KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS: KES 2007 - WIRN 2007

11th International Conference, KES 2007 XVII Italian Workshop on Neural Networks Vietri sul Mare, Italy, September 12-14, 2007 Proceedings

Springer, Tiergartenstraße 17, 69121 Heidelberg, Germany www.springer.com

SEARCH

KES2007

11th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems

in conjunction with

WIRN2007

XVII Italian Workshop on Neural Networks

Lloyd's Baia Hotel, Vietri sul Mare, Salerno, Italy (12, 13 and 14 September 2007)

Conference program

Sponsoring Institutions

Università degli Studi di Milano

Seconda Università di Napoli

Comune di Vietri sul Mare

Comune di Salerno

Regione Campania

Ministero per le Riforme e le Innovazioni nella P.A.

Lecture Notes in Artificial Intelligence4693Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Bruno Apolloni Robert J. Howlett Lakhmi Jain (Eds.)

Knowledge-Based Intelligent Information and Engineering Systems: KES 2007 - WIRN 2007

11th International Conference, KES 2007 XVII Italian Workshop on Neural Networks Vietri sul Mare, Italy, September 12-14, 2007 Proceedings, Part II

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Bruno Apolloni Dipartimento di Scienze dell'Informazione Università degli Studi di Milano 20135 Milano, Italy E-mail: apolloni@dsi.unimi.it

Robert J. Howlett University of Brighton Centre for SMART Systems, School of Engineering Brighton, BN2 4GJ, UK E-mail: R.J.Howlett@bton.ac.uk

Lakhmi Jain University of South Australia Knowledge-Based Intelligent Engineering Systems Centre SA 5095, Australia E-mail: lakhmi.jain@unisa.edu.au

Library of Congress Control Number: 2007934283

CR Subject Classification (1998): I.2, H.4, H.3, J.1, H.5, K.6, K.4

LNCS Sublibrary: SL 7 - Artificial Intelligence

ISSN	0302-9743
ISBN-10	3-540-74826-1 Springer Berlin Heidelberg New York
ISBN-13	978-3-540-74826-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007 Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India Printed on acid-free paper SPIN: 12120574 06/3180 5 4 3 2 1 0

Table of Contents – Part II

I Intelligence Everywhere

Ambient Intelligence

An Efficient Indexing Technique for Location Prediction of Moving	1
Objects Dong-Oh Kim, Kang-Jun Lee, Dong-Suk Hong, and Ki-Joon Han	1
Combining Smart Tags and Body Fixed Sensors for Disabled People Assistance	10
Geometrical Representation of Quantity Space and Its Application to Robot Motion Description	18
Modeling Smart Homes for Prediction Algorithms A. Fernández-Montes, J.A. Álvarez, J.A. Ortega, M.D. Cruz, L. González, and F. Velasco	26
Qualitative Correspondence for Object Tracking Using Dynamic Panorama Farshad Fahimi, Honghai Liu, and David J. Brown	34
Artificial Intelligence Applications in Digital Content	
A Hybrid System: Neural Network with Data Mining in an e-Learning Environment David Wen-Shung Tai, Hui-Ju Wu, and Pi-Hsiang Li	42
A Personalization Recommendation Framework of IT Certification e-Learning System	50
An Architecture for e-Learning System with Computational Intelligence	58

 APD-A Tool for Identifying Behavioural Patterns Automatically from Clickstream Data I-Hsien Ting, Lillian Clark, Chris Kimble, Daniel Kudenko, and Peter Wright 	66
Breedbot: An Edutainment Robotics System to Link Digital and Real World	74
Orazio Miglino, Onofrio Gigliotta, Michela Ponticorvo, and Stefano Nolfi	
Develop e-Learning Platform for Reinforcement Learning on Temperature Sensor	82
Modeling e-Learning System Performance Evaluation with Agent-Based Approach	90
Salable Vector Graphics (OpenVG) for Creating Animation Image in Embedded Systems Sang-Yun Lee, Sunghwan Kim, Jihoon Chung, and Byung-Uk Choi	99
Artificial Intelligence Applications in Security	
A Data Mining Methodology for Anomaly Detection in Network	100
	109
A Data Mining Methodology for Anomaly Detection in Network Data	109 117
A Data Mining Methodology for Anomaly Detection in Network Data Costantina Caruso and Donato Malerba A Dedicated Hardware for Fingerprint Authentication Costantina Caruso	
 A Data Mining Methodology for Anomaly Detection in Network Data	117
 A Data Mining Methodology for Anomaly Detection in Network Data	117 125

Simone Ferraresi, Emanuele Francocci, Alessio Quaglini, and Francesco Picasso

Artificial Intelligence Methods for Information Processing (AIMIP 2007)

A Novel Image Edge Detection Using Fractal Compression Liangbin Zhang and Lifeng Xi	159
A Rapid Algorithm for Computing ST Reliability of Radio-Communication Networks Fei Gao, Xuejun Liu, and Hanzhong Liu	167
A Second-Order Upwind Difference Scheme for a Singularly Perturbed Problem with Integral Boundary Condition in Netural Network Zhongdi Cen and Xin Cai	175
Application of Genetic Algorithm to Hausdorff Measure Estimation of Sierpinski Carpet Qili Xiao and Lifeng Xi	182
Decomposability of Implication Operators Zhudeng Wang	189
Fault Detecting Technology Based on BP Neural Network Algorithm Ran Jin, Kun Gao, Zhigang Chen, Chen Dong, Yanghong Zhang, and Lifeng Xi	194
Image Information Hiding Encryption Using Chaotic Sequence Zhen Liu and Lifeng Xi	202
Improvement of an Image Encryption Algorithm Based on Combined Multidimensional Chaotic Systems Chen Dong, Jifang Li, Lifeng Xi, Jie Hao, and Ran Jin	209
Investigation on Fitting Graph Based on Fractal Dimension's Pretreatment	217
Practice of Video Encryption Algorithms Based on Chaotic Sequence and Scan Pattern	225
Research on WebGIS Based on Multi-agent Taowei Wang, Liangbin Zhang, and Aimin Yang	233
Transient Air-Fuel Ratio Estimation in Spark Ignition Engine Using Recurrent Neural Networks	240

