the development and maintenance of software sys-
tems: Model Driven Engineering. The Model Driven Architecture (MDA) proposal [25] and its related stan-
dards, such as MOF (Meta Object Facility) [26], XML Metadata Interchange (XMI) [27] and Unified
Modeling Language (UML) [28], reinforce this new approach to specifying and building systems by giving
special attention to models and metamodels. Given the growing complexity of software systems, this new
approach seeks to isolate business logic from the implementation level by building platform-independent mod-
els in the context of a framework which organizes the necessary metamodels efficiently.

Software measurement integration can therefore be achieved by adopting the MDA approach. This
implies the definition of the measurement models in a homogeneous and consistent way by using a suitable
metamodel. It also involves the measurement of any software entity through the metamodel which defines
them.

In this paper, we present a proposal which supports the consistent and integrated measurement of soft-
ware. This is achieved by providing a generic measurement metamodel to represent the metadata related to
the measurement process along with a set of generic metrics defined within the metamodel scope. The pro-
posal is supported by GenMETRIC a tool for software measurement that is both generic and extensible.
The paper is organised as follows. Section 2 provides an overview of the related works and in Section 3
the conceptual architecture of the proposal to manage software measurement is described in the context
of MDA. Section 4 presents a measurement metamodel which manages the measurement process by means
of a suitable language for defining concrete software measurement models. In Section 5, the measurement
based on metamodels is illustrated with an example. Section 6 describes the GenMETRIC tool, developed
to support generic and extensible software measurement. Finally, conclusions and future work are outlined
in Section 7.
Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119

120
121

122

123
124
125
126
127

F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx 3

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

2. Related works

Before introducing improvement plans in companies, a quantitative basis for evaluating their software pro-
cesses should be established. This fact is evidenced by the central role that measurement has in the current
standards and models for process maturity and improvement such as CMMI [31], ISO 15504 [16] and the
ISO/IEC 90003 [17]. By measuring software processes we can control them and, as stated by these recognised
standards and models, we can improve the process maturity, which cannot be achieved without any measure-
ment support. From the methodological perspective, software measurement is supported by a wide variety of
proposals, with the Goal Question Metric (GQM) method [34], the Practical Software & Systems Measure-
ment (PSM) methodology [24] and the ISO 15539 [18] and IEEE 1061-1998 [15] standards deserving special
attention.

It is widely accepted that by using an automatic measurement tool to measure software processes and prod-
ucts, the measurement process can be improved by avoiding calculation errors thereby reducing effort in mea-
surement and providing some enhanced analysis tools [22]. Other important improvements are to avoid bias in
the measurement process (inaccurate or inflated data) which could be the result of human intervention. More-
over, the tool can store the results and allow people to automatically obtain reports and perform historical
comparisons to facilitate decision making processes.

The importance of software measurement support in organizations has led to the development of a great
diversity of tools. An exhaustive list of software measurement tools can be found in [7,35]. Most of the tools
are focused on measuring one kind of entity (concrete systems, paradigms, programming languages, etc.).
However, a wider support is required to integrate the measurement process in the context of organizations’
process improvement and there are not many tools which support the measurement process as a whole. With
regard to this issue we observe tools such as MMR [29] which is based on the CMMI model for the evaluation
of software processes. Others tools are based on measuring several kinds of entities by performing SQL queries
on repositories [23] [14,30], but this kind of user interface can decrease their usability for novice database
users.

Nevertheless, from our point of view many of these tools are restricted to specific domains, measurement
standards or evaluation and process quality models, which may reduce their generality and scope. Each tool
works according to its own philosophy, collects its own data and calculates specific measures. Currently, com-
panies have to measure highly heterogeneous entities whose results should be stored and processed from a
common repository to facilitate the making of decisions, as they can not only depend on specific software
artifacts.

The idea of flexible measurement frameworks has been applied to the domain of object oriented systems,
like in the by Vaishanavi et al. proposal [33] which captures the generic structure of the object oriented prod-
uct metrics space.

With the aim of providing a generic support for software measurement that is not restricted to only one
kind of entity to be measured or to any single quality or evaluation model and which facilitates and provides
the basis for a common measurement process in companies, we have developed a generic approach which is
described in the following sections.

3. Conceptual architecture for integrating software measurement

In this section, the conceptual architecture to manage the software measurement is described, first by
describing how the MDA has been applied, and then by explaining the elements of which it is made up.

3.1. Applying the model-driven paradigm to software measurement

In any engineering discipline the rigorous analysis of a design artifact takes place through the representa-
tion and manipulation of mathematical objects called models. These models are then used to develop the pro-
totypes, and later the complete engineering system [32]. The new Model-Driven Engineering paradigm (MDE)
[2] is an attempt to apply these ideas to the problem of designing and constructing software systems. Its main
goal is to ensure that the core artifacts in the software engineering processes will be models instead of code, so
Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

P
R

O
O

F

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

151
152
153
154
155
156

MOF

Software
Measurement

Metamodel

Measurement
Models

Domain
Models

Data Data DataData

M3

M0

M1

M2

Integrated Measurement: Conceptual Framework

Model
Level

Meta-Model
Level

Meta-Meta-Model
Level

Domain
MetamodelsDomain

Metamodels

Data
Level

Fig. 1. Conceptual framework to manage software measurement.

4 F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
Dthat designs are expressed and managed in the manner of models with a much higher level of abstraction than

the code. This has two main advantages: (i) to reduce complexity during the design phase when that complex-
ity does not need to be born in mind due to the specific technology of implementation, and (ii) to obtain gen-
eric systems, because it is possible to create software with more general functionalities that give solutions to a
greater quantity of cases or situations.

