

Lecture Notes in Computer Science 4707
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Osvaldo Gervasi Marina L. Gavrilova (Eds.)

Computational
Science and Its
Applications –
ICCSA 2007

International Conference
Kuala Lumpur, Malaysia, August 26-29, 2007
Proceedings, Part III

13

Volume Editors

Osvaldo Gervasi
University of Perugia, Department of Mathematics and Computer Science
Via Vanvitelli, 1, 06123 Perugia, Italy
E-mail: osvaldo@unipg.it

Marina L. Gavrilova
University of Calgary, Department of Computer Science
500 University Dr. N.W., Calgary, AB, Canada
E-mail: marina@cpsc.ucalgary.ca

Associated Editors:

David Taniar
Monash University, Clayton, Australia

Andrès Iglesias
University of Cantabria, Santander, Spain

Antonio Laganà
University of Perugia, Italy

Deok-Soo Kim
Hanyang University, Seoul, Korea

Youngsong Mun
Soongsil University, Seoul, Korea

Hyunseung Choo
Sungkyunkwan University, Suwon, Korea

Library of Congress Control Number: 2007933006

CR Subject Classification (1998): F, D, G, H, I, J, C.2-3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-74482-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74482-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12112180 06/3180 5 4 3 2 1 0

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4707, pp. 262 – 272, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Defining Security Architectural Patterns Based on
Viewpoints

David G. Rosado1, Carlos Gutiérrez2, Eduardo Fernández-Medina1,
 and Mario Piattini1

1 ALARCOS Research Group. Information Systems and Technologies Department UCLM-
Indra. Research and Development Institute. University of Castilla-La Mancha Paseo de la

Universidad, 4 – 13071 Ciudad Real, Spain
{David.GRosado, Eduardo.Fdez-Medina, Mario.Piattini}@uclm.es

2 Correos Telecom, Conde de Peñalver, 19 bis 6ª pl. 28006 Madrid, Spain
carlos.gutierrez@correos.es

Abstract. Recently, there has been a growing interest in identifying security
patterns in software-intensive systems since they provide techniques for consid-
ering, detecting and solving security issues from the beginning of its develop-
ment life-cycle. This paper describes how security architectural patterns lack of
a comprehensive and complete well-structured documentation that conveys es-
sential information of its logical structure, run-time behaviour, deployment-time
and monitoring configuration, and so on. Thus we propose a set of security
viewpoints to describe software-intensive security patterns adhered to
ANSI/IEEE 1471-2000. In order to maximize comprehensibility, we make use
of well-known language notations such as UML to represent all the necessary
information for defining a software-intensive architectural security pattern con-
forming to the IEEE 1471-2000 standard. We investigate security architectural
patterns from several IEEE 1471-2000 compliant viewpoints.

Keywords: Software Architecture, Security patterns, viewpoints, security.

1 Introduction

In most organizations, the importance of application-level security is often
underestimated until an application faces a major security breach that causes a serious
loss or downtime. Most of the time, it is clear that the probable cause of the failure is
related to deficiencies in the application architecture and design, the programming,
the coding security, the runtime platform, and the tools and utilities used (e.g.:
COTS). The primary responsibility, of course, belongs to the application architects
and developers who contributed to the application design and program code. As a
result, today it is mandatory to adopt a proactive security approach during the
application development life cycle that identifies critical security aspects. Architects
and developers today must design security into their applications from the beginning
of its lifecycle [1].

Software architecture has emerged as an important sub-discipline of software
engineering, particularly in the realm of large system development. Architecture gives

 Defining Security Architectural Patterns Based on Viewpoints 263

us intellectual control over a complex system by allowing us to focus on the essential
components and their interactions, rather than on extraneous details [2].

The properties that the system exhibits as it executes are among the most important
issues to consider when designing, understanding, or implementing a system’s
architecture. What the system computes is, of course, one of these issues. But nearly
as important are properties (i.e., quality attributes) such as performance, reliability,
security, or modifiability. The architecture must be documented to communicate how
it achieves those properties [2].

Recently, there has been a growing interest in identifying security patterns in
software-intensive systems since they provide techniques for considering, detecting
and solving security issues from the beginning of its development life-cycle
[3][4][5][6]. Security patterns work together to form a collection of coordinated
security countermeasures thereby addressing host, network and application security.

