
www.elsevier.com/locate/jss

The Journal of Systems and Software 80 (2007) 1317–1327
Evaluating performances of pair designing in industry

Gerardo Canfora a, Aniello Cimitile a, Felix Garcia b,*, Mario Piattini b,
Corrado Aaron Visaggio a

a RCOST – Research Centre on Software Technology, University of Sannio, Palazzo ex Poste, Viale Traiano, 82100 Benevento, Italy
b ALARCOS Research Group, Information Systems and Technologies Department, UCLM-Soluziona Research and Development Institute,

University of Castilla-La Mancha, Paseo de la Universidad, 4, 13071 Ciudad Real, Spain

Received 5 June 2006; received in revised form 31 October 2006; accepted 5 November 2006
Available online 19 December 2006
Abstract

Pair programming has attracted an increasing interest from practitioners and researchers: there is initial empirical evidence that it has
positive effects on quality and overall delivery time, as demonstrated by several controlled experiments. The practice does not only regard
coding, since it can be applied to any other phase of the software process: analysis, design, and testing. Because of the asymmetry
between design and coding, applying pair programming to the design phase might not produce the same benefits as those it produces
in the development phase. In this paper, we report the findings of a controlled experiment on pair programming, applied to the design
phase and performed in a software company. The results of the experiment suggest that pair programming slows down the task, yet
improves quality. Furthermore we compare our results with those of a previous exploratory experiment involving students, and we dem-
onstrate how the outcomes exhibit very similar trends.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Software engineering; Pair designing; Empirical studies
1. Introduction

Although software developers have been applying col-
laborative work in various forms for years (see Section
2), pair programming, one of the core practices of eXtreme
Programming (Beck, 2000), has only recently attracted an
increasing interest from practitioners and researchers.
Advocates of pair programming claim that two people
working together will develop as much functionality as
two working separately, but their software quality will be
better (Cockburn and Highsmith, 2001; Reifer, 2002).
Detractors affirm that programming is slower and overall
productivity decreases; quality improvement is also ques-
tioned, based on the argument that it depends on the matu-
0164-1212/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2006.11.004

* Corresponding author. Tel.: +34 926295300; fax: +34 926295354.
E-mail addresses: canfora@unisannio.it (G. Canfora), cimitile@

unisannio.it (A. Cimitile), Felix.Garcia@uclm.es (F. Garcia), Mario.
Piattini@uclm.es (M. Piattini), visaggio@unisannio.it (C.A. Visaggio).
rity of the process and the skills of individuals, rather than
on continuous cross-reviews (Rakitin, 2001).

Several structured experiments, most of them carried
out in academic settings, have actually produced empirical
evidence that pair programming can decrease delivery time,
and increase the quality produced. As testing and removing
errors are generally much more costly than coding, apply-
ing pair programming would lead to an increment of
productivity.

According to previous results, the protocol of working
in pairs promoted by the pair programming practice could
be particularly helpful in the design phase, due to the fact
that keeping effort and the produced quality within accept-
able ranges, is not easy while performing design tasks, for
at least two reasons:

– Software design requires dealing with many levels of
abstraction: implementation, database, business logic,
presentation, deployment, interaction with other systems,

mailto:canfora@unisannio.it
mailto:cimitile@ unisannio.it
mailto:cimitile@ unisannio.it
mailto:Felix.Garcia@uclm.es
mailto:Mario. Piattini@uclm.es
mailto:Mario. Piattini@uclm.es
mailto:visaggio@unisannio.it


1318 G. Canfora et al. / The Journal of Systems and Software 80 (2007) 1317–1327
and communication protocols. Mastering all these
aspects and their integration is difficult especially in large
systems: the larger the system, the more complex become
analysis, communication, management, and maintenance
of design products (Budgen, 2003).

– Design strategies and rationales are rarely dealt with in
documentation and personnel turnover entails a severe
loss of experience and knowledge which are difficult to
replace. Design products maintenance requires a num-
ber of different views and diagrams in order to get the
complete picture of the system’s structure, behavior
and functions (Clements et al., 2002; Ghezzi et al.,
2003).

The application of working in pairs in the design phase
is called pair designing: two designers work on the same
design document, on the same machine and at the same
time: the first designer denominated driver, actively writes
the document and the other, denominated observer, reviews
it. The two roles can be switched, should the need arise,
during work: this usually happens when the driver does
not know how to proceed, and when the observer has
already elaborated a candidate solution for the problem.
The observer can also accomplish different activities apart
from reviewing, which might help to reach the goal of the
current task.

In this paper, we explore to what extent pair designing
can produce the same benefits, in terms of quality and effort,
as that of pair programming, within an industrial setting.
We also compare the results obtained from this empirical
study, which involved professionals, with the results of a
previous exploratory experiment, carried out in a Univer-
sity, which involved students (Canfora et al., 2006): we
found that the outcomes exhibit very similar trends.

The paper proceeds as follows: Section 2 discusses
related work. Section 3 outlines the characterization of
the study. Section 4 presents the results of our study, and
in Section 5 its validity is discussed. In Section 6, a compar-
ison is made between our study and the academic explor-
atory experiment. Finally, Section 7 elucidates our
conclusions.