MDA [25] is the OMG proposal by which to carry out the MDE paradigm. The core of MDA is a set of
standards, amongst which it is necessary to highlight the ‘‘Meta-Object Facility’’ (MOF) [26], a conceptual
architecture with four levels of modeling (see Fig. 1) that allows us to define models (level M1, for instance,
a UML class diagram for a concrete application) based on metamodels (level M2, for instance, UML), which
in turn are all defined by means of a universal object-oriented and auto-defined meta-metamodel (level M3). A
necessary complement of the MOF is the XML Metadata Interchange (XMI) standard [27], which defines an
XML-based language for the representation and exchange of MOF metamodels and models.

The same ideas as the MDE paradigm have been used for the development of more powerful CASE tools.
In this way, it has been possible to build ‘‘Software Engineering Meta-Environments’’ [32], which is to say,
integrated sets of tools that can be adapted to different domains and languages.

In a similar way, in our work we apply the ideas of MDE and MDA in order to create a framework that
facilitates the software measurement process. On one hand, we use metamodels (all of which are based on a
common software measurement ontology) (Section 4) to represent all the types of measurable elements in a
software project (design diagrams, source code, documentation, data of the running projects, etc. . .), and
on the other hand we have developed a tool called GenMetric which allows us to define ‘‘Software Measure-
ment Models’’ for any software entity. Thanks to this, it is possible to define any type of measurement for any
property of any software element. This work is presented with more detail in the following sections.

3.2. Elements of the conceptual architecture

The proposal for integrating software measurement described in this paper is part of the FMESP frame-
work [11], which provides the support necessary for the representation and management of knowledge related
to software processes from the perspectives of modelling and measurement. We focus on the measurement
support of the framework whose elements are described in great detail according to the three layers of abstrac-
tion of metadata that they belong to, in line with the MOF standard. In Fig. 1, the conceptual architecture for
integrated measurement is represented:
Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

157
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

198

199
200
201
202
203
204
205
206
207

F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx 5

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
E
C

T
E
D

P
R

O
O

F

As can be observed in Fig. 1, the architecture has been organised into the following conceptual levels of
metadata:

• Meta-MetaModel Level (M3). At the highest conceptual level (M3), an abstract language for the definition
of metamodels is found. This is the MOF language, which is basically composed of two structural construc-
tors: MOF class and MOF association. With these levels the integration of different domains is possible. In
pursuit of our objective to support the software measurement of any software entity in a consistent and
integrated way, we use the MOF for the definition of the elements in level M2, That is to say, we employ
a metamodel for the definition of software measurement models as well as the metamodels which represent
the measured entities, called domain metamodels.

• Metamodel Level (M2). In the M2 level, generic metamodels which are useful for the creation of specific
models should be included. In our framework, the generic metamodels required are:

• Measurement Metamodel, to define specific measurement models. This metamodel is described in greater
detail in Section 4.

• Domain Metamodels, to represent the kinds of entities which are candidates for measurement in the context
of the evaluation of the software processes. These kinds of entities can vary from the company’s SPMs
themselves, to the projects carried out and the resources necessary, as well as the products used, modified
and produced. For example, if a company requires the measurement of conceptual databases which have
been developed with the Entity Relationship notation or the measurement of its UML class diagrams, the
corresponding metamodels which allow the definition and representation of these kinds of entities (UML
and E/R) must be included in the M2 level of the architecture.

• Model Level (M1). At this level specific models are included. These models may be of two types:
– Measurement Models. These models are instances of the measurement metamodel of the M2 level and

they are defined in such a way as to satisfy some of the company’s information needs. For example,
if a company needs to know the size of its E/R diagrams, a measurement model could be defined in
which the kind of software entity measured would be the E/R models. In this way, by using the measure-
ment metamodel, all the measurement models developed in the company would be consistently repre-
sented and managed independently of the kinds of entities that they evaluate.

– Domain Models, which are defined according to their corresponding domain metamodels. Examples of
domain models are: the UML models (use cases, class diagrams, etc.) of a software application for man-
aging a banking service, or the E/R model of the database of this application which is defined with the
UML and E/R metamodels of the M2 level. The domain models are the entities whose attributes are
measured by calculating the measurements defined in the corresponding measurement models.
U
N

C
O

R
R

With the conceptual architecture proposed it is possible to include specific measurement models for the
evaluation of different kinds of entities: products such as relational databases [5], object-relational, UML class
or state transition diagrams [13]; software projects, by having adequate metamodels such as the example in [1];
and software process models [11]. The proposal provides companies with the conceptual support necessary to
carry out and store the results of their measurement processes in an integrated and consistent way and also
avoids the development of specific tools for the measurement of each new kind of entity required.

4. Software measurement metamodel

A fundamental element to take into consideration when establishing a process improvement initiative is the
possibility of defining objective process indicators that will allow a software company to evaluate and improve
its processes efficiently at any given moment. A measurement process framework must be established when
this is taking place.

Human and technical factors are fundamental to the success of software measurement. The human aspect is
vitally important in the identification of business needs, the corresponding measures which satisfy them and
the building of knowledge and decisions from measurement results. Moreover, managers and software devel-
opers involved in the measurement process must perceive that their measurement programs are aligned with
their expectations. The technical support, as stated in Section 2, can help by enabling people to collect and
Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225
226

6 F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
P
R

O
O

F

interpret the measurement results in the best way. From these perspectives, one significant problem in collect-
ing data in a measurement process is mainly due to a poor definition of the software measures being applied
[21]. Thus it is important not only to gather the values pertaining to the measurement process, but also to rep-
resent the metadata associated with this data appropriately, i.e., to develop a measurement metamodel which
can be the reference for companies in the definition of their measurement models. In this way, all the data and
metadata related to the measurement of the different kinds of relevant entities in companies would be repre-
sented homogeneously. This metamodel could also be the basis for the development of a measurement repos-
itory as required, to therefore improve process maturity according to CMMI or ISO 15504.