Communicative Intelligence 2007

A Pattern Recognition Algorithm Used in Knowledge-Based Adaptive Control System to Select Strategy <i>Krzysztof Brzostowski and Jerzy Światek</i>	247
Alignment-Based Preprocessing of Personal Ontologies on Semantic Social Network	255
Browser Latency Impact Factors Andrzej Siemiński	263
Global Adaptive Request Distribution with Broker Leszek Borzemski, Anna Zatwarnicka, and Krzysztof Zatwarnicki	271
Global and Local Approach to Complex Systems Modeling Using Dynamic Neural Networks–Analogy with Multiagent Systems Jarosław Drapała and Jerzy Światek	279

Computation Intelligence for Image Processing and Pattern Recognition

A Content Dependent Visualization System for Symbolic Representation of Piano Stream	287
Audio Watermarking Based on the Psychoacoustic Model and Modulated Complex Lapped Transform	295
A New Optimization Algorithm of Kinoforms Based on Simulated Annealing Shinya Nozaki, Yen-Wei Chen, and Zensho Nakao	303
Curvelet-Domain Image Watermarking Based on Edge-Embedding Thai Duy Hien, Ikeda Kei, Hanane Harak, Yen Wei Chen, Yasunori Nagata, and Zensho Nakao	311
Linking KANSAI and Image Features by Multi-layer Neural Networks	318
Pattern Analysis and Prediction of O-Linked Glycosylation Sites in Protein by Principal Component Subspace Analysis Yen-Wei Chen, Xuemei Yang, Masahiro Ito, and Ikuko Nishikawa	326

Prediction of the O-Glycosylation with Secondary Structure Information	
by Support Vector Machines	335
Ikuko Nishikawa, Hirotaka Sakamoto, Ikue Nouno,	
Kazutoshi Sakakibara, and Masahiro Ito	

Human Computer Intelligent Systems

Juan Pablo Soto, Aurora Vizcaíno, Javier Portillo-Rodríguez, and Mario Piattini Evaluation of Trivial Dialogue Phrase Databases Through Practical Application to User-Computer Conversation - Case Study: English - Spanish 361 Calkin S. Montero and Kenji Araki 361 Formalizing Recognition of Sketching Styles in Human Centered 369 Danilo Avola, Fernando Ferri, and Patrizia Grifoni 369 Fostering Multi-Modal Summarization for Trend Information 377 Tsuneaki Kato, Mitsunori Matsushita, and Noriko Kando 387 Won-Du Chang and Jungpil Shin 385 Multidimensional Emotional Appraisal Semantic Space (MEAS): 395 Evaluating HM Affective Interactions 395 Maria Rita Ciceri and Stefania Balzarotti 403 Fernando Ferri, Patrizia Grifoni, and Stefano Paolozzi 403	A Simple Model for Human-Robot Emotional Interaction Isabella Cattinelli and N. Alberto Borghese	344
Application to User-Computer Conversation - Case Study: 361 Calkin S. Montero and Kenji Araki 361 Formalizing Recognition of Sketching Styles in Human Centered 369 Danilo Avola, Fernando Ferri, and Patrizia Grifoni 369 Fostering Multi-Modal Summarization for Trend Information 377 Tsuneaki Kato, Mitsunori Matsushita, and Noriko Kando 387 Won-Du Chang and Jungpil Shin 387 Multidimensional Emotional Appraisal Semantic Space (MEAS): 395 Evaluating HM Affective Interactions 395 Maria Rita Ciceri and Stefania Balzarotti 403 Fernando Ferri, Patrizia Grifoni, and Stefano Paolozzi 403 Reconsideration of the Effectiveness on Extracting Computer Diagnostic 411 Yoshiaki Kurosawa, Akira Hara, Kazuya Mera, and Takumi Ichimura 411	Communities of Practice Juan Pablo Soto, Aurora Vizcaíno, Javier Portillo-Rodríguez, and	353
Systems369Danilo Avola, Fernando Ferri, and Patrizia Grifoni377Fostering Multi-Modal Summarization for Trend Information377Tsuneaki Kato, Mitsunori Matsushita, and Noriko Kando387Interactive Virtual Oriental Brush with Pen-Tablet System387Won-Du Chang and Jungpil Shin387Multidimensional Emotional Appraisal Semantic Space (MEAS):395Evaluating HM Affective Interactions395Maria Rita Ciceri and Stefania Balzarotti403Fernando Ferri, Patrizia Grifoni, and Stefano Paolozzi403Reconsideration of the Effectiveness on Extracting Computer Diagnostic411Yoshiaki Kurosawa, Akira Hara, Kazuya Mera, and Takumi Ichimura411Hybrid Artificial Intelligence Systems Workshop411	Application to User-Computer Conversation - Case Study: English - Spanish	361
Tsuneaki Kato, Mitsunori Matsushita, and Noriko KandoInteractive Virtual Oriental Brush with Pen-Tablet System387Won-Du Chang and Jungpil Shin387Multidimensional Emotional Appraisal Semantic Space (MEAS): Evaluating HM Affective Interactions395Maria Rita Ciceri and Stefania Balzarotti395Multimodal Sentence Similarity in Human-Computer Interaction Systems403Fernando Ferri, Patrizia Grifoni, and Stefano Paolozzi403Reconsideration of the Effectiveness on Extracting Computer Diagnostic Rules by Automatically Defined Groups411Yoshiaki Kurosawa, Akira Hara, Kazuya Mera, and Takumi Ichimura411Hybrid Artificial Intelligence Systems Workshop411	Systems	369
Won-Du Chang and Jungpil ShinMultidimensional Emotional Appraisal Semantic Space (MEAS): Evaluating HM Affective Interactions	0	377
 Evaluating HM Affective Interactions		387
Systems403Fernando Ferri, Patrizia Grifoni, and Stefano PaolozziReconsideration of the Effectiveness on Extracting Computer DiagnosticRules by Automatically Defined Groups411Yoshiaki Kurosawa, Akira Hara, Kazuya Mera, and Takumi IchimuraHybrid Artificial Intelligence Systems Workshop	Evaluating HM Affective Interactions	395
 Rules by Automatically Defined Groups	Systems	403
	Rules by Automatically Defined Groups	411