2. Related works

Before pair programming became widespread as an
Extreme Programming practice, Wilson et al. (1993) inves-
tigated collaborative programming in an academic environ-
ment. They found evidence that collaboration in pairs
reduced problem-solving efforts, enhanced confidence in
the solution and provided a better enjoyment of the pro-
cess. Nosek (1998) confirmed the results in a controlled
experiment, involving experienced developers, and he
found that coupled developers spent 41% less time than
individuals, and produced better codes and algorithms.

It is important to highlight that collaborative program-
ming is not the same as pair programming. The former
refers to a group of two or more people involved in coding,
without adopting a specific working protocol; the latter is a
practice involving only two people and with a precise pro-
tocol which prescribes to continuously overlapping reviews
and the creation of artefacts. Williams et al. (2000) carried
out one of the most well known experiments on pair pro-
gramming, which involved the participation of senior soft-
ware engineering students. By working in pairs, the
subjects decreased development time by 40–50%, and
passed more of the automated test cases; moreover, the
results of the pairs varied less in comparison to those of
the individual programmers. Several other investigations
have highlighted the benefits of pair programming (Lui
and Chan, 2003; McDowell et al., 2002; Srikanth et al.,
2004; Williams and Kessler, 2003): effort is reduced and
quality is improved. However, these results were not con-
firmed by two other experiments: the first experiment
executed at the Poznan University (Nawrocki and Wojcie-
chowski, 2001) demonstrated how pair programming was
able to reduce rework, but it did not significantly reduce
development time, and the second conducted by Heiberg
et al. (2003) demonstrated how pair programming was
neither more nor less productive than solo-programming.
The relationship between pair programming and the geo-
graphic distribution of teams was explored by Baheti
et al. (2002): distributed pair programming was compara-
ble with co-located pair programming and fostered team-
work and communication within virtual teams. Other
investigations have highlighted further benefits of pair pro-
gramming, such as: fostering knowledge transfer (Williams
and Kessler, 2000), in particular, leveraging of tacit knowl-
edge, increasing job satisfaction (Succi et al., 2002), and
enforcing student learning (Mendes et al., 2005; McDowell
et al., 2002; Srikanth et al., 2004; Xu and Rajlich, 2005).

Conversely, few studies focus on pair designing.
Al-Kilidar et al. (2005) carried out an experiment in order
to compare the quality obtained by solo and pair work in
intermediate design products. The experiment showed that
pair design quality was higher than solo design quality in
terms of the ISO 9126 sub-characteristics: functionality,
usability, portability and maintenance compliance. Muller
(2006) presented the results of a preliminary study that
analysed the cost of implementation with pair and solo
design; the results of this study suggested that no difference
exists, assuming that the programs have similar levels of
correctness. The authors also concluded that the probabil-
ity of building a wrong solution into the design phase
might be much lower for a pair than for a single program-
mer. In previous works, we investigated how pair designing
affects knowledge building processes and we obtained evi-
dence that pair designing helps diffuse and enforce knowl-
edge within development teams (Bellini et al., 2005). We
also carried out an exploratory experiment at the Univer-
sity of Castilla-La Mancha in order to evaluate pair design-
ing in an academic environment (Canfora et al., 2006); the
outcomes of this study are recalled in Section 6.

Despite the growing interest, practitioners can face diffi-
culties to making informed decisions about whether or not



G. Canfora et al. / The Journal of Systems and Software 80 (2007) 1317–1327 1319
to adopt pair programming, because there is little objective
evidence of actual advantages in industrial environments.
Most published studies are based in Universities and
involve students as their subjects. Hulkko and Abrahams-
son (2005) state that ‘‘the current body of knowledge in this
area is scattered and unorganized. Reviews show that most
of the results have been obtained from experimental studies
in university settings. Few, if any, empirical studies exist,
where pair programming has been systematically under
scrutiny in real software development projects’’. The same
applies to pair designing: more experimentation in industry
is needed in order to build a solid body of knowledge about
the usefulness of this technique as opposed to traditional
solo designing.

3. The experiment in industry

Using the template for goal definition proposed by
Wohlin et al. (2000), which is based on the GQM (Basili
and Rombach, 1988; Fenton and Pfleeger, 1997), the goal
of the experiment was defined as

– Analyse the practice of pair designing.
– For the purpose of evaluating.
– With respect to effort and quality.
– From the point of view of designers.
– In the context of a group of professionals of software

development Information Systems.

From this objective the following research questions
were formulated:
Fig. 1. Overview of the
– Does pair designing require less effort than solo design-
ing for a given task?

– Is pair designing better than solo designing in terms of
the quality of the produced artefacts?

With the aim of answering these questions, an experi-
ment in industry was carried out. The overall design of
the experiment is illustrated in Fig. 1.

The experiment was carried out in a software company,
Soluziona Software Factory, located in Ciudad Real,
Spain. This company develops and maintains software sys-
tems for different domains: gas, water, and electricity man-
agement systems, management of quality and environment,
market simulators, economic-financial management, cor-
porative systems, public health systems, e-commerce, and
telecommunications. Currently, Soluziona occupies a
high-ranking position in the market of software profes-
sional services with a sales volume of almost 800 million
euros and, after a long expansion period, the company
has offices in 28 countries in four different continents. As
a result of its quality-focused policy, Soluziona has recently
reached level 3 maturity of CMMI and based on the results
obtained in the last assessment, it plans to reach level 4 by
the year 2007.