This paper describes how security architectural patterns lack of a comprehensive
and complete well-structured documentation that conveys essential information of its
logical structure, run-time behaviour, deployment-time and monitoring configuration,
constraints, elements, and so on. In consequence, we show an alternative way for
describing architectures from viewpoints and views, and therefore we can add more
information about the pattern in the template used for defining patterns. Therefore we
propose a set of viewpoints to define software-intensive security patterns adhered to

Fig. 1. Conceptual model of architectural description [7]

264 D.G. Rosado et al.

ANSI/IEEE 1471-2000 [7], the Recommended Practice for Architectural Description.
This standard represents an emerging consensus for specifying the content of an
architectural description for a software-intensive system. This approach is based on
the well-known architectural concept of views [8], and holds that documentation
consists of defining the relevant security views and then describing the information
that applies to more than one security view. Each view conforms to a viewpoint,
which in turn is a realization of the concerns of one or more stakeholders.

To put views and viewpoints in context (that we will define later in the section 2),
consider the conceptual model in Fig. 1, which illustrates how views and viewpoints
relate to the other important architectural concepts [9].

The remainder of this paper is organized as follows. Section 2 discusses of the
importance of defining software architectures and the two most important concept
associated with software architecture definition: the view and viewpoint; In section 3,
we will define security patterns and what security architectural patterns are; In section
4 we will introduce the viewpoint’s model to defining security patterns and we will
describe the viewpoint template defined by IEEE 1471-2000 standard; In section 5 an
overview of the IEEE 1471-2000 compliant Security Subsystem Design viewpoint’s
template definition will be shown. Finally, we will put forward our conclusions and
future work.

2 Software Architecture Documentation

The architecture must be documented to communicate how it achieves the properties
such as performance, reliability, security, or modifiability. Fundamentally,
architecture documentation can serve three different functions [2]: a) A means of
education. Typically, this means introducing people to the system. The people may be
new members of the team, external analysts, or even a new architect; b) A vehicle for
communication among stakeholders. A stakeholder is someone who has a vested
interest in the architecture. The documentation’s use as a communication vehicle will
vary according to which stakeholders are communicating; c) A basis for system
analysis. To support analysis, the documentation must provide the appropriate
information for the particular activity being performed.

Architecture documentation must balance these varied purposes. It should be
abstract enough to be quickly understood by new developers. It should be sufficiently
detailed so that it serves as a blueprint for its construction. At the same time, it should
have enough information so that it can serve as a basis for analysis [2].

Perhaps the most important concept associated with software architecture
documentation is the view. A software architecture is a complex entity that cannot be
described in a simple one-dimensional fashion.

IEEE 1471 [7] defines Architectural View as a representation of a particular
system or part of a system from a particular perspective, and defines Architectural
Viewpoint as a template that describes how to create and use an architectural view. A
viewpoint includes a name, stakeholders, concerns addressed by the viewpoint, and
the modeling and analytic conventions.

 Defining Security Architectural Patterns Based on Viewpoints 265

3 Security Patterns

Security patterns provide techniques for identifying and solving security issues. They
work together to form a collection of best practices (to support a security strategy)
and they address host, network and application security [10]. The benefits of using
patterns are: they can be revisited and implemented at anytime to improve the design
of a system; less experienced and non-expert security practitioners can benefit from
the experience of those more fluent in security patterns; they provide a common
language for discussion, testing and development; they can be easily searched,
categorized and refactored; they provide reusable, repeatable and documented security
practices; they do not define coding styles, programming languages or vendors [10].

Several authors (as Kienzle and Elder [11]) identify two broad categories of
security patterns: i) Structural patterns that can be implemented in the final product.
They encompass design patterns, such as those used by the Gang of Four. They often
include diagrams of structure and descriptions of interaction; ii) Procedural patterns
that can be used to improve the process for development of security-critical software.
They often impact the organization or management of a development project.

Design strategies determine which application tactics or design patterns should be
used for particular application security scenarios and constraints [1]. Security patterns
are an abstraction of security issues (threats, attacks and vulnerabilities [12]) that
address a variety of security requirements and specify the most suitable
countermeasures. They can be architectural patterns that depict how a security
problem can be resolved architecturally, or they can be defensive design strategies
upon which secure code can be later built [1].