Adaptive Mechanisms for Classification Problems with Drifting Data ... 419 Zoheir Sahel, Abdelhamid Bouchachia, Bogdan Gabrys, and Paul Rogers

Architecture of an Hybrid System for Experimentation on Web Information Retrieval Incorporating Clustering Techniques Montserrat Mateos and Carlos G. Figuerola	427
Automated Ham Quality Classification Using Ensemble Unsupervised Mapping Models Bruno Baruque, Emilio Corchado, Hujun Yin, Jordi Rovira, and Javier González	435
FreeEnCal: A Forward Reasoning Engine with General-Purpose Jingde Cheng, Shinsuke Nara, and Yuichi Goto	444
Hybrid Agents Based Architecture on Automated Dynamic Environments Dante I. Tapia, Javier Bajo, Juan M. Corchado, Sara Rodríguez, and Juan M. Manzano	453
Hybrid Architecture for a Reasoning Planner Agent Javier Bajo, Dante I. Tapia, Ana de Luis, Sara Rodríguez, Juan F. de Paz, and Juan M. Corchado	461
Learning Topologic Maps with Growing Neural Gas José García-Rodríguez, Francisco Flórez-Revuelta, and Juan Manuel García-Chamizo	469
Using a Neurofuzzy Approach in a Medical Application Constantinos Koutsojannis and Ioannis Hatzilygeroudis	477

Innovations in Intelligent Data Analysis

A Likelihood Ratio Test for Differential Metabolic Profiles in Multiple Intensity Measurements Frank Klawonn, Claudia Choi, Beatrice Benkert, Bernhard Thielen, Richard Münch, Max Schobert, Dietmar Schomburg, and Dieter Jahn	485
Combining Bagging, Boosting and Dagging for Classification Problems	493
Functional Clustering and Functional Principal Points Nobuo Shimizu and Masahiro Mizuta	501
Prescreening of Candidate Rules Using Association Rule Mining and Pareto-optimality in Genetic Rule Selection Hisao Ishibuchi, Isao Kuwajima, and Yusuke Nojima	509
Term Clustering in Texts Based on Fuzzy Neighborhoods and Kernel Functions	517

Variable Based Fuzzy Blocking Regression Model	525
Mika Sato-Ilic	

Intelligent Agents and Their Applications

A Design and Testing Technology for Ubiquitous Robot Companion Software Component	533
Sun-Myung Hwang, Yun-Koo Chung, and Hang-Kon Kim	
A Multiagent Based Vehicle Engine Fault Diagnosis Xiaobing Wu, Xueshan Gao, and Dharmendra Sharma	541
A Multi-agent Security Framework for e-Health Services Rossilawati Sulaiman, Dharmendra Sharma, Wanli Ma, and Dat Tran	547
A Proactive Routing Algorithm Based on Bitmap Tables for Wireless Sensor Networks	555
A Study on Mobile Agent Based Resource Management in Grid Chen Zhao, Jian Yu, and Bencheng Chai	565
An Agent-Based Evolutionary Robotic System for Its Reconfiguration	571
Design of the Intelligence User Identification Method for the Improved Password Input Method and the Personality Security <i>Eun-Ser Lee, Haeng-Kon Kim, and Sang Ho Lee</i>	581
Using Tuple Space to Coordinate Multiagent Activities Wanli Ma, Dat Tran, and Dharmendra Sharma	589
Intelligent and Adaptive Systems in Economics, Finance and Management	
Adaptive Use of Technical Indicators for Predicting the Intra-Day Price Movements	597
Credal Networks for Operational Risk Measurement and Management	604
Fair Consistency Evaluation in Fuzzy Preference Relations and in AHP Matteo Brunelli and Michele Fedrizzi	612

Making Financial Trading by Recurrent Reinforcement Learning Francesco Bertoluzzo and Marco Corazza	619
Multiple Ant Colony Optimization for a Rich Vehicle Routing Problem: A Case Study Paola Pellegrini, Daniela Favaretto, and Elena Moretti	627
Portfolio Optimization Through Elastic Maps: Some Evidence from the Italian Stock Exchange	635
Prediction of Golden Cross and Dead Cross by Neural Networks and Its Utilization	642

Intelligent Automation Systems

An Agent-Based Early Manufacturability Assessment for Collaborative Design in Coating Process <i>Chii-Ruey Lin, Pei-Shu Fan, Yea-Jou Shiau, and MuDer Jeng</i>	649
Design of a Simulated Environment for Flexible Manufacturing Systems	656
MyHome: A Residential Server for Smart Homes Sheng-Luen Chung and Wen-Yuan Chen	664
Semi-automatic Production Testing of Spark Plugs S.D. Walters, P.A. Howson, and R.J. Howlett	671

Intelligent Control Theory and Applications

A Gait Based Approach to Detect Directional Bias of Four-Legged Robots' Direct Walking Utilizing Acceleration Sensors Ding-Jie Huang and Wei-Chung Teng	681
An Intelligent Algorithm for Scheduling Jobs on a Single Machine with a Common Due Date	689
Application of Intelligent Neural Networks to Prediction of Micro-electroforming for U-Type Micro-cavity Sheau-Wen Shiah, Pai-Yu Chang, Tzeng-Yuan Heh, Po-Hung Lin, and Fu-Cheng Yang	696
Design of a Supervisor for Traffic Light Systems Ta-Hsiang Chung and Yi-Sheng Huang	704

Intelligent Data Processing in Process Systems and Plants

A Knowledge-Based Approach for the Analysis of Abnormal Situations	712
A Multi-agent Approach to Process Design Rafael Batres, Hikaru Takashima, and Tetsuo Fuchino	720
A Sliding-Mode Control Approach in Ultra-Precision Positioning System Insung Choi, Seungok Choi, Gunhaeng Heo, Kiheon Park, and Kwanho You	728
Integration of Multi-agent Controller and Scheduler for Multi-purpose and Multi-batch Plant	736
Optimization Method for Design of Supercritical Water Oxidation Process Using Genetic Algorithm	744