The CEO of the company wanted to verify if pair pro-
gramming was as beneficial as claimed by many scientific
and technical papers and whether or nor it could be
extended to the design phase: they wanted to evaluate the
practice by observing its use by the engineers employed
in the company. Furthermore, the technical managers of
the company were seeking new practices, methods, and
experimental design.



1320 G. Canfora et al. / The Journal of Systems and Software 80 (2007) 1317–1327
tools to improve software design, which could be quickly
introduced into the processes of the company. In particu-
lar, the company was introducing (UML-based) Model-
Driven-Engineering principles and tools. The culture of
process innovation and continuous communication is very
widespread in the company: as a matter of fact, it employs
a large number of young engineers, the work areas are
mainly open spaces and team members meet frequently in
order to brainstorm and discuss problems which arise in
a project or to debate new ideas for improving the adopted
solutions. The actual tasks of designing, coding, and testing
are however seen as individual duties.

We discussed with them the results of some experiments,
documented in the literature, which demonstrated the ben-
efits of pair programming, but they were not convinced for
three reasons. The first concerned the population of the
experiments: the majority of the experiments involved stu-
dents, who they considered not reliable because of their
immature skills, and limited experience and commitment.
The second concerned the context in which the experiments
were run; they pointed out that students were often selected
and gathered together ‘‘just because they were in the same
class’’ and in general, they had no previous experience in
working together. On the contrary, professionals in a com-
pany develop, over time, a shared culture, with a common
language and understanding, based on background tacit
knowledge. And the third reason was that most of the lit-
erature available focused on the programming phase but
not on the design phase, this being the phase that was of
particular interest to the company. Such a scenario seemed
to us appropriate for carrying out an experiment to evalu-
ate the development time and quality of pair designing.

3.1. Participants

Some professionals of Soluziona, including engineers
and scientists, volunteered to take part in the experiment.
Eighteen were selected, to form a homogeneous sample in
terms of skills and experience: they were familiar with
UML, and have worked in the company for on average
two years. Before running the experiment, a preliminary
seminar was given to introduce pair programming and pair
designing, and the subjects were given training, with lab
sessions, in how to properly apply the practice during the
experimental runs.

3.2. Material

The documentation was prepared by the experimenters
and comprised:

– a textual requirement specification of a software system
called ‘‘Book Over the Globe’’, whose function is the
worldwide buying and selling of used books via the
Internet;

– analysis and design documents of the system: 2 Use
Cases and 2 Class Diagrams (including presentation,
domain and persistence layers) with additional textual
information;

– change requests: subjects received maintenance interven-
tions for improving the existing system’s features. The
change requests had different scopes: change requests
R2 and R4 affected only use cases while requests R1
and R3 affected both use case and class diagrams;

– timesheet forms, in order to collect the times that sub-
jects employed in the different runs.

In Appendix A, an excerpt of the design documentation
and assignment are provided.

3.3. Experimental tasks

The subjects were required to perform one assignment
per run: each assignment was made up of two change
requests on the design of an existing software system,
which they had never seen before. The experiment con-
sisted of a three step process, as depicted in Fig. 2:

– the preparatory run; each subject studied the documen-
tation for 30 min, individually;

– the first run; five pairs of subjects were formed ran-
domly, while the others eight subjects worked as
individuals;

– the second run; those who had worked in pairs in the
first run, performed individual designing in the second,
while the individuals of the first run where paired in
the second, so there were four random pairs and 10 sub-
jects working individually.

As illustrated in Fig. 2, the experiment was arranged so
that each subject worked both individually and in pairs and
performed both the assignments, but in two different runs.
For example, the subjects C and D worked together on
assignment 2 in the first run, while, in the second run, they
worked separately on assignment 1. The experiment took
place in one of the rooms of the company that was
equipped for pair work. The two assignments were ran-
domly distributed to the individuals or pairs in the two dif-
ferent rounds and the experimenters were present in the
room to control the execution of the experiment: they
checked that the subjects properly followed the protocol
of pair designing.

3.4. Variables

The independent variable was the applied practice: pair
designing or solo designing. The dependent variables were

– Effort, which was measured as the time taken by the
subjects (in pairs or individually) to complete the assign-
ments. These values were obtained from the assignation
forms provided, in each run, to the subjects. Subjects
were asked to take note of the exact time when they
started and when they finished the implementation of



Fig. 2. Experimental tasks.

G. Canfora et al. / The Journal of Systems and Software 80 (2007) 1317–1327 1321
each task; this data was written on the time form for
each run; for accuracy sake, all the subjects referred to
their own computer system’s clock. Therefore, this mea-
sure of the dependent variable was quantitative and
objective.

– Quality. This variable was measured by rating the mod-
ified design artefacts delivered by the subjects. As previ-
ously stated, the four change requests were grouped into
two assignments (one per run). Change requests 1 and 3
involved modifications on both the use case and class
diagrams and change requests 2 and 4 required the mod-
ification of only the use case diagrams. Each assignment
included one change request of each type and each
diagram modification intervention (use case or class dia-
gram) was rated in accordance with a scale composed of
three values: 0 (incorrect), 0.5 (neither incorrect nor
completely correct) and 1 (correct). So the highest possi-
ble rate for each assignment was 3 (one point for the
right modification of a change request involving only a
use case diagram and two points for the change request
affecting use case and class diagrams). In order to reduce
the subjectivity of this evaluation, two independent eval-
uators were involved and, whenever differences arose, a
joint review was performed.
3.5. Hypotheses