To establish and clarify the elements involved (concepts and relationships) in the software measurement
domain before designing the metamodel, an ontology for software measurement was developed [10]. This
ontology enabled us to identify all the concepts, provide precise definitions for all the terms, and clarify the
relationships between them. Moreover, this common ontology has served as the basis for us to compare
the different standards and proposals, thus helping to achieve the required harmonization and convergence
process for all of the aforementioned. Based on the concepts and relationships stated in the ontology, the mea-
surement metamodel was derived. Fig. 2 shows the UML diagram (MOF compliant) which displays the main
elements of the Software Measurement Metamodel:

The Software Measurement Metamodel is organized around four main packages (see Fig. 2):

• Software Measurement Characterization and Objectives, which includes the concepts required to establish
the scope and objectives of the software measurement process. The main goal of a software measurement
U
N

C
O

R
R

E
C

T
E
D

Software Measures

Measurement Action

Characterization and Objectives

Measurement Approaches

Measurement Method
(from Measurement Approaches)

Base Measure
(from Software Measures)

1..n

1

1..n

1

uses

Measurement Function
(from Measurement Approaches)

0..n

0..n

0..n

0..n

uses

Derived Measure
(from Software Measures)

0..n

0..n

0..n

0..n

calculated with

0..n

0..n

0..n

0..n

uses

Type of Scale
(from Software Measures)

Information Need
(from Characterization and Objectives)

Indicator
(from Software Measures)

1..n

0..n

1..n

0..n

satisfies

Decision Criteria
(from Measurement Approaches)

Measurable Concept
(from Characterization and Objectives)

0..n

0..n

0..n

includes

0..n

1

1..n

1

1..nis associated with

Unit of Measurement
(from Software Measures)Scale

(from Software Measures)

1..n

1

1..n

1
belongs to

Analysis Model
(from Measurement Approaches)

1..n

1

1..n

1

calculated with

1..n

1..n

1..n

1..n

uses

Quality Model
kind

1..n 1..n1..n 1..n

evaluates

Measurement Result
value

Measurement Approach
(from Measurement)

Attribute
(from Characterization and Objectives)

1..n

1..n

1..n

1..n

relates

Measure
(from Software Measures)

0..n 0..n0..n

transformation

0..n 1..n

0..1

1..n

0..1

expressed in

1..n

1

1..n

1

has

0..n1..n 0..n1..ndefined for 1..n

0..n

1..n

0..n

uses

Entity Class
(from Characterization and Objectives)

0..n 0..n0..n

includes

0..n

1

n

1

n

defined for

1 1..n1 1..n

has

Measurement
LocationInTime

1
1

1
1

produces

1

n

1

n

performs

n

1

n

1Is performed on

n

1

n

1
uses

Entity
(from Characterization and Objectives)

1..n

0..n

1..n

0..n

belongs to

n1 n1

Is performed on

0..n0..n
composed of

Fig. 2. Software measurement metamodel.

Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

244

245
246
247
248
249
250
251
252
253

F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx 7

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
O
O

F

process is to satisfy certain information needs by identifying the entities (which belong to an entity class) and
the attributes of these entities (which are the object of the measurement process). Attributes and information

needs are related via measurable concepts (which belong to a quality model).
• Software Measures, which aim at establishing and clarifying the key elements in the definition of a software

measure. A measure relates a defined measurement approach and a measurement scale (which belongs to a
type of scale). A measure is expressed in a unit of measurement, and can be defined for more than one attri-

bute. Three kinds of measures are defined: base measures, derived measures, and indicators.
• Measurement Approaches. This sub-ontology introduces the concept of measurement approach to generalize

the different approaches used by the three kinds of measures for obtaining their respective measurement

results. A base measure applies a measurement method. A derived measure uses a measurement function

(which rests upon other base and/or derived measures). Finally, an indicator uses an analysis model (based
on a decision criteria) to obtain a measurement result that satisfies an information need.

• Measurement. This establishes the terminology related to the act of measuring software. A measurement

(which is an action) is a set of measurement results, for a given attribute of an entity, using a measurement

approach. Measurement results are obtained as the result of performing measurements (actions).
T
E
D

P
R5. Example of application

To illustrate the benefits of the proposal consider the following example: The main activity of a software
company is the development and maintenance of database applications. According to what its main activities
are, one relevant business goal of the company is to support the evolution of their databases by providing the
necessary means to facilitate the improvement (and consequent maintenance) of the conceptual and logical
models of its databases. To achieve this, the company needs to know the maintainability (easiness of mainte-
nance) of its database conceptual schemas, represented with E/R notation, and the maintainability of its rela-
tional schemas. These are the information needs of the company. The aim is to build more maintainable
databases to facilitate its evolution. The following figure illustrates how the current proposal can be applied
to the management of the measurement process according to the information needs of the company:
U
N

C
O

R
R

E
C

1. Definition of Software
Measurement Models

3. Entity
Measurement

2. Metamodel-based
definition of Software

Measures

MOF

Relational Database of
Bank Management

System

Relational
Databases
Metamodel

Relational Database of
Insurance

Management System

instance of

instance of

instance of

E/R Diagram Bank
Management

System

E/R
Metamodel

E/R Diagram
 Insurance Management

System

instance of

Data Data

Relational Database
Measurement model

DataM0

M1

Software
Measurement

Metamodel

instance of

M3

M2

E/R Measurement
Model

instance of

instance of

instance of instance of

MEASUREMENT MODELING DOMAIN MODELING AND MEASUREMENT

. . .

Fig. 3. Example of FMESP measurement application for database evaluation.

Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

254
255
256
257
258
259
260
261
262
263
264
265

266

267
268
269
270
271
272
273
274
275
276

8 F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
E
D

P
R

O
O

F

As can be observed in Fig. 3, the first step in the application of the proposal is to define the measurement
models for the fulfilment of the company’s information needs in order for it to attain its business goals. Based
on these information needs, which drive the measurement process, two measurement models can be defined: A
measurement model to evaluate the E/R diagrams’ maintainability and a measurement model to evaluate rela-
tional schemas. To satisfy the information need of the first model, the kind of entity candidate which should be
used for measurement is ‘‘E/R Diagrams’’. The attributes to evaluate could be ‘‘size’’ and ‘‘complexity’’ and
based on these we can include in the model measures as proposed in [12]. More detailed information about this
measurement model can be found in [6]. Once the measures have been included in the measurement model,
they have to be defined according to the E/R metamodel elements and finally, the measures are automatically
calculated in concrete E/R diagrams (level M1) represented as instances of the E/R metamodel. The same
steps are applied to the measurement of relational schemas, which are described with more detail in the fol-
lowing subsections.

5.1. Definition of a relational schemas maintainability measurement model

The measurement model to evaluate maintainability of relational schemas is based on the proposal of mea-
sures of Calero et al. [5]. In Fig. 4, the object diagram which represents the measurement model of Relational
Schemas Maintainability as an instance of the package ‘‘Software Measurement Characterization and Objec-
tives’’ (see Section 4), is shown:

As we can observe in Fig. 4, the context of the measurement model for Relational Schemas Maintainability
is established by identifying the information needs to be satisfied, the measurable concepts, the kind of entity
candidate for measurement, attributes to be evaluated and the related quality model. In this model, we also
include the concrete entities to be evaluated such as, for example, the relational schemas obtained as a result
of a bank management system and an insurance management system. These entities are those which are used
to carry the measurement process out (see Section 5.3).
U
N

C
O

R
R

E
C

T

Size :
Attribute

Complexity:
Attribute

Length:
Attribute

ISO 9126 :
Quality Model

To Knowthe Relational Schemes Maintainability :
Information Need

Maintainability :
MeasurableConcept

Relational Scheme of the "Bank Management System v1.0" :
Entity

Relational Scheme of the "InsuranceManagement System v1.0" :
Entity

evaluates

RelationalScheme:
EntityClass

defined for

is associated with

belongs to

belongs to

has
has

has

relates
relates

relates

Fig. 4. Relational scheme measurement model: software measurement characterization and objectives package instance.

Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

277
278
279
280
281
282
283
284
285

F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx 9

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
From the identified attributes to be evaluated, the next step is the definition of the software measures, which
should clearly identify the attributes they evaluate, the scale they belong and the unit in which they are
expressed. In Fig. 5, the object diagram which represents the part of the measurement model for Relational
Schemas, in the instance of the ‘‘Software Measures Package’’, is shown:

As can be observed in Fig. 5, for the evaluation of the identified entity attributes, three kind of measures
have to be defined. The first kind is that of ‘‘base measures’’, which are obtained directly by applying a mea-
surement method to quantify the attribute of interest. The base measures of the measurement model for Rela-
tional Schemes have been adopted from the proposal in [5]. Table 1 shows the defined base measures and
measurement methods in greater detail:
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

ATTRIBUTES MEASURES UNITS SCALES

Integers from Zero to
Infinite : Scale

Ratio : Type of
Scale

Between Zero and
One : Scale

NT (Number of Tables) :
Base Measure

Number of Foreign Keys (NFK)
: Base Measure

Number of Attributes (NA) :
Base Measure

Depth of the Relational Tree (DRT)
: Base Measure

Ratio of Foreign Keys (RFK) :
Derived Measure

Tables Maintenance Index (TMI) :
Indicator

Scheme Connectivity Index (SCI) :
Indicator

Size :
Attribute

Length :
Attribute

Complexity :
Attribute

Table :
Unit

Column :
Unit

Depth :
Unit

Percentage
: Unit

Maximum Referential Length Index (DRTI)
: Indicator

Real from Zero to Infinite
: Scale

Column :
Unit

Per One :
Unit

belongs to

has

expressed in

has

expressed in

has

expressed in

has

expressed in

has

expressed in

has

expressed in

has

expressed in

hasexpressed in

belongs to

belongs to

defined for

defined for

defined for

defined for

defined for

defined for

defined for

defined for

Fig. 5. Relational scheme measurement model: software measures package instance.

Table 1
Base measures and measurement methods of the relational schemas measurement model

Base
measure

Description Measurement method

NT Number of Tables in the scheme To count the Tables in the schema
NFK Number of Foreign Keys in the scheme To count the Foreign Keys in the schema
NA Number of Attributes in the scheme To count the Attributes in the schema
DRT Depth of relational tree (DRT). The number of tables which are

part of the longest path obtained by following the referential
integrity relationships between tables

To calculate the maximum depth of the paths obtained
by following all the possible foreign keys in the schema

Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

O
O

F

286
287
288
289
290
291
292
293
294
295
296
297
298

299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315
316
317

Table 2
Indicators, analysis models and decision criteria of the relational schemas measurement model

Indicator Description Analysis model Decision Criteria

TMI Tables Maintenance Index. This is obtained by
establishing the proportion of attributes and
tables in the relational scheme. The higher this
measure is the more difficult it is to maintain the
tables in the scheme

TMI = NA/NT If TMI > 18! TMI = ‘Very High’
If 12 < TMI 6 18! TMI = ‘High’
If 6 < TMI 6 12! TMI = ‘Medium’
If 0 6 TMI 6 6! TMI = ‘Low’

SCI Scheme Connectivity Index. This is the proportion
of foreign keys and tablesin the scheme.
The higher this measure is the more difficult
it is to maintain the relational scheme.