Intelligent Mechanism for Knowledge Innovation

An Implementation Design of a Fine-Grained Database Access Control Policy Consistency Checking Mechanism Bat-Odon Purevjii, Masayoshi Aritsugi, Sayaka Imai, and Yoshinari Kanamori	752
Applying Privacy Preserving Count Aggregate Queries to k-Classification Hidehisa Takamizawa and Masayoshi Aritsugi	761
Event-Centralized Management of Geographic Information Collected from Blog	769
Message Flow: Design and Architecture of a Message Flow Management System	777
Scalable 2-Pass Data Mining Technique for Large Scale Spatio-temporal Datasets <i>Tahar Kechadi and Michela Bertolotto</i>	785

Synchronizing Music and Video of Query Results in Cross-Media	
Retrieval System	793
Teruhisa Hochin and Wen Xue	

Intelligent Techniques for Biometric Based Authentication

A Fuzzy Approach to Multimodal Biometric Authentication Antonia Azzini, Stefania Marrara, Roberto Sassi, and Fabio Scotti	801
An Open Source Java Framework for Biometric Web Authentication Based on BioAPI Elisardo González Agulla, Enrique Otero Muras, José Luis Alba Castro, and Carmen García Mateo	809
Feature Distribution of the Fingerprint Template Generated by the Geometric Hashing-Based Fuzzy Vault Sungju Lee, Daesung Moon, and Yongwha Chung	816
Hand Geometry Verification Using Time Series Representation Vit Niennattrakul, Dachawut Wanichsan, and Chotirat Ann Ratanamahatana	824
Navigation Dynamics as a Biometrics for Authentication Ernesto Damiani and Gabriele Gianini	832

Logic Based Intelligent Information Systems

A Cooperative Grid Computing Approach to Automated Theorem Finding and Automated Problem Proposing Jingde Cheng, Yuichi Goto, Shinsuke Nara, and Takahiro Koh	840
A Logic Grammar for Circuit Analysis: Problems of Recursive Definition <i>Takushi Tanaka</i>	852
A Natural Deduction System for Annotated Predicate Logic Seiki Akama, Kazumi Nakamtsu, and Jair Minoro Abe	861
An Intelligent Coordinated Traffic Signal Control Based on EVALPSN	869
Intelligent Design of Diagnosable Systems: A Case Study of Semiconductor Manufacturing Machines YuanLin Wen, ShengLuen Chung, LiDer Jeng, and MuDer Jeng	877
Knowledge Assessment Based on Many-Valued Logic Sylvia Encheva and Sharil Tumin	885

Monadic Curry	Algebras $Q\tau$		893
Jair Minoro	Abe, Seiki Akama,	and Kazumi Nakamatsu	

II Intelligent Knowledge

Chance Discovery

A Method for Visualising Possible Contexts Shigeki Amitani and Ernest Edmonds	901
An Interface for Medical Diagnosis Support Akinori Abe, Norihiro Hagita, Michiko Furutani, Yoshiyuki Furutani, and Rumiko Matsuoka	909
Creating Chances Through Cognitive Niche Construction: The Role of Affordances	917
Discovering Color Semantics as a Chance for Developing Cross-Cultural	0.9.6
Design Frameworks Gyoung Soon Choi, Ruediger Oehlmann, Hilary Dalke, and David Cottington	926
Evaluating a Constructive Meta-learning Algorithm for a Rule Evaluation Support Method Based on Objective Indices Hidenao Abe, Shusaku Tsumoto, Miho Ohsaki, and Takahira Yamaguchi	934
Information Literacy and Everyday Life Risks	942
Logic of Discovery in Uncertain Situations–Deciding Algorithms V. Rybakov	950
RFID Tags Without Customers ID in Book Library for Detecting Latent Interest of User Group Yukio Ohsawa, Takuma Hosoda, Takeshi Ui, Misato Ueda, and Hirofumi Tanaka	959
Trigger to Switch Individual's Interest Toward Unconscious Preference	970
Visualization of Similarities and Dissimilarities Between Rules Using Multidimensional Scaling Shusaku Tsumoto and Shoji Hirano	978

Knowledge - Based Interface Systems (I)

A Unified Approach to Web Usage Mining Based on Frequent Sequence Mining Nobuhiro Inuzuka and Jun-ichi Hayakawa	987
DACS Web Service	995
Estimation of Initial Contour Based on Edge Background Subtraction for Self-affine Mapping System Haruki Kawanaka, Hirofumi Kato, Fuminori Matsubara, Yuji Iwahori, and Robert J. Woodham	1005
Improvement of Accuracy for Gaussian Curvature Using Modification Neural Network	1013
Shadow Removal Method for Real-Time Extraction of Moving Objects	1021
Knowledge - Based Interface Systems (II)	
Delayed Learning and the Organized States Toshinori Deguchi and Naohiro Ishii	1029
Educational System Using Self-monitor Study and Streaming Masahiro Ozaki, Yoshinori Adachi, Saori Takeoka, Ai Sugimura, and Naohiro Ishii	1037
Influence of Presence of Frame on Writer Recognition Yoshinori Adachi, Masahiro Ozaki, Yuji Iwahori, and Naohiro Ishii	1045
Information Extraction by XLM Masashi Okada, Naohiro Ishii, and Nariaki Kato	1051
The Characteristics Evaluation of Stacked-Type Electrostatic Actuators by the Neural Network	1059