The experiment was executed with the purpose of testing
the following set of hypotheses:
• Null Hypothesis, H0a: there is no difference in the effort
employed between pair and solo designing,

leffort solo ¼ leffort pair

• Alternative Hypothesis, H1a: there is a difference in the
effort employed between pair and solo designing,

leffort solo 6¼ leffort pair

• Null Hypothesis H0b: there is no difference in the quality
produced between pair and solo designing

lquality solo ¼ lquality pair

• Alternative Hypothesis H1b: there is a difference in the
quality produced between pair and solo designing

lquality solo 6¼ lquality pair
4. Results of the experiment

4.1. Descriptive statistics

Tables 1 and 2 provide a detailed characterization of the
data sets and Figs. 3 and 4 illustrate a comparison of the
results obtained by paired and individual designers for
the quality and effort variables.

Looking at the data set for quality and time, two facts
emerge: pair designing helps to increase the quality
achieved, but this entails an increment of effort to complete
the task. Since in the second run subjects increased the



Table 1
Statistical indicators for effort

Statistical indicator First round Second round

Pairs Solos Pairs Solos

Avg 6.583333 7.083333 8.5 5.2
Standard deviation 3.105628 3.800917 1.977142 2.020726
Mode 7 12 11 4
Max 13 12 11 11
Min 2 2 6 2

Table 2
Statistical indicators for quality

Statistical indicator First round Second round

Pairs Solos Pairs Solos

Avg 1.458333 1.333333 1.75 0.979167
Standard deviation 0.381881 0.258199 0.223607 0.772086
Mode 1.5 1.5 2 1.5
Max 2 1.5 2 2
Min 0.75 1 1.5 0

Effort Data Set

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

cumulative I run II run

T
im

e 
[m

in
]

Solos

Pairs

Fig. 3. Comparison of quality produced by paired and individual
designers.

Quality Data Set

Q
ua

lit
y 

[G
ra

de
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

cumulative I run II run

Pairs
Solos

Fig. 4. Comparison of effort employed by paired and individual designers.

Standard deviation

0

0.5

1

1.5

2

2.5

3

3.5
Pairs
Solos

Quality Effort

Fig. 5. Comparison of standard deviation for quality and effort.

1322 G. Canfora et al. / The Journal of Systems and Software 80 (2007) 1317–1327
number of reviews and the discussions, both quality and
effort were higher than in the first run. This suggests that
by using pair designing, the company might, in the future,
benefit from the standpoint of quality, but could experience
an increment of effort required. From the outcomes of this
experiment it is not possible to infer the general trend of
quality or effort; consequently, it is not possible to establish
whether the curve grows indefinitely or stabilizes at a cer-
tain speed. It could be possible to understand the shape
of this curve by analyzing data from several replications
of similar experiments, which will be considered in the
future.

Fig. 5 provides a comparison between the standard devi-
ation for quality and effort for solos and pairs; standard
deviation describes the dispersion of data set around the
central value of the sample, and it is considered a good
indicator of predictability.

As can be observed in Fig. 5, standard deviation is lower
in the pairs’ data set than in that of the individuals.

Working in pairs seems to improve predictability of
quality and effort. Pair designing leverages the performance
profiles of subjects, which usually show many positive and
negative peaks. Role switching reduces the latency time
which occurs when a problem arises; this time is roughly
composed of the time taken in searching for alternative
strategies and the time needed to select the more suitable
one. Besides reviewing the work of the driver, the observer
analyses, in advance, the possible obstacles the pair may
encounter, and elaborates the related possible solutions;
as a result there is an overlapping of search time and selec-
tion time which has positive effects on quality. However,
continuous discussion, regarding the strategy to adopt for
dealing with a problem or the way to remove a defect, helps
to share and leverage knowledge among developers.

4.2. Data analysis

Tables 3 and 4 report information concerning the tests
of the hypotheses H0a and H0b. Mann–Whitney tests were
used because data set distribution was not normal and the
p-level was fixed at 0.05.

From the statistical tests it emerges that:

• the H0a hypothesis can only be rejected with regards to
the data set corresponding to the second run;



Table 3
Statistical tests for effort data set

Testing Rank sum (a) Rank sum (b) p-level Comment

Pair(a)–Solo(b) cumulative 1537.00 1091.00 0.011516 There is evidence that solos outperformed pairs
Pair(a)–Solo(b) First run 231.000 435.000 0.76111 There is no evidence that pairs outperformed solos in the first run
Pair(a)–Solo(b) Second run 343.000 323.000 0.00004 There is evidence that pairs spent more time than solos in the second run
First run(a)–Second run(b) 941.000 1075.00 0.003143 There is evidence that results of the first run are different from those of

the second run
Pairs(a)–Solos(b) in the

assignment 1
450.000 291.000 0.079412 There is no evidence that the pairs required less time than the solos in

completing the first assignment
Pairs(a)–Solos(b) in the

assignment 2
335.000 260.000 0.056773 There is no evidence that the pairs required less time than the solos in

completing the second assignment

Table 4
Statistical tests for quality data set

Testing Rank sum (a) Rank sum (b) p-level Comment

Pair(a)–Solo(b) cumulative 402.000 264.000 0.019215 There is evidence that the pairs outperformed the solos
Pair(a)–Solo(b) First run 122.000 49.000 0.371094 There is no evidence that the pairs outperformed the solos in the first run
Pair(a)–Solo(b) Second run 92.000 79.000 0.039353 There is evidence that the pairs outperformed the solos in the second run
First run(a)–Second run(b) 2387.00 3499.00 0.003525 There is evidence that results of the first run are different from those of