SCI= NFK/NT If SCI P 2! SCI = ‘Very High’
If 1,5 6 SCI < 2! SCI = ‘High’
If 1 < SCI < 1,5! SCI = ‘Medium’
If 0,5 6 SCI 6 1! SCI = ‘Low’
If 0< SCI < 0,5! SCI = ‘Very Low’

DRTI Maximum Referential Length Index.
Indicator based on the DRTI measure.
The higher this measure is the more difficult
it is to maintain the relational scheme

DRTI = DRT If DRTI > 15! DRTI = ‘Very High’
If 8 < DRTI 6 15!DRTI = ‘High’
If 2 < DRTI 6 8!DRTI = ‘Medium’
If 0 6 DRTI 6 2!DRTI = ‘Low’

10 F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

Once the base measures have been defined, the next step is the definition of the derived measures. These are
calculated by applying a measurement function to other base/derived measures. In the measurement model for
relational schemas maintainability the derived measure Ratio of Foreign Keys (RFK) has been included which
is calculated by applying the measurement function: RFK = NFK/NA. Finally, the indicators are defined by
using the other measures as a base, and these are the kinds of measures that can satisfy the information needs
defined in the model. In Table 2, the indicators, analysis models and decision criteria defined to satisfy the
information need ‘‘To know the maintainability of relational schemas’’ are shown:

To complete the measurement model, the instances of the packages ‘‘Measurement Approaches’’ and
‘‘Measurement Action’’ should be included. The part of the model corresponding to the package ‘‘Measure-
ment Approaches’’ can be obtained from the measures definition as shown in Tables 1 and 2. Finally, accord-
ing to the measurement model defined, the measurement process can be executed. This consists of evaluating
concrete relational schemas (entities) by calculating the measures defined (see Section 5.3). The results will be
represented as an instance of the package ‘‘Measurement Action’’.

5.2. Metamodel-based definition of measures

The proposal in this paper provides support for the measurement of any software entity and, to achieve
this, the measures definition is performed by analysing the metamodels which represent these entities (domain
metamodels). This analysis is based on the definition of the base measures based on the classes (constructors)
and relationships included in the metamodel. In Fig. 6, the Relational Metamodel, included in level 2 of the
conceptual architecture as a domain metamodel, is represented by using the graphical notation of UML:

The diagram in Fig. 6 includes the constructors necessary to define relational schemas. A relational scheme
is composed of tables which include attributes. The attributes can be part of a key, whose types are: foreign
keys which reference concrete tables or primary keys that identify the table rows.

Once the metamodel which represents the software entity to be measured is known, the next step in the def-
inition of the measurement model is to define or adopt (from known proposals) the necessary measures by
which to evaluate the attributes considered.

The base measures of the measurement model can be obtained by using the elements of the Relational
Scheme metamodel (MOF-classes and MOF associations) as a base. The base measures defined in the mea-
surement model described in Section 5.1 are calculated by applying two basic kinds of measurement methods
to the elements of the metamodel (classes or associations):

–Count. To count the number of instances of a class or relationship in the metamodel. The measures ‘‘Num-
ber of Tables’’, ‘‘Number of Foreign Keys’’ and ‘‘Number of Attributes’’ are obtained by counting the
instances of the classes ‘‘Tables’’, ‘‘Foreign Keys’’ and ‘‘Attributes’’.
Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

P
R

O
O

F

318
319
320
321
322
323
324
325

326

327
328
329
330
331
332
333
334
335
336
337
338

339
340
341
342
343
344

Key

name : String

Foreign Key Primary Key

Attribute

name : String

1..*

0..*

1..*

0..*

composed of K-A

Table

name : String

1

0..*

1

0..*

references FK-T

1

1

1

1

identifies PK-T

0..* 10..* 1

includes T-A

Fig. 6. Relational metamodel.

F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx 11

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
C
T
E
D–Graph Length. To calculate the maximum path obtained by following a concrete relationship in the meta-

model. This measurement method is applied by considering the metamodel as a graph in which the nodes
are the objects and the edges are the relationships. The measure ‘‘Depth of the Relational Tree’’ is obtained
by applying this measurement method.

The former measurement methods can be successfully applied to the definition of any base measure which is
related to the structural complexity of the entity to be evaluated. For the measurement of other aspects, new
measurement methods can be incorporated.
U
N

C
O

R
R

E5.3. Entity measurement

The last step in the measurement process is to collect the values of the defined measures in order to satisfy
the information needs. In order to achieve this, the entities candidate to be measured must be evaluated. In the
example shown, the evaluation should be performed on relational schemas which must be defined as instances
of the Relational Metamodel (on which the base measures have been defined).

Fig. 7 shows a relational schema defined as an instance of the Relational Metamodel:
The example in Fig. 7 illustrates a simple relational schema of the ‘‘Bank Management’’ system, and is com-

posed of two tables: ‘‘Bank Account’’ and ‘‘Client’’. The ‘‘Client’’ table includes the columns (attributes)
‘‘Id_C’’ of which the primary key is ‘‘Name’’ and ‘‘Address’’. The ‘‘Bank Account’’ table includes the attri-
butes: ‘‘number’’, ‘‘office’’, of which the primary key is both ‘‘balance’’ and ‘‘owner’’, which is the foreign
key to the ‘‘Client’’ table.