An architectural pattern expresses a fundamental structural organization schema for
software systems. It provides a set of predefined subsystems, specifies their
responsibilities, and includes rules and guidelines for organizing the relationships
between them [13]. An architectural pattern is a high-level abstraction. The choice of
the architectural pattern to be used is a fundamental design decision in the
development of a software system. It determines the system-wide structure and
constrains the design choices available for the various subsystems. It is, in general,
independent of the implementation language to be used.

There is no specific level of detail for security patterns. Different potential
stakeholders of security patterns work at different levels, see different characteristics,
functionalities, connections and behavior, and possess different concerns of a same
pattern. Current work on defining and describing security patterns [1][5][6][14][15] do
not consider all of these levels of detail. Then, we propose a set of security viewpoints,
adhered to IEEE 1471-2000 standard, for defining security architectural patterns in such
a way that all of the aforementioned stakeholders’ issues are addressed.

4 Defining Security Viewpoints for Security Architectural
 Patterns

A software pattern can be described through a set of properties (a template) such as
name, problem, solution, and so on. Templates can be defined as we like but always
maintaining the main categories.

266 D.G. Rosado et al.

Thus, each author can describe all sections he/she considers important according
to his/her viewpoint [3]. Some authors [16][17] describe a template for patterns
indicating the main categories and characteristics that they consider more important.
There are many definitions of patterns following these templates as we can see in
[18], where too it makes a comparison between security patterns.

We attempt do more extensive the template adding new information from the
stakeholders’ viewpoint following as reference the “4+1” view model [8], Fig. 2,
where five software architecture’s views (Logical, Process, Deployment,
Implementation and Use-Case Views) are described.

Fig. 2. “4+1” View Model Fig. 3. Newer “4+1” View Model

Actually, the view model is changing (Fig. 3). The logical view and development
view are combined into the structural view. The structural view combines both the
abstract logical view and the more detailed development view. The process view has
been incorporated into the behavioral view. The process view only defines units of
execution where the behavioral view includes these plus important behavioral
interactions between the architectural elements. The packaging view is new, as
component oriented languages allow grouping of structural elements into packages.
The new infrastructure view maps closely with the physical view in the older model.
The Scenario view in the old model, which represented requirements now includes a
logical rendering of them (typically rendered as use-cases), as well as definition of
test cases needed to verify the software product.

Obviously, since the 4+1 views preceded IEEE 1471, they do not meet the
definition of views as specified in the standard. The 4+1 views are more closely
aligned with the concept of viewpoint as defined by IEEE 1471 standard. The 4+1
views describe a collection of representations that provide guidance for software
architects. The viewpoints we discuss here are within the spirit of the 4+1 views.

ANSI/IEEE 1471-2000 [7] provides guidance for choosing the best set of views to
document, by bringing stakeholder interests to bear. It prescribes defining a set of
viewpoints to satisfy the stakeholder community. A viewpoint identifies the set of
concerns to be addressed, and identifies the modeling techniques, evaluation
techniques, consistency checking techniques, etc., used by any conforming view. A
view, then, is a viewpoint applied to a system. It is a representation of a set of
software elements, their properties, and the relationships among them that conform to
a defining viewpoint. Together, the chosen set of views show the entire architecture
and all of its relevant properties. For defining viewpoints, IEEE 1471standard defines
a set of elements or sections (template) [19] that can be seen in Fig. 4.

 Defining Security Architectural Patterns Based on Viewpoints 267

Fig. 4. Viewpoint Template adhered to IEEE 1471-2000

4.1 Viewpoints Catalogue

We are defining a library of security viewpoints that facilitates and formalizes the
defining of security architectural patterns according to IEEE 1471-2000. By
definition, these viewpoints are reusable for any software system, thus we can
document security patterns, security architecture, software architecture, etc., based on
our viewpoint’s library.

A number of catalogues of viewpoints already exists, but we have found that all of
them do not have security aspects and they are only applied to the development of
functional requirements not being considered in the context of the security. In
response, we have developed a set of viewpoints for the security architect and the
security engineers, that build up and extend the “4+1” set, identified by Philippe
Kruchten [8] and Nick Rozanski and Woods [9]. Our catalogue contains seven core
security viewpoints: Logical, Process, Development, Physical, Deployment,
Operational and Misuse Cases views. Our security viewpoints are represented in
Fig. 5.