the second run
Pairs(a)–Solos(b) in the

assignment 1
435.000 231.000 0.000423 There is evidence that the pairs outperformed the solos while

implementing the first assignment
Pairs(a) –Solos(b) in the

assignment 2
441.000 225.000 0.000633 There is evidence that the pairs outperformed the solos while

implementing the second assignment

G. Canfora et al. / The Journal of Systems and Software 80 (2007) 1317–1327 1323
• pair designing and solo designing did not produce signif-
icant differences regarding the time spent on the single
assignment, as illustrated in the fifth and the sixth rows
of Table 3;

• the H0b hypothesis can only be rejected with regards to
the data set corresponding to the second run;

• pair designing produced significantly higher quality than
solo designing on each assignment, as illustrated in the
fifth and the sixth rows of Table 4;

• the differences between the first and the second run are
statistically significant, both for the effort and for the
quality data set. These findings support the conjecture
that the effects of pair designing are emphasized in the
second run rather than in the first.
5. Limits of the experiment

The experiment presented in this paper has some limits
that must be taken into account in order to understand
to what extent the results are valid and how they can be
used. Referring to the taxonomy of Wohlin et al. (2000),
a discussion about validity threats follows.

• Threats to Construct validity: We measured quality (the
dependent variable) by rating, which is a subjective mea-
sure. In order to increase the objectivity of the evalua-
tion, all the artefacts underwent two independent
reviews; whenever they differed, the reviewers accom-
plished together a joint review of the artefact.

• Threats to Internal Validity: The following issues were
dealt with:
– Differences among subjects: Using a within-subjects
design, error variance due to differences among sub-
jects is reduced. In this experiment all the profession-
als were familiar with the kind of work assigned.

– Learning effects: The subjects executed introductory
runs before the experiment, in order to become famil-
iar with the practice of pair designing. It was not pos-
sible to avoid learning effects during the experiment:
as a matter of fact, significant differences between
the outcomes of the runs were detected (see row 4
of Tables 3 and 4). However, this did not invalidate
the results of the experiment, as the analyses con-
cerned pairs and solos of the same run.

– Fatigue effects: On average the experiment lasted a
short enough time to avoid fatigue thus making its
effects irrelevant.

– Persistence effects: In order to avoid persistence
effects, the experiment was run with subjects who
had never done a similar experiment.

– Subject motivation: The participants were volunteers,
thus assuring subjects with a high motivation. Profes-
sionals showed a great interest in taking part in a sci-
entific experiment.

– The experimental package: In order to clearly observe
the results of the treatments on the subjects’ perfor-
mances, the assignments should be comparable in
terms of effort and quality. If this condition is not
respected, the differences among the assignments
could be confounding factors and prejudice the anal-
ysis. Mann–Witney statistical tests confirmed that
there is no significant difference between the two



Table 5
Statistical comparison of assignments

Testing Rank sum (a) Rank sum (b) p-level Comment

A1(a)–A2(b) effort 1301.500 1326.000 0.3348 There is no evidence that the effort data
depends on the assignment

A1(a)–A2(b) quality 20228.000 18552.000 0.2111 There is no evidence that the quality data
depends on the assignment

1324 G. Canfora et al. / The Journal of Systems and Software 80 (2007) 1317–1327
assignments, both in effort and in quality. Table 5
illustrates the details of the test. As a consequence,
the results are independent from the experimental
package.

• Threats to External Validity:
– Materials and tasks used: Experimenters prepared the

documentation of system design. Although the sub-
jects worked during the experiment with an existing
system, the tasks were limited to the available time.
Therefore real scenarios must be considered, as they
are supposed to be more complex and articulated.

– Subjects: Professionals are helpful for enforcing exter-
nal validity. Unfortunately, the subjects had no expe-
rience in pair programming or pair designing;
therefore they were properly trained in order to partic-
ipate in the experiment. Since the practice needs the
capability to work in strict collaboration, we selected
employees with a shared culture, i.e. engineers who:
were familiar with the same processes, worked in the
same teams, took part in the same projects and had
similar skills and a similar professional background.
Quality Comparison

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

A1 S
OLO

A1 P
AIR

ED

A2 
SOLO

A2 
PAIR

ED

1r
un

 S
OLO

1r
un

 P
AIR

ED

2r
un

 S
O

LO

2r
un

 P
AIR

ED

cu
m

 S
OLO

cu
m P

air
ed

Q
u

al
ity

 [G
ra

d
e]

 

Professionals

Students

Fig. 6. Comparison of students and professionals quality results.
6. Comparison with the previous exploratory experiment in

Academia

One of the most controversial issues in the area of
empirical software engineering is the suitability of students
as subjects in controlled experiments. Experiments with
students as subjects can seriously threaten external validity
given that the results have little probability of being gener-
alized in industry. However, students are more often used
as subjects in comparison to professionals in controlled
experiments (Sjøberg et al., 2002). This is due to the fact
that it is difficult to find professionals for empirical studies,
whereas students are more accessible, easier to organize,
and cheaper.