The calculation of the base measures defined in the Relational Measurement model (Section 5.2) has to be
performed in the following way:

–The measures ‘‘Number of Tables’’, ‘‘Number of Foreign Keys’’ and ‘‘Number of Attributes’’ are
obtained by applying the measurement method ‘‘Count’’, i.e. by counting the instances of the ‘‘Tables’’,
‘‘Foreign Keys’’ and ‘‘Attributes’’ classes. In this example the values are, respectively, 2, 1 and 7.
–The measure ‘‘Depth of the Relational Tree’’ is obtained by applying the ‘‘Graph Length’’ measurement
method to the ‘‘foreign key references table’’ metamodel association and its value is 1, so only this link
needs to be computed.
Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

P
R

O
O

F

345
346
347

348

349
350
351
352
353
354
355

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

Client : Table Bank Account : Table

Id_c :
Attribute

Name_c :
Attribute

Address_c :
Attribute

IDClient : Primary
Key

office :
Attribute

number :
Attribute

balance :
Attribute

IDAccount :
Primary Key

Owner :
Attribute

includes T-A

includes T-A

includes T-A
includes T-A

includes T-A

FKOwner :
Foreign Key

composed of K-A

includes T-A
includes T-A

references FK-T

composed of K-A

identifies PK-T
composed of K-A

composed of K-A

identifies PK-T

Fig. 7. Relational scheme of the ‘‘Bank Management System’’ entity.

12 F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

On the other hand, derived measures and indicators are calculated according to their measurement func-
tions. For example, the value of the measure Ratio of Foreign Keys (RFK) in the example is 0,142 (1/7).

6. GenMETRIC tool

With the aim of supporting the integrated measurement process commented on in previous sections, the
GenMETRIC tool has been developed. GenMETRIC is a tool for the definition, calculation and visualisation
of software metrics. This tool supports the management of the measurement process by supporting the defi-
nition of measurement models, the calculation of the measures defined in the measurement models and the
presentation of the results in graphical and tabular ways. For the definition of measurement models the tool
is based on the measurement metamodel presented in Section 3. Two key characteristics of GenMETRIC are
that it is:

• Generic. With this tool it is possible to measure any software entity. The requirement necessary to achieve
this is that the metamodel which represents the software entity (domain metamodel) must be included in the
repository of the tool. As has been mentioned in previous sections, the measures are defined on the elements
of the domain metamodels. This implies that in order to measure new entities it is not necessary to add a
new code to GenMETRIC.

• Extensible. GenMETRIC supports the definition of any software measure. The base measures are defined
on the domain metamodel elements (classes and associations) by using standard measurement methods
such as ‘‘count’’ or ‘‘graph length’’. For the definition of derived measures and indicators the tool includes
an evaluator of arithmetical and logical expressions (see Fig. 9).

To support generic and extensible software measurement the tool has been developed as part of a software
engineering environment (SEE) which supports the conceptual architecture proposed to integrate measure-
ment. This SEE is shown in Fig. 8:

As we can observe in Fig. 8, GenMETRIC is the key tool of the SEE developed for software measurement.
The metadata of the SEE (metamodels and models) are stored in a repository as XMI documents. The nec-
essary services for the definition of metadata according to MOF and its load and storage in the repository are
provided by the components MOFImplementation and RepManager. These services are used by the SEE tools.
To facilitate the management of metamodels and models of the repository the auxiliary tool METAMOD was
developed. METAMOD is a tool for the definition of metamodels and models. In the context of the proposed
Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

GenMETRIC

RepManager

MOF
Implementation

Meta-Meta Model

Meta Model

M3

M2

M1

Metadata Repository (XMI)

SEE Tools for Integrated
Measurement

Model

Metamod

Domain Metamodels
Domain Models

Measures
Definition

Measures
Calculation

Doma

in Models

Domain Metamodels

Fig. 8. Architectural view of GenMETRIC.

Fig. 9. Measure definition frame.

F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx 13

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS

Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

375
376
377
378
379
380
381

14 F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
SEE, METAMOD provides the functionality for the definition of the domain metamodels and their corre-
sponding measurement models which represent the kinds of entities and concrete entities which are candidates
for measurement. GenMETRIC imports the domain metamodels for the definition of the measures and these
measures are calculated on concrete entities (domain models).

GenMetric provides the user with a powerful interface for the definition of measurement models and for the
calculation and visualisation of results. Two roles are defined: Administrator, who can interact with the com-
plete functionality of the tool (definition and update of measurement models and calculation and presentation
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

Fig. 10. Measurement results frame.

Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

402

403
404
405
406

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx 15

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

of the measurement results); and User, who can calculate the measures of existing measurement models and
present the results. The form for the definition of software measures is shown in Fig. 9:

Fig. 9 shows an example of the definition of the base measure ‘‘Number of Tables’’ in the ‘‘Relational
Metamodel’’ (Section 5.2). This measure is defined by applying the measurement method count on the
‘‘Table’’ metamodel element. In the same way, by using GenMETRIC we can define all the measures related
to a specific measurement model (such as that which is presented in Section 5.1), by using the different ele-
ments from which it is composed.

Subsequently, we can use the measure definitions for the calculation of the metrics in real models. Fig. 10
summarizes the results of the automatic calculation of the measures presented in Section 5.1 when applied to
the ‘‘Bank Management System’’ entity (shown in Section 5.3):

As we can observe in Fig. 10, GenMETRIC provides both the tabular and the graphical (using bar charts)
representation to provide users with the necessary information for making decisions.

Therefore, an integrated and automatic environment for measurement is provided with the proposed tool.
This being a generic tool, the definition of any new measure on the existing domain metamodels is possible,
without having to code new modules. Furthermore, the tool is extensible, which eases the measurement of new
entities by means of the incorporation of their domain metamodels. For example, a metamodel for defining
web elements (formed by web pages, links between pages, etc.) could be included in the SEE and in this
way it could be possible to measure web sites. Moreover, as it works with XMI documents, it eases commu-
nication and the possibility of openly importing new domain metamodels, or domain and measurement mod-
els stored in other MOF compliant repositories.