The security logical viewpoint describes the objects or object models within the
security architecture that support security behavioral requirements. The security
process viewpoint describes the security architecture as a logical network of secure
communicating processes. This viewpoint assigns each method of the object model to
a thread of execution and captures concurrency and synchronization aspects of the
security design. The security physical viewpoint maps software onto hardware and
network elements and reflects the distributed aspect of the security architecture. The
security development viewpoint focuses on the static organization of the software in
the security development environment and deals with issues of configuration

 Abstract: this section provides a brief overview of the viewpoint;

 Stakeholders and Their Concerns Addressed: this section describes the stakeholders
and their concerns that this viewpoint is intended to address;

 Elements, Relations, Properties, and Constraints: this defines the types of elements, the

relations among them, the significant properties they exhibit, and the constraints they obey for
views conforming to this viewpoint;

 Language(s) to Model/Represent Conforming Views: this section lists the language or

languages that will be used to model or represent views conforming to this viewpoint, and cite a
definition document for each;

 Applicable Evaluation/Analysis Techniques and Consistency/Completeness Criteria:

this section describes rules for consistency and completeness that apply to views in this view-
point, as well as any analysis of evaluation techniques that apply to the view that can be used to
predict qualities of the system whose architecture is being specified;

 Viewpoint Source: This section provides a citation for the source of this viewpoint defini-

tion, if any.

268 D.G. Rosado et al.

Fig. 5. From “4+1” View Model to Our Security Viewpoints

management, security development assignments, security responsibilities, and
countermeasures. The security deployment viewpoint describes the security
environment into which the system will be deployed, including capturing the
dependencies the system has on its runtime environment. The aim of the Security
Operational viewpoint is to identify security system-wide strategies for addressing the
operational concerns of the system’s stakeholders and to identify solutions that
address these.

Moreover, we are defining a new viewpoint’s template extending the template of
IEEE 1471-2000 aforementioned and we have added new sections in the context of
the security as are the follows:

• Security properties to be addressed by the security policy on the basis of the
security viewpoint’s elements. We consider that the complete security policy
of a security pattern is the aggregation of the security policies defined for each
security viewpoint.

• Security metrics to be taken into account in this viewpoint.
• Security procedures to be into taken into account from this viewpoint; for

instance, from physical viewpoint, procedures to restore the physical node in
which the security services defined by the pattern are running, or from logical
viewpoint, how to carry out the off-line exchange of key material between the
involved parties.

• Best practices: for example from developer’s viewpoint, techniques for secure
programming, or from physical viewpoint, topologies of secure networks.

5 Definition of Security Design Subsystem Viewpoint

Each viewpoint aforementioned can be divided in different viewpoint satisfying the
interest of a particular stakeholder. A series of viewpoints is then used to elaborate the
details of the general viewpoint. Selecting the security design subsystem viewpoint
and considering the template aforementioned, we defined this viewpoint as presented
in Fig. 6. We can say that this viewpoint locates into of the Security Development
viewpoint and helps to define it.

Logical

View

Development

View

Process

View

Physical

View

Scenarios

Security

Logical

Security

Development

Security

Deployment

Security

Process

Security

Physical

Security

Operational

Misuse Cases

 Defining Security Architectural Patterns Based on Viewpoints 269

 Abstract. This viewpoint shows security module decomposition and the use
between systems of software system. Each security module interprets itself as a subsystem
to develop; therefore it is an entity in construction time, that it can communicate with
others security subsystems for completing its functionality. From here on a security module
defined in a contextual view, we can show its decomposition in security subsystems. The
decomposition continues until that each module or subsystem of security is allocated to a
unique responsible of development or team.

 Stakeholders and their concerns addressed. Secure applications will be developed
by (at least) three different roles:

• Application software developers that focus on the business logic (1),
• Security providers that focus on the design and implementation of reusable frameworks

of security logic (2),
• Security engineers that implement the security policy for a particular application and

focuse on how the system is implemented from the perspective of security, and how
security affects the system properties. It examines the system to establish what
information is stored and processed, how valuable it is, what threats exist, and how they
can be addressed.

• Project managers, who must define work assignments, form teams, and formulate
project plans and budgets and schedules;

• Maintainers, who are tasked with modifying the software elements;
• Testers and integrators who use the modules as their unit of work.