On the other hand, as reported by Host et al. (2000), it
can be a too simplistic view to disregard experiments which
Table 6
Comparison of statistical test results of students and professionals

Test

Time Pair–Time Individuals (Cumulative)
Time Pair–Time Individuals (Run I)
Time Pair–Time Individuals (Run II)
Quality Pair–Quality Individuals (Cumulative)
Quality Pair–Quality Individuals (Run I)
Quality Pair–Quality Individuals (Run II)
use students. The important thing is to understand
when students are suitable and how the results may be
generalized. As a matter of fact, students can play a very
important role in experimentation in the field of soft-
ware engineering (Basili et al., 1999; Kitchenham et al.,
2002).

We contrasted the experiment involving professionals,
reported in this paper, with an exploratory experiment
involving students, undertaken in the same conditions at
the University of Castilla-La Mancha in Spain (Canfora
et al., 2006). The material, experimental tasks and depen-
dent and independent variables in the two experiments
were identical. As a matter of fact, the experiment in
industry was a replica of the experiment in academia
with the sole exception of the variation of the context
variables (professionals as the subjects) and the environ-
ment in which the solution was evaluated (Basili et al.,
1999).

The subjects of the University experiment were two
groups of students of the Department of Computer Sci-
ence: the first group was composed of 29 students enrolled
in the final-year (third) of the Computer Science (B.Sc.)
degree course which specialised in Management and the
second group was composed of 41 students enrolled in
Professionals Students

U (p = 0.0115) U (p = 0.0103)
(p = 0.7611) (p = 0.9890)
U (p = 0.0000) U (p = 0.0108)
U (p = 0.0192) U (p = 0.0462)
(p = 0.3710) U (p = 0.0007)
U (p = 0.0393) U (p = 0.0928)



G. Canfora et al. / The Journal of Systems and Software 80 (2007) 1317–1327 1325
the final-year in the Computer Science (B.Sc.) degree
course which specialised in Systems.

This experiment produced similar results from both the
students and the professionals. With regard to quality, the
results of the students and the professionals showed the
same pattern, as illustrated in Fig. 6. The same analysis
was made for the effort variable with similar findings.

As far as the statistical significance of results is con-
cerned, the two experiments produced similar results, as
shown in Table 6. These results provide some evidence
which supports the fact that students can be useful as sub-
jects and in certain contexts it is possible to generalize their
results to industry.

Although more experiments must be performed to
obtain more solid evidence, it seems that pair designing
helps to improve design quality, regardless of the experi-
ence of the designers.

7. Conclusion and future work

In this paper, we have investigated the difference
between pair designing and individual designing in terms
of the time required to perform a software task and the
quality of task deliverables. An experiment with profes-
sional developers in a Spanish company suggests that pair
designing slows down the task, but improves quality.
According to our study, pair programming applied to the
design phase appears less efficient than when it is applied
to the coding phase as reported in Section 2. Only in the
first run, the time required to complete the task is less for
the pairs than for the individuals, yet still no way near
the level of 50% reported by Williams et al. (2000). Con-
versely, quality improvement is higher than the 15%
reported by Williams et al. (2000). Finally, pair designing
is more predictable than individual designing with regards
to quality, but it decreases the predictability of develop-
ment time.

The findings of the experiment suggest that the practice
of working in pairs is not limited to writing code in agile
processes. Such a practice might be adopted also for suc-
cessfully working at design documentation, and not neces-
sarily only within agile processes. Since the experimental
subjects were professionals with a good degree of experi-
ence, the conclusions of the experiment can be considered
valid enough for the professional population. These results
confirmed the results previously obtained in an academic
exploratory experiment. However, some limits of the exper-
imentation concerned of the fact that is was controlled
study: small time windows and the kind of tasks.

Some issues remain still open:

– The measurement of the quality dependent variable can
be enhanced in order to provide a more complete picture
of this factor, as done by Al-Kilidar et al. (2005). In this
research work, the quality was evaluated by the func-
tional compliance of the modified artefacts given by sub-
jects. According to our experimental design, since the
modifications had a limited scope, other measures like
usability or maintainability of the UML designs were
not significant. In the future, a new design will be used
in order to measure the functionality, usability and
maintainability of the resulting artefacts for which a
set of measures to evaluate the Use Case Diagrams
and Class Diagrams (Genero et al., 2005) will be
applied.

– As the practice could be adopted in different kinds
of processes, the features of each operative context
could affect the performances of pair designing. Conse-
quently the relationship, between the characteristics
of the process and the practice, should be better
understood.

– The data set was collected in a limited time window, as it
was an experiment in vitro. Since the practice could pro-
duce different performances, in the long-term, experi-
ments in vivo could be helpful in building a complete
picture of the matter.

According to the issues previously outlined, we are plan-
ning to carry out a family of experiments, which will
include also experiments in vivo, with the twofold aim of:
(i) obtaining a more complete evaluation of the quality var-
iable, and (ii) enforcing the generalization of our
conclusions.
Acknowledgements

This research was partially supported by the projects:
ESFINGE (Dirección General de Investigación of the Min-
isterio de Educación y Ciencia, TIN2006-15175-C05-05);
MECENAS (Junta de Comunidades de Castilla-La Man-
cha, Consejerı́a de Educación y Ciencia, PBI06-0024);
and FAMOSO, partially funded by Ministerio de Indu-
stria, Turismo y Comercio, FIT-340000-2006-67 Plan Nac-
ional de Investigación Cientı́fica, Desarrollo e Innovación
Tecnológica 2004–2007 and ‘‘Fondo Europeo de Desarr-
ollo Regional (FEDER)’’, European Union.