7. Conclusions and future work

In this paper, we have proposed an approach to enable the management of measurement of software pro-
cesses. The evaluation of software processes involves the measurement of a great diversity of entities, from the
models of the process to projects, resources and the products obtained. The proposal allows the integrated
management of the measurement of these kinds of entities by means of:

–A measurement metamodel which includes the necessary constructors to define software measurement
models. The metamodel is CMMI, ISO 15939 and PSM compliant [20], as the ontology has mainly used
and adapted the concepts included in these proposals, and it provides companies with the initial support
necessary to sustain the measurement process.
–A flexible method to measure any kind of artefacts within metamodel scope. The measures included in the
measurement models are defined on the metamodel elements which represent the kinds of entities to be
evaluated. This implies great flexibility in the ability to include new kinds of evaluative entities in the mea-
surement programs of software companies without having to develop new tools to support them.

The framework allows the measurement of any software entity during the whole software lifecycle and espe-
cially in the early stages of software development where analysis and design models are produced. The iden-
tification of defects in these stages helps companies to reduce costs of late defect fixing and to improve the final
quality [3,19].

The proposal is supported by the GenMETRIC tool, a generic tool for the definition of measurement mod-
els. The measures of the models are automatically calculated by examining the XMI documents of the entities
to be evaluated. The metamodels which represent the different kinds of entities must be stored in the repos-
itory. The measurement capabilities of the tool increase owing to the inclusion of new kinds of entities to
be measured which implies the inclusion of their metamodels in the repository.

The approach presented in this paper is MDA-compliant. The model management principles allow meta-
model based tools to exchange compatible models, i.e. models conforming to metamodels which themselves
conform to common metametamodels. This paradigm has been proven to be quite powerful in practice
[1,32] and these advantages can also be applied to software measurement. In fact, with the MDA approach
the increase of CASE tools with XMI import/export capabilities, as is currently happening with many
UML CASE tools, will provide this proposal with significant power in the support of measurement. In this
Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

431
432
433
434
435
436
437
438
439
440
441
442

443
444
445
446
447
448
449
450
451
452

453

454
455
456
457
458

459

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

16 F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

way, companies will easily be able to import all their software entity models in the repository of the SEE (see
Fig. 8).

So far, this proposal has been successfully applied in a software company to improve its processes by pro-
viding the necessary evaluation support [6] by means of a consistent and unique terminology and a complete
measurement template for the collection of all the data and metadata related to the measurement process. The
company’s former measurement system was based on the calculation of various isolated project indicators.
With the measurement support, the measurement process was enriched with the overall information and tools
for computing and interpreting the indicators. Furthermore, a flexible environment was provided, initially
composed of measurement models to evaluate their database models, but extensibly to support the measure-
ment of any software entity, such as object-oriented systems or data-warehouses, especially given the current
adaptation of the company’s processes to object-oriented technologies.

Among related future works, the following deserve special attention:

–The development of a graphic notation for the representation of measurement models according to the
FMESP measurement meta-model. As a result, a software tool which extends the functionality of Gen-
METRIC should be incorporated into the SEE.
–The development of new case studies in software companies to integrate the measurement of their relevant
software entities in order to promote the improvement of their software processes.
–The incorporation of estimation as well as measurement capacities within the framework, by extending the
current software measurement ontology and corresponding metamodel with the necessary constructors,
and by including the domain metamodels and necessary technical support. In this context, relevant mea-
surement techniques such as function point analysis could also be supported by the proposal.

Acknowledgements

This work has been partially financed by the projects: MECENAS (Junta de Comunidades de Castilla-La
Mancha, Consejerı́a de Educación y Ciencia, reference PBI06-0024), ENIGMAS (Junta de Comunidades de
Castilla-La Mancha, Consejerı́a de Educación y Ciencia, reference PBI-05-058) and CALIA (Universidad de
Castilla-La Mancha). We acknowledge anonymous reviewers for their comments and suggestions that have
helped us to improve this work.

References

[1] J. Bezivin, E. Breton, Applying the basic principles of model engineering to the field of process engineering, UPGRADE: European
Journal for the Informatics Professional. (<http://www.upgrade-cepis.org/issues/2004/5/upgrade-vol-V-5.html>), (2004) V: 27–33.

[2] J. Bezivin, F. Jouault, D. Touzet, Principles, standards and tools for model engineering, in: Proceedings of the 10th IEEE
International Conference on Engineering of Complex Computer Systems (ICECCS’2005), pp. 28–29.

[3] L. Briand, S. Morasca, V. Basili, Defining and validating measures for object-based high-level design, IEEE Transactions on Software
Engineering 5 (5) (1999) 722–743.

[4] M. Brown, D. Goldenson, Measurement and Analysis: What Can and Does Go Wrong?, in: Proceedings of the 10th International
Symposium on Software Metrics (METRICS’04), 2004, pp. 131–138.

[5] C. Calero, M. Piattini, M. Genero, Empirical validation of referential integrity metrics, Information Software and Technology,
Special Issue on Controlled Experiments in Software Technology 43 (15) (2001) 949–957.

[6] G. Canfora, F. Garcı́a, M. Piattini, F. Ruiz, C. Visaggio, Applying a framework for the improvement of software process maturity,
Software: Practice and Experience 36 (3) (2006) 283–304.

[7] R. Dumke, R. Winkler, CAME Tools for an Efficient Software Maintenance, in: Proceedings of the 1st Euromicro Working
Conference on Software Maintenance and Reengineering (CSMR’97), Berlin (Germany), March 17–19, 1997, pp. 74–81.