 Elements, Relations, Properties, and Constraints.
• Security modules are units of implementation, and its decomposition in shorter

modules, just as use dependency existent between them.
• Relations between security modules can have the semantic associated ‘is-part-of’ or

‘utilize’.
• The last level of subsystems called security design subsystems, defined in the views

according to this viewpoint must:
- To be set of products of work of design assigned to different develop teams;
- Security subsystems will correlate with the construction directories that will be

developed, tested and handed over respective teams of development;
- Following modality origins, the security subsystems must exhibit high cohesion

and low coupling;
• These subsystems will be the lower level entities for which the software architects team

will need to define the interface;
• Multiple subsystems of security can be assigned to one same development team, but

each security subsystem will be developed, tested and versioning of independent form;
• Each security subsystem can be considered as a system to design by the security design

team to who have been assigned.

 Language(s) to Model/Represent Conforming Views.
• The representation language used will be UML and extensions for security aspects as

UMLSec [20][21] and of SecureUML [22].
• Each module or subsystem of security will represent itself as a stereotyped UML packet

with the reserved word <<subsystem>>. The use relations will show as relations of
dependence UML including the stereotype <<uses>> and decomposition relations with
nesting of UML packets.

Fig. 6. Security Design Subsystem Viewpoint

270 D.G. Rosado et al.

• The interfaces that implements each system are modeled as UML interfaces and the
name of the service to include in each interface correspond with the names of the use
cases defined in the abstraction level of “Goal Summarize” [23] for each subsystem.

• The design subsystem included into views according to this viewpoint will declare a re-
alization of a or more interfaces whose methods correspond with use cases in the abstrac-
tion level “User Goal” specified in the model of use cases of this design subsystem.

 Applicable Evaluation/Analysis Techniques and Consistency/Completeness
Criteria. Revision checking with the different development groups of form that they
understand the context of the subsystem that they are going to develop (what system comes
from) so as the interfaces with others design subsystems. Some analysis and evaluation
methods are described by Ronald Wassermann [3] and Jan Jürjens [24].

 Viewpoint Source. Viewpoint of Design Subsystem [25].

Fig. 6. (continued)

6 Conclusions

It is important to describe or document a software architecture because it serves to
introduce people to the system, it serves as a vehicle for communication among
stakeholders, and it serves as a basis for system analysis. Moreover, an architecture
documented is crucial for understanding its main characteristics, its functionality, its
components and connections, its behaviour, and so on.

As an architectural pattern is a micro-architecture, too it will be important to or
describe its main characteristics for that stakeholder can use and analyze the pattern at
the time of integrating it in the design of the application, or in the design of the whole
architecture.

In this paper, we have described an architectural pattern from viewpoints
attempting to give a vision wider of its main characteristics, of its design,
connections, elements, interfaces, implementation, classes and behavior. We have
added news sections to the existing templates, extending the information about the
pattern. The enhanced security pattern template presented herein contains additional
information, including behavior, constraints, and related security principles, that
addresses difficulties inherent to the development of security-critical systems. The
adoption of IEEE 1471 and the upcoming release of the UML 2.0, UMLSec [21] and
SecureUML [22] should help improve the future practice of security software
architecture.

Our intention is define security architectural patterns by means of a views
template and a viewpoint template as to recommend ANSI/IEEE 1471-2000 [7],
that it provides guidance for choosing the best set of views to document. We have
defined a viewpoints’ catalogue and we have added and we are adding new
elements or sections to the viewpoint template of IEEE 1471-2000 standard. We
will create a full template of views for security architectural patterns. Our research
concentrates in defining a library of viewpoints adhered to IEEE 1471-2000 which

 Defining Security Architectural Patterns Based on Viewpoints 271

instance are the views that we can define following the documentation IEEE 1471-
2000 [19]. Of this form we could have a library of viewpoints to define security
architectural patterns.

Acknowledgements

This research is part of the following projects: DIMENSIONS (PBC-05-012-2) and
MISTICO (PBC-06-0082) both partiality supported by FEDER and by the
“Consejería de Educación y Ciencia de la Junta de Comunidades de Castilla-La
Mancha” (Spain), RETISTRUST (TIN2006-26885-E) and ESFINGE (TIN2006-
15175-CO5-05) granted by the “Dirección General de Investigación del Ministerio de
Educación y Ciencia” (Spain).