Appendix A

Time Form:

Name of the subject: __________________________
If in a pair, the name of your companion:______________
Number of the Run:_____________

Assignment:



1326 G. Canfora et al. / The Journal of Systems and Software 80 (2007) 1317–1327
Assignments

R.1 The check for correctness/completeness must be
launched by the Branch Operator with a button on
the interface form.

R.2 The ‘‘Send User Registration’’ is realised only if the
Branch is registered.

R.3 The Branch Operator can synchronise the Branch
System with the HeadQuarterSystem by launching
an appropriate program.

R.4 The search for a book should happen not only in the
BranchSystem, but also in the HeadQuarterSystem.
An excerpt of use case diagrams and specification.
HeadQuarter System

Checking Tesaurus

BrenchSystem

Update User Remote Registred

User

Send User Registration

Send User Remote Registration

Brench Operator

Check Correctness/Completeness

<<include>>

<<include>>

Send Brench Registration

<<include>>
Use case Send User registration

Description The Branch operator inserts data into
the registration form, provided by the
user. Validation of the form is launched

Exceptions The form is not correct or complete. The
sending of data is successful

Actors BranchOperator, HeadQuarterSystem
Use case

extends
Nn

Use case uses Check correctness/completeness
Use case inputs Name, address, offered books list (in

case the user is a vendor) with
specifications: title, author, publisher,
language, publishing year, ISBN

Use case
outputs

Recording of data of the new user

Criterion of
acceptance

Data of the new user is stored in the
database of the Local Branch

Related
expectations

Database management system.
Correctness and completeness checks.
Data sending to the Headquarter

Related Reqs/
use cases

Check correctness/completeness
References

Al-Kilidar, H., Parkin, P., Aurum, A., Jeffery, R., 2005. Evaluation of
effects of pair work on quality of designs. In: Proceedings of the 2005
Australian Software Engineering Conference (ASWEC 2005) Brisbane
Australia. IEEE CS Press, pp. 78–87.

Baheti, P., Gehringer, E., Stotts, D., 2002. Exploring the efficacy of
distributed pair programming. Proceedings of the Second XP Universe
and First Agile Universe Conference on Extreme Programming and
Agile Methods – XP/Agile UniverseLNCS, vol. 2418. Springer, pp.
208–220.

Basili, V., Rombach, H., 1988. The TAME project: towards improvement-
oriented software environments. IEEE Transactions on Software
Engineering 14 (6), 758–773.

Basili, V., Shull, F., Lanubile, F., 1999. Building knowledge through
families of experiments. IEEE Transactions on Software Engineering
25 (4), 456–473.

Beck, K., 2000. Extreme Programming Explained: Embrace Change.
Addison Wesley.

Bellini, E., Canfora, G., Garcı́a, F., Piattini, M., Visaggio, C.A., 2005.
Pair designing as a practice for enforcing and diffusing design
knowledge. Journal of Software Maintenance and Evolution: Research
and Practice 17 (6), 401–423.

Budgen, D., 2003. Software Design, second ed. Pearson Educational
Limite.

Canfora, G., Cimitile, A., Visaggio, C.A., Garcia, F., Piattini, M., 2006.
Performances of pair designing on software evolution: a controlled
experiment. In: Proceedings of the 10th European Conference on
Software Maintenance and Reengineering, CSMR 2006, 22–24 March,
Bari, Italy, pp. 197–205.

Clements, P., Kazman, R., Klein, M., 2002. Evaluating Software
Architectures: Methods and Case Studies. Addison–Wesley.

Cockburn, A., Highsmith, J., 2001. Agile software development: the
business of innovation. Computer 34 (9), 120–123.

Fenton, N., Pfleeger, S.L., 1997. Software Metrics: A Rigorous and
Practical Approach, second ed. International Thomson Computer
Press, London, UK.

Genero, M., Piattini, M., Calero, C. (Eds.), 2005. Metrics for Software
Conceptual Models. Imperial College Press.

Ghezzi, C., Jazazery, M., Mandrioli, D., 2003. Fundamentals of Software
Engineering, second ed. Prentice Hall.

Heiberg, S., Puus, U., Salumaa, P., Seeba, 2003. A. Pair programming
effect on developers productivity. In: Proceedings of Extreme Pro-
gramming and Agile Processes in Software Engineering, Italy, May
2003, pp. 215–224.

Host, M., Regnell, B., Wohlin, C., 2000. Using students as subjects – a
comparative study of students and professionalsLead-Time Impact
Assessment Empirical Software Engineering, vol. 5. Kluwer Academic
Publishers, pp. 201–214.

Hulkko, H., Abrahamsson, P., 2005. A multiple case study on the impact
of pair programming on product quality. In: Proceedings of the 27th
International Conference on Software Engineering (ICSE’05), May
15–21, 2005, St. Louis, Missouri, USA, pp. 495–504.

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El
Emam, K., Rosenberg, J., 2002. Preliminary guidelines for empirical
research in software engineering. IEEE Transactions on Software
Engineering 28 (8), 721–734.

Lui, K., Chan, K., 2003. When does a pair outperform two individuals?
In: Proceedings of XP 2003LNCS. Springer-Verlag, pp. 225–233.