Knowledge and Information Management in Social Community

A Piecewise Linear Representation Method of Time Series Based on Feature Points	1066
A Regional Safety Information Sharing System Based on CMS and Online Map System	1073
Avoidance of Traffic Delay for Panicking Crowds Subject to Information Propagation	1081
Building the Virtual Community to Support Interregional Exchange Between Rural and Urban Yoshida Chiho, Yasuda Takami, and Yokoi Shigeki	1089
Indexing of Moving Objects on Road Network Using Composite Structure Jun Feng, Jiamin Lu, Yuelong Zhu, Naoto Mukai, and Toyohide Watanabe	1097
Optimization of Vehicle Assignment for Car Sharing System Kentaro Uesugi, Naoto Mukai, and Toyohide Watanabe	1105
Knowledge and Ontological Engineering for (KOS)	
An Application of Decision Trees for Rule Extraction Towards Telecommunications Fraud Detection Constantinos S. Hilas and John N. Sahalos	1112
Assisting Dialogical Agents Modeled from Novice User's Perceptions David Leray and Jean-Paul Sansonnet	1122
 Combining Empirical Studies of Audio-Lingual and Visual-Facial Modalities for Emotion Recognition M. Virvou, G.A. Tsihrintzis, E. Alepis, IO. Stathopoulou, and K. Kabassi 	1130
Learning Objects Repository for Training of Power Systems Operators	1138
Mining Meaningful Student Groups Based on Communication History Records	1146

Ontological Engineering for Practical Knowledge Work Tatiana Gavrilova				
Semantic Modeling of Product Manuals Rossitza Setchi, Nikolaos Lagos, and Ammar Huneiti				
Knowledge Engineering in Multi Robot Systems				
Appearance-Based Multi-robot Following Routes Using Incremental PCA	1170			
Luis Payá, Oscar Reinoso, Arturo Gil, Jose M. Pedrero, and Mónica Ballesta	. 1170			
Contribution to Legged Robot Visual Servoing Zelmar Echegoyen, Alicia d'Anjou, and Manuel Graña	1179			
Incremental Evolution of Stigmergy-Based Multi Robot Controllers Through Utility Functions P. Caamaño, J.A. Becerra, R.J. Duro, and F. Bellas	1187			
Lattice Independence and Vision Based Mobile Robot Navigation I. Villaverde, M. Graña, and J.L. Jimenez	1196			
ROBMAT: Teleoperation of a Modular Robot for Collaborative Manipulation	1204			
Knowledge-Based Creativity Support Systems				
Data Mining of Time-Series Medical Data by Formal Concept	1914			

Analysis	1214
A Case Study on Project-Management Training-Support Tools for Japanese/Chinese/Indian Offshore Development Engineers Sadamitsu Toyoda, Motoki Miura, and Susumu Kunifuji	1222
A Modelling Framework for Sharing Knowledge Reyes Grangel, Ricardo Chalmeta, and Cristina Campos	1230
An Assistant Interface for Finding Query-Related Proper Nouns Tomoya Iwakura, Kanji Uchino, and Seishi Okamoto	1238
Community Support System for Extensive Readers: Case Study in a Domain 'Knowledge Science'	1246

Design and Evaluation a Knowledge Management System by Using Mathematical Model of Knowledge Transfer Kouji Aoyama, Takanori Ugai, and Jun Arima				
Development of a Mimamori-Care System for Persons with Dementia Based on the Real World-Oriented Approach Kenichi Nakagawa, Taro Sugihara, Hitoshi Koshiba, Ryozo Takatsuka, Naotaka Kato, and Susumu Kunifuji				
Overview of Network Information by Using Anchored Maps	1269			
Spreadsheet Interface Which Simplifies the Visualization of the Network Structures	1277			
Knowledge-Based Multi-criteria Decision Support				
A Fuzzy Ranking Approach to Data Envelopment Analysis Hsuan-Shih Lee, Pei-Di Shen, and Wen-Li Chyr	1285			
A New Information Fusion Method for Fuzzy Information Retrieval Hsuan-Shih Lee, Ming-Tao Chou, Wei-Kuo Tseng, Hsin-Hsiung Fang, and Chen-Huei Yeh	1293			
An Analytic Approach for Synthesizing Comparison Matrices in AHP Hsuan-Shih Lee, Cheng-Chi Chung, Su-Man Wang, Ming-Tao Chou, and Chen-Huei Yeh	1299			
Estimating Missing Values in Incomplete Additive Fuzzy Preference Relations	1307			
Fuzzy Logic Based Reputation System for Mobile Ad Hoc Networks Jin-Long Wang and Shih-Ping Huang	1315			
Synthesizing Comparison Matrices of AHP Under Group Decision Ming-Tao Chou, Hsuan-Shih Lee, Ching-Wu Chu, and Chao-Yuan Cheng	1323			
Knowleged Based Systems for e-Business				

A Proposal of Adequate and Efficient Designing of UML Documents	
for Beginners	. 1331
Masakazu Takahashi, Satoru Takahashi, and Yoshikatsu Fujita	

Analysis of the Relation Between Stock Price Returns and Headline News Using Text Categorization Satoru Takahashi, Masakazu Takahashi, Hiroshi Takahashi, and Kazuhiko Tsuda				
Evaluation of a Hierarchical Shaper as a Policy Execution Point Takeshi Aimoto, Takeki Yazaki, Takashi Isobe, Yoshihiko Sakata, and Kenichi Yoshida	1346			
Query Message Delivery over Community-Based Overlay Network Yoshikatsu Fujita, Yasufumi Saruwatari, Jun Yoshida, and Kazuhiko Tsuda	1354			
Relation Analysis on Information System Life Cycle Processes by KeyGraph Algorithms Tadashi Tsukahara, Atsuo Hazeyama, and Kazuhiko Tsuda	1362			
Author Index	1369			

Applying Trust, Reputation and Intuition Aspects to Support Virtual Communities of Practice

Juan Pablo Soto, Aurora Vizcaíno, Javier Portillo-Rodríguez, and Mario Piattini

Alarcos Research Group, Information Systems and Technologies Department, Indra-UCLM Research and Development Institute, University of Castilla-La Mancha Ciudad Real, Spain jpsoto@proyectos.inf-cr.uclm.es, {aurora.vizcaino,mario.piattini}@uclm.es, javier.portillo@alu.uclm.es

Abstract. Communities of Practice (CoPs) are places in which the flow of knowledge is generated as a result of the confidence that members have in each other. The main goal of this research is to emulate these communities' behavior in knowledge management systems. As a consequence of this, an increase in the exchange information between the members of a virtual community is expected. However, upon starting this work, we encountered several problems. For instance, how could we implement or rate social aspects such as trust and reputation?. This paper describes our advances in resolving these problems.