References

1. Steel, C., Nagappan, R., Lai, R.: Core Security Patterns, p. 1088. Prentice Hall, Englewood
Cliffs (2005)

2. Bachmann, F., Bass, L., Clements, P., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford,
J.: Documenting Software Architectures:Organization of Documentation Package, Soft-
ware Engineering Institute (2001)

3. Cheng, B.H.C., Konrad, S., Campbell, L.A., Wassermann, R.: Using Security Patterns to
Model and Analyze Security Requirements. Monterey Bay, CA, USA, pp. 13–22 (2003)

4. Schumacher, M., Fernandez, E.B., Hybertson, D., Buschmann, F.: Security Patterns, 1st
edn., p. 512. John Wiley & Sons, Chichester (2005)

5. Schumacher, M., Roedig, U.: Security Engineering with Patterns. In: 8th Conference on
Patterns Lnaguages of Programs, PLoP 2001, Monticello, Illinois, USA (2001)

6. Yoder, J., Barcalow, J.: Architectural Patterns for Enabling Application Security, Monti-
cello, Illinois, USA (1997)

7. IEEE, Recommended Practice for Architectural Description of Software-Intensive
Systems (IEEE Std 1471-2000). Institute of Electrical and Electronics Engineers:
New York, NY, p. 29 (2000), http://standards.ieee.org/reading/ieee/std_public/description/
se/1471-2000_desc.html

8. Kruchten, P.: Architectural Blueprints - The “4+1” View Model of Software Architecture.
IEEE Software 12(6), 42–50 (1995)

9. Rozanski, N., Woods, E.i.: Software Systems Architecture: Working With Stakeholders
Using Viewpoints and Perspectives, 1st edn., p. 576. Addison Wesley, Reading (2005)

10. Berry, C.A., Carnell, J., Juric, M.B., Kunnumpurath, M.M., Nashi, N., Romanosky, S.:
Patterns Applied to Manage Security, in J2EE Design Patterns Applied, Ch. 5 (2002)

11. Kienzle, D.M., Elder, M.C.: Final Technical Report: Security Patterns for web Application
Development (2005)

12. Firesmith, D.G.: Commom Concepts Underlying Safety, Security, and Survivability Engi-
neering CMU/SEI-2003-TN-033. SEI (2003)

13. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Soft-
ware Architecture: A System of Patterns, p. 476. John Wiley & Sons, Chichester (1996)

14. Fernandez, E.B., Pan, R.: A pattern language for security models. In: 8th Conference on
Pattern Languages of Programs, PLoP 2001. Allerton Park, Illinois, USA (2001)

272 D.G. Rosado et al.

15. Security Design Patterns (2001), Available on: http://www.cgisecurity.com/lib/security-
DesignPatterns.html

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1994)

17. AGCS, AG Communication System. Template Pattern (1996)
18. Rosado, D.G., GutiÃ©rrez, C., Fernandez-Medina, E., Piattini, M.: A Study of Security

Architectural Patterns, Vienna, Austria, pp. 358–365. IEEE Computer Society, Los Alami-
tos (2006)

19. Software Architecture Document (SAD) (2006) Available on:
 www.sei.cmu.edu/architecture/SAD_template2.dot

20. Jurjens, J.: Towards Secure Systems Development with UMLsec. In: Hussmann, H. (ed.)
ETAPS 2001 and FASE 2001. LNCS, vol. 2029, pp. 187–200. Springer, Heidelberg
(2001)

21. Jurjens, J.: UMLsec: Extending UML for Secure Systems Development. In: Jézéquel, J.-
M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425. Springer,
Heidelberg (2002)

22. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Language for
Model-Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002.
LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

23. CockBurn, A.: Writing Effective Use Cases, p. 270. Addison-Wesley Professional, Read-
ing (2000)

24. Deubler, M., Grünbauer, J., Jürjens, J., Wimmel, G.: Sound Development of Secure Ser-
vice-based Systems. In: Second International Conference on Service Oriented Computing
(ICSOC), ACM Press, New York (2004)

25. Garlan, J., Anthony, R.: Large-Scale Software Architecture, p. 278. John Wiley & Sons,
Chichester (2002)

	2007-ICCSA-Rosado.pdf
	Defining Security Architectural Patterns Based on Viewpoints
	Introduction
	Software Architecture Documentation
	Security Patterns
	Defining Security Viewpoints for Security Architectural Patterns
	Viewpoints Catalogue

	Definition of Security Design Subsystem Viewpoint
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