[8] N. Fenton, S. Pfleeger, Software Metrics: A Rigorous & Practical Approach, 2nd ed., PWS Publishing Company, 1997.
[9] W.A. Florac, A.D. Carleton, Measuring the Software Process. Statistical Process Control for Software Process Improvement,

Addison Wesley, New York, 1999.
[10] F. Garcı́a, M. Bertoa, C. Calero, A. Vallecillo, F. Ruiz, M. Piattini, M. Genero, Towards a consistent terminology for software

measurement, Information and Software Technology 48 (8) (2006) 631–644.
[11] F. Garcı́a, F. Ruiz, M. Piattini, G. Canfora, C.A. Visaggio, FMESP: framework for the modeling and evaluation of software

processes, Journal of Systems Architecture 52 (2006) 627–639.
Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

http://www.upgrade-cepis.org

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

F. Garcı́a et al. / Information Sciences xxx (2007) xxx–xxx 17

INS 7522 No. of Pages 17, Model 3+

19 February 2007; Disk Used
ARTICLE IN PRESS
R
E
C

T
E
D

P
R

O
O

F

[12] M. Genero, L. Jiménez, M. Piattini, Measuring the quality of entity relationship diagrams, in: Proceedings of the 19th International
Conference on Conceptual Modeling (ER 2000), Salt Lake City, UT, 2000, pp. 513–526.

[13] M. Genero, M. Piattini, C. Calero (Eds.), Metrics for Software Conceptual Models, Imperial College Press, 2005.
[14] W. Harrison, A flexible method for maintaining software metrics data: a universal metrics repository, Journal of Systems and

Software 72 (2004) 225–234.
[15] IEEE Std 1061-1998 IEEE Standard for a Software Quality Metrics Methodology. <http://standards.ieee.org/reading/ieee/

std_public/description/se/1061-998_desc.html>.
[16] SO/IEC 15504-2:2003, Information technology – Process assessment – Part 2: Performing an assessment, International Standards

Organization, Geneva, Switzerland, 2004.
[17] ISO/IEC 90003, Software and Systems Engineering – Guidelines for the Application of ISO/IEC 9001:2000 to Computer Software,

International Standards Organization, Geneva, Switzerland, 2004.
[18] ISO/IEC 15939, Software Engineering – Software Measurement Process, Organization for Standardization, Geneva, 2002.
[19] A. Janes, M. Scotto, W. Pedrycz, B. Russo, M. Stefanovic, G. Succi, Identification of defect-prone classes in telecommunication

software systems using design metrics, Information Sciences 176 (2006) 3711–3734.
[20] C. Jones, Making Measurement Work, CROSSTALK The Journal of Defense Soft-ware Engineering 16 (1) (2003) 15–19.
[21] B.A. Kitchenham, R.T. Hughes, S.G. Linkman, Modeling software measurement data, IEEE Transactions on Software Engineering

27 (9) (2001) 788–804.
[22] L. Lavazza, Providing Automated Support for the GQM Measurement Process, IEEE Software 17 (3) (2000) 56–62.
[23] L. Lavazza, A. Agostini, Automated measurement of UML models: an open toolset approach, Journal of Object Technology (JOT) 4

(4) (2005) 115–134.
[24] J. McGarry, D. Card, C. Jones, B. Layman, E. Clark, J. Dean, F. Hall, Practical Software Measurement. Objective Information for

Decision Makers, Addison-Wesley, New York, 2002.
[25] Object Management Group (OMG), MDA Guide, Version 1.0.1, June 2003. <http://www.omg.org/mda/specs.htm>.
[26] Object Management Group (OMG), Meta Object Facility (MOF). Core Specification Version 2.0. October 2003. <http://

www.omg.org/docs/formal/00-04-03.pdf>.
[27] Object Management Group, MOF 2: XMI – Mapping Specification, version 2.1, 2005. <http://www.omg.org/docs/formal/05-09-

01.pdf>.
[28] Object Management Group (OMG), Unified Modeling Language: Superstructure Specification, October 8, 2004. <http://

www.uml.org>.
[29] E. Palza, C. Furhman, A. Abran, Establishing a Generic and Multidimensional Measurement Repository in CMMI context, in:

Proceedings of the 28th Annual NASA Goddard Software Engineering Workshop (SEW’03), Greenbelt (Maryland, USA), December
3–4, 2003, pp. 12–22.

[30] M. Scotto, A. Sillitti, G. Succi, T. Vernazza, A relational approach to software metrics, in: Proceedings of the Software Applied
Computing (SAC’2004), Nicosia, Cyprus, March 14–17, 2004, pp. 1536–1540.

[31] Software Engineering Institute (SEI), Capability Maturity Model Integration (CMMI), version 1.1. <http://www.sei.cmu.edu/cmmi/
>.

[32] J.M. Sprinkle, A. Ledeczi, G. Karsai, G. Nordstrom, The New Metamodeling Generation, in: Proceedings of the Eighth Annual
IEEE International Conference and Workshop on the Engineering of Computer Based Systems, April 2001, pp. 275–279.

[33] V.K. Vaishnavi, S. Purao and J. Liegle. Object-oriented product metrics: A generic framework. Information Sciences, in press.
[34] R. Van Solingen, E. Berghout, The Goal/Question/Metric Method: A Practical Guide for Quality Improvement of Software

Development, McGraw-Hill, New York, 1999.
[35] <http://irb.cs.uni-magdeburg.de/sw-eng/us/bibliography/bib_main.shtml>.
U
N

C
O

R

Please cite this article in press as: F. Garcı́a et al., Managing software process measurement: ..., Informat. Sci. (2007),
doi:10.1016/j.ins.2007.01.018

http://standards.ieee.org
http://standards.ieee.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.uml.org
http://www.uml.org
http://www.sei.cmu.edu
http://www.sei.cmu.edu
http://irb.cs.uni-magdeburg.de

	Managing software process measurement: A metamodel-based approach
	Introduction
	Related works
	Conceptual architecture for integrating software measurement
	Applying the model-driven paradigm to software measurement
	Elements of the conceptual architecture

	Software measurement metamodel
	Example of application
	Definition of a relational schemas maintainability measurement model
	Metamodel-based definition of measures
	Entity measurement

	GenMETRIC tool
	Conclusions and future work
	Acknowledgements
	References