Keywords: Trust, Reputation, Communities of Practice.

1 Introduction

In recent years Knowledge Management (KM) has become an important success factor for companies. The purpose of knowledge management is to help companies to create, share and use knowledge more effectively [5]. Information technologies play a key role in achieving these goals but are only a small component in an overall system that must integrate the supporting technology with people-based business processes. KM is not a technology solution but is rather primarily a people oriented process, dealing with, for example, leadership, culture, expertise and learning, with technology playing a supporting role. Using this idea as a base we have studied how people obtain and increase their knowledge in their daily work. From this study we realised that employees frequently exchange knowledge with people who work on similar topics as them and consequently, either formally or informally, communities are created which can be called "communities of practice", by which we mean groups of people with a common interest where each member contributes knowledge about a common domain [17].

Communities of practice (CoPs) enable their members to benefit from each other's knowledge. This knowledge resides not only in people's minds but also in the interaction between people and documents. CoPs share values, beliefs, languages, and ways of doing things. Many companies report that such communities help reduce problems due to lack of communication, and save time by "working smarter" [18]. An

[©] Springer-Verlag Berlin Heidelberg 2007

interesting fact is that members of a community are frequently more likely to use knowledge built by their community team members than that created by members outside their group [6]. This factor occurs because people trust in the information offered by a member of their community more than in that which is supplied by a person who does not belongs to that community. Of course, the fact of belonging to the same community of practice already implies that the members have similar interests and perhaps the same level of knowledge about a topic. Consequently, the level of trust within a community is often higher than that which exists outside the community. Because of this, as is claimed in [6], knowledge reuse tends to be restricted within groups. Therefore, people, in real life in general and in companies in particular, prefer to exchange knowledge with "trustworthy people" by which we mean people they trust. It is for these reasons that we consider the implementation of a mechanism in charge of measuring and controlling the confidence level in a community where the members share information to be important.

Bearing in mind that people exchange information with "trustworthy knowledge sources", we have designed a prototype in which software agents try to emulate the human process of evaluating knowledge sources with the goal of fostering the use of knowledge bases in companies where agents provide the employees with "trustworthy knowledge".

The remainder of this work is organized as follows. The next section defines two important concepts that take place in the process of obtaining information (trust and reputation). Then, in Section 3 our proposal to rate reputation is described. In Section 4 we illustrate how the formulas defined for calculating reputation in virtual communities has been implemented in a prototype which detects and suggests trustworthy documents for members of CoPs. Finally, in Section 5, conclusions are described.

2 Trust and Reputation

Trust and reputation mechanisms have been proposed for use in various domains such as e-commerce [20], peer-to-peer computing [15], recommender systems [14], etc. However, there is no universal agreement on the definition of trust and reputation. Because the main goal of our work is to rate the credibility of information sources and of knowledge we first need to define these two important concepts.

2.1 Trust

Trust is a complex notion whose study is usually narrowly scoped. This has given rise to an evident lack of coherence amongst researchers in the definition of trust. For instance in [3] the authors define trust as confidence in the ability and intention of an information source to deliver correct information. Wang and Vassileva in [15] define trust as a peer's belief in another peer's capabilities, honesty and reability based on his/her own direct experiences. In [12] trust is defined as a subjective expectation an agent has about another's future behavior based on the history of their encounters.

Social scientists have collectively identified three types of trust, which are:

- *Interpersonal trust* which is the trust one agent has in another agent directly. This trust is agent and context specific [10].

- *System trust* or *impersonal trust* refers to trust that is not based on any property or state of trustee but rather on the perceived properties or reliance on the system or institution within which that trust exists. For instance, inherited experiences of an organization.
- *Dispositional trust*, or *Basic trust*, describes the general trusting attitude of the truster. This is "a sense of basic trust, which is a pervasive attitude toward oneself and the world" [10].

Experience and knowledge form the basis for trust in future familiar situations [9]. For this reason, the frequency and intensity of interactions between people provide an increased level of habituation which reinforces trust between the parties. Another concept highly related to trust is reputation which is described in the following section.

2.2 Reputation

Several definitions of 'reputation' can be found in literature. For instance, Mui et al in [12] define reputation as a perception that one agent has of another's intentions and norms. Barber and Kim define this concept as the amount of trust an agent has in an information source, created through interactions with information sources [3]. This definition is the most appropriate for our research since the level of confidence in a source is based on previous experience of it. The reputation of an information source not only serves as a means of belief revision in a situation of uncertainty, but also serves as a social law that obliges us to remain trustworthy to other people. Additionally, a good reputation may also be used to a person's advantage, as reputation is also considered as a form of social capital, especially in commerce [4]. Therefore, people, in real life in general and in companies in particular, prefer to exchange knowledge with "trustworthy people" by which we mean people they trust. People with a consistently low reputation will eventually be isolated from the community since others will rarely accept their justifications or arguments and will limit their interaction with them. It is for this reason that the remainder of this paper deals mainly with reputation. However, if we attempt to imitate the behavior of the employees in a company when they are exchanging and obtaining information we observe that apart from the concept of reputation other factors also influence. For this reason, in this paper we argue that reputation is not a single notion but one of multiple parts. These are:

Reputation			
Position	Previous Experience		
Expertise	Intuition		

Fig.	1.	Reputation	factors
------	----	------------	---------

 Position: employees often consider information that comes from a boss as being more reliable than that which comes from another employee in the same (or a lower) position as him/her [16]. However, this is not a universal truth and depends on the situation. For instance in a collaborative learning setting collaboration is more likely to occur between people of a similar status than between a boss and his/her employee or between a teacher and pupils [7]. In an enterprise this position can be established in different ways, for instance by using an organizational diagram or classifying the employees according to the knowledge that a person has, as can be seen in Allen's proposal in [2], which distinguishes between:

- Technological gatekeepers, defined as those actors who have a high level of knowledge interconnectedness with other local firms and also with extracommunity sources of knowledge. These act basically by channeling new knowledge into the community and diffusing it locally.

- External stars, that are highly interconnected with external sources of knowledge but have hardly any interaction with other local firms.

Such different positions inevitably influence the way in which knowledge is acquired, diffused and eventually transformed in the local area. Because of this, as will later be explained, this factor will be calculated in our research by taking into account a weight that can strengthen this factor to a greater or to a lesser degree.

- *Expertise*: this term can be briefly defined as the skill or knowledge of a person who knows a great deal about a specific thing. This is an important factor since people often trust in experts more than in novice employees. In addition, "individual" level knowledge is embedded in the skills and competencies of the researchers, experts, and professionals working in the organization [13].
- *Previous experience*: People have greater trust in those sources from which they have previously obtained more "valuable information". Therefore, a factor that influences the increasing or decreasing reputation of a source is "previous experience" and this factor can help us to detect trustworthy sources or knowledge.
- Intuition: When people do not have any previous experience they often use their "intuition" to decide whether or not they are going to trust something. Other authors have called this issue "indirect reputation or prior-derived reputation" [11]. In human societies, each of us probably has different prior beliefs about the trustworthiness of strangers we meet. Sexual or racial discrimination might be a consequence of such prior belief [11]. We have tried to model intuition according to the similarity between the user profiles: the greater the similarity between one agent and another, the greater the level of intuition.

Taking all these factors into account, we have defined our own "concept of reputation", which is summarized in Figure 1.

3 Our Proposal

In order to implement this concept we have developed a reputation model. The main goal of this model is to rate the level of confidence in an information source or in a provider of knowledge. As the model is going to be used in virtual communities where people are usually distributed in different locations we have implemented a multi-agent architecture where each software agent acts on behalf of a person. We have chosen the agent paradigm because it constitutes a natural metaphor for systems with purposeful interacting agents, and this abstraction is close to the human way of thinking about their own activities [19]. This foundation has led to an increasing interest in social aspects such as motivation, leadership, culture or trust [8]. Our research is related to this last concept of "trust" since artificial agents can be made more robust, resilient and effective by providing them with trust reasoning capabilities.

Considering that the reputation concept described in Section 2 is composed of position, expertise, previous experiences and intuition, we propose a formula to measure the level of reputation in agents' communities.

 R_{ii} is the value of reputation of j in the eyes of i. This value is computed as follows:

$$R_{ij} = w_e * E_j + w_p * P_j + w_i * I_{ij} + (\sum_{j=1}^n QC_{ij})/n \quad (1)$$

where E_j is the value of expertise which is calculated according to the degree of experience that the person upon whose behalf the agent acts has in a domain.

 P_i is the value assigned to a person's position.

 I_{ij} is the value assigned to intuition which is calculated by comparing each user's profile.

In addition, previous experience should also be calculated. We suppose that when an Agent *i* consults information from another Agent *j*, the Agent *i* should evaluate how useful this information was. This value is called QC_{ij} (Quality of *j*'s Contribution according to the Agent *i*). To attain the average value of an agent's contribution, we calculate the sum of all the values assigned to these contributions by the Agent i, for instance n and we divide it by the number of evaluations (n).

Finally, w_e , w_p and w_i are weights with which the reputation value can be adjusted to the needs of the organizations or communities. These weights represent different values depending on the category of each employee. For instance, if an enterprise considers that all its employees have the same category, then $w_p=0$. The same could occur when the organization does not take its employee's intuitions or expertise into account.

In this way, an agent can obtain a value related to the reputation of another agent and decide to what degree it is going to consider the information obtained from this agent.

Moreover, when a user wants to join to a community in which no member knows anything about him/her, the reputation value assigned to the user in the new community is calculated on the basis of the reputation assigned from other communities where the user is or was a member. For instance, a User Agent called j, will ask each community manager where s/he was previously a member to consult each agent which knows him/her with the goal of calculating the average value of his/her reputation (R_{Aj}). This is calculated as:

$$R_{Aj} = \left(\sum_{i=1}^{n} R_{ij}\right)/n \tag{2}$$

where *n* is the number agents who know *j* and R_{ij} is the value of *j*'s reputation in the eyes of i. In the case of being known in several communities the average of the values R_{Aj} will be calculated. Then, the User Agent *j* presents this reputation value (similar to when a person presents his/her curriculum vitae when s/he wishes to join a company) to the Manager Agent of the community to which it is "applying". This mechanism is similar to the "word-of-mouth" propagation of information for a human [1].

In the case of the user being new in the system then this user is assigned a "new" label in order for the situation to be identified.

Once the Community Manager has obtained a Reputation value for Agent j it is added to the community member list.

4 Prototype

In order to test our proposal we have developed a prototype system into which people can introduce documents and where these documents can also be consulted by other people. The goal of this prototype is to allow software agents to help employees to discover information that may be useful to them thus decreasing the overload of information that employees often have and strengthening the use of knowledge bases in enterprises. In addition, we try to avoid the situation of employees storing valueless information in the knowledge base.

When a person searches for knowledge in a community, and after having used the knowledge obtained, that person then has to evaluate the knowledge in order to indicate whether the knowledge was useful and how it was related to the topic of the search (for instance a lot, not too much, not at all).

To design this prototype we have implemented a *User Agent* and a *Manager Agent*. The former is used to represent each person that may consult or introduce knowledge in a knowledge base. Therefore, the *User Agent* can assume three types of behavior or roles similar to the tasks that a person can carry out in a knowledge base. The User Agent plays one role or another depending upon whether the person that it represents carries out one of the following actions:

- The person contributes new knowledge to the communities in which s/he is registered. In this case the User Agent plays the role of **Provider (Pr)**.
- The person uses knowledge previously stored in the community. Then, the User Agent will be considered as a **Consumer** (**Co**).
- The person helps other users to achieve their goals, for instance by giving an evaluation of certain knowledge. In this case the role is of a **Partner (Pa)**.

The second type of agent within a community is called the *Manager Agent* (which must manage and control its community.

The prototype provides the options of using community documents and updating reputation values, proposing new topics in the community, etc. Due to space limitations, we shall now describe only one situation:

Using community documents and updating reputation values. People can search for documents in every community in which they are registered. When a person searches for a document relating to a topic his/her User Agent consults the Manager Agent about which documents are related to their search. Then, the Manager Agent answers with a list of documents. The User Agent sorts this list according to the reputation

value of the authors, which is to say that the contributions with the best reputations for this Agent are listed first. On the other hand, when the user does not know the contributor then the User Agent consults the Manager Agent about which members of the community know the contributors. Thus, the User Agent can consult the opinions that other agents have about these contributors, taking advantage of other agents' experience. To do this the Manager consults its interaction table and responds with a list of the members who know the User Agent. Then, this User Agent contacts each of them which answer the R_{sj} value, obtained from formula 1 explained in the previous section. If nobody knows the contributors then the information is listed, taking their authors' expertise and positions into account. In this way the User Agent can detect how worthy a document is, thus saving employees' time, since they do not need to review all the documents related to a topic but only those considered most relevant by the members of the community or by him/her according to his/her previous experience with the document or its authors.

Once the person has chosen a document, his/her User Agent adds this document to its own document list (list of consulted documents), and if the author of the document is not known by the person because it is the first time that s/he has worked with him/her, then the Community Manager adds this relation to the interaction table. This step is very important since when the person evaluates the document consulted s/he provides the QC of the contribution and his/her User Agent will be able to assign a trustworthy value for this document, and will thus gradually obtain the reputation values of all the members with which it has interacted.

Therefore, this is a prototype where agents are continuously learning by their own experience and thank to the exchange of messages between agents they can also learn from the other's experience, increasing in this way the knowledge of all the community.

5 Conclusions

The main contributions of this paper are the reputation model and our proposal to give support to virtual communities by using software agents since according to literature the exchange of knowledge is likely to take place in these communities thanks to the trust that members have in each other. Therefore, the goals of this research are:

- To assist employees in identifying trustworthy entities and to foster the idea of sharing experiences.
- To help groups work effectively together.
- To encourage knowledge exchange between community members.
- To identify individuals with the right knowledge: expertise locator.

All these advantages provide organizations with a better control over their knowledge, which will be more trustworthy, and consequently it is expected that employees will feel more willing to use it.

Acknowledgments. This work is partially supported by the ENIGMAS (PIB-05-058) and MECENAS (PBI06-0024) project. It is also supported by the ESFINGE project (TIN2006-15175-C05-05) Ministerio de Educación y Ciencia (Dirección General de Investigación)/ Fondos Europeos de Desarrollo Regional (FEDER) in Spain and CONACYT (México) under grant of the scholarship 206147 provided to the first author.

References

- 1. Abdul-Rahman, A., Hailes, S.: Supporting Trust in Virtual Communities. In: 33rd Hawaii International Conference on Systems Sciences (HICSS'00) (2000)
- Allen, T.: Managing the Flow of Technology: Technology Transfer and the Dissemination of Technological Information within the R&D Organization. MIT Press, Cambridge, MA (1984)
- 3. Barber, K., Kim, J.: Belief Revision Process Based on Trust: Simulation Experiments. In: 4th Workshop on Deception, Fraud and Trust in Agent Societies, Montreal Canada (2004)
- 4. Dasgupta, P.: Trust as a Commodity. In: Gambetta, D. (ed.) Trust: Making and Breaking Cooperative Relations, pp. 49–72. Basil Blackwell, Oxford (2000)
- Davenport, T., Prusak, L.: Working Knowledge: How Organizations Manage What They Know, Project Management Institute. Harvard Business School Press, Boston, Massachusetts (1997)
- Desouza, K., Awazu, Y., Baloh, P.: Managing Knowledge in Global Software Development Efforts: Issues and Practices. IEEE Software, 30–37 (2006)
- Dillenbourg, P.: Introduction: What Do You Mean By Collaborative Learning? In: Dillenbourg (ed.) Collaborative Learning Cognitive and Computational Approaches, Elsevier Science, Amsterdam (1999)
- Fuentes, R., Gómez-Sanz, J., Pavón, J.: A Social Framework for Multi-agent Systems Validation and Verification. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q., Grandi, F., Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) Conceptual Modeling for Advanced Application Domains. LNCS, vol. 3289, pp. 458–469. Springer, Heidelberg (2004)
- 9. Luhmann, N.: Trust and Power. Wiley, Chichester (1979)
- McKnight, D., Chervany, N.: The Meanings of Trust. In: Technical Report 94-04, Carlons School of Management, University of Minnesota (1996)
- Mui, L., Halberstadt, A., Mohtashemi, M.: Notions of Reputation in Multi-Agents Systems: A Review. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) Adaptive Agents and Multi-Agent Systems. LNCS (LNAI), vol. 2636, pp. 280–287. Springer, Heidelberg (2003)
- 12. Mui, L., Mohtashemi, M., Ang, C., Szolovits, P., Halberstadt, A.: Ratings in Distributed Systems Systems: A Bayesian Approach. In: 11th Workshop on Information Technologies and Systems (WITS), New Orleans (2001)
- 13. Nonaka, I., Takeuchi, H.: The Knowledge Creation Company: How Japanese Companies Create the Dynamics of Innovation. Oxford University Press, Oxford (1995)
- Schafer, B.J., Konstan, A.J., Riedl, J.: Recommender Systems in E-Commerce. In: 1st ACM Conference on Electronic Conference (EC-99), pp. 158–166 (1999)
- Wang, Y., Vassileva, J.: Trust and Reputation Model in Peer-to-Peer Networks. In: Proceedings of IEEE Conference on P2P Computing, IEEE Computer Society Press, Los Alamitos (2003)
- 16. Wasserman, S., Glaskiewics, J.: Advances in Social Networks Analysis. Sage Publications, Thousand Oaks (1994)
- 17. Wenger, E.: Communities of Practice: Learning Meaning, and Identity. Cambridge University Press, Cambridge (1998)
- Wenger, E., McDermott, R., Snyder, W.: Cultivating Communities of Practice. Harvard Business School Press, Boston (2002)
- Wooldridge, M., Ciancarini, P.: Agent-Oriented Software Engineering: The State of the Art. In: Okamoto, E., Pieprzyk, J.P., Seberry, J. (eds.) ISW 2000. LNCS, vol. 1975, Springer, Heidelberg (2000)