McDowell, C., Werner, L., Bullock, H., Fernald, J., 2002. The effects of
pair-programming on performance in an introductory program-
ming course. In: Proceedings of the 33rd SIGCSE Technical Sympo-
sium on Computer Science Education. ACM, Cincinnati, KY, USA,
pp. 38–42.

Mendes, E., Al-Fakhri, L.B., Luxton-Reilly, A., 2005. Investigating pair-
programming in a 2nd-year software development and design com-
puter science course. In: Proceedings of the 10th Annual SIGCSE



G. Canfora et al. / The Journal of Systems and Software 80 (2007) 1317–1327 1327
Conference on Innovation and Technology in Computer Science
Education (ItiCSE’05). ACM Press, pp. 296–300.

Muller, M., 2006. A preliminary study on the impact of a pair design
phase on pair programming and solo programming. Information and
Software Technology 48, 335–344.

Nawrocki, J., Wojciechowski, A., 2001. Experimental Evaluation of pair
programming. In: Proceedings of the European Software Control and
Metrics Conference (ESCOM 2001). ESCOM Press, 2001, pp. 269–
276.

Nosek, J., 1998. The case for collaborative programing. Communication
of ACM 41 (3), 105–108.

Rakitin, S.R., 2001. Manifesto elicits cynism. Computer 34 (12), 4.
Reifer, D.J., 2002. How good are agile methods? IEEE Software 19 (4),

16–19.
Sjøberg, D., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., Karahasa-

novic, A., Koren, E.F., Vokác, M., 2002. Conducting realistic
experiments in software engineering. In: Proceedings of the 2002
International Symposium on Empirical Software Engineering
(ISESE’02). IEEE CS Press, pp. 17–26.

Srikanth, H., Williams, L., Wiebe, E., Miller, C., Balik, S., 2004. On pair
rotation in the computer science course. In: Proceedings of Conference
on Software Engineering Education and Training 2004. IEEE CS
Press, Norfolk, VA, USA, pp. 144–149.

Succi, G., Marchesi, M., Pedrycz, W., Williams, L., 2002. Preliminary
analysis of the effects of pair programming on job satisfaction. In:
Proceedings of the Fourth International Conference on eXtreme
Programming and Agile Processes in Software engineering (XP2002),
pp. 212–215.

Williams, L., Kessler, R.R., 2000. The Effects of ‘‘Pair Pressure’’ and
‘‘Pair-Learning’’ on software engineering education. In: Proceedings of
the 13th Conference on Software Engineering and Education (CSEET
2000). IEEE CS Press, pp. 59–65.

Williams, L., Kessler, R.R., 2003. Experimenting with industry’s pair
programming model in the computer science classroom. Journal of
Software Engineering Education 11 (1), 7–20.

Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R., 2000.
Strengthening the case for pair programming. IEEE Software 17 (4),
19–25.

Wilson, J., Hoskin, N., Nosek, J., 1993. The benefits of collaboration for
student programmers. In: Proceedings 24th SIGCSE Technical Sym-
posium on Computer Science Education, pp. 160–164.

Wohlin, C., Runeson, P., Höst, M., Ohlson, M., Regnell, B., Wesslén, A.,
2000. Experimentation in Software Engineering: An Introduction.
Kluwer Academic Publishers.

Xu, S., Rajlich, V., 2005. Pair programming in graduate software
engineering course projects. In: Proceedings of the 35th ASEE/IEEE
Frontiers in Education Conference, Indianapolis (Indiana), October
19–22, F1G-7-F1G-12.
Gerardo Canfora is a professor of computer science at the Faculty of
Engineering and also the Director of the Research Centre on Software
Technology (RCOST) of the University of Sannio in Benevento, Italy. He
has a degree in Electronic Engineering from the Federico II University of
Naples. His research interests include software maintenance and evolu-
tion, service oriented computing, metrics, and experimental software
engineering. He is a member of the Editorial Board of the Journal of
Software Maintenance and Evolution: Research and Practice and serves as
a General Chairperson for WCRE’06 and a Program Co-Chair for
ICSM’06. He is a member of the IEEE Computer Society. He can be
contacted at RCOST – Research Centre on Software Technology, Viale
Traiano 1, 82100 Benevento, Italy; gerardo.canfora@unisannio.it.

Aniello Cimitile is the Dean of the University of Sannio in Benevento,
Italy, where he is a professor of computer science. Previously, he was part
of the Department of ‘‘Informatica e Sistemistica’’ at the Federico II
University of Naples. He has a degree in electronic engineering from the
Federico II University of Naples ’’. He has been a researcher in the field of
software engineering since 1973 and his list of publications contains more
than 100 papers published in journals and conference proceedings. He
serves on the program and organizing committees of several international
conferences and on the editorial and review committees of several inter-
national scientific journals in the fields of software engineering and soft-
ware maintenance. He is a co-editor-in-chief of the Journal of Software
Maintenance and Evolution: Research and Practice. His research interests
include software maintenance and testing, software quality, reverse engi-
neering, and empirical software engineering. He is a member of the IEEE
and the IEEE Computer Society. He can be contacted at RCOST –
Research Centre on Software Technology, Viale Traiano 1, 82100 Bene-
vento, Italy; cimitile@unisannio.it.

Félix Garcı́a is a lecturer at the University of Castilla-La Mancha
(UCLM). His research interests include business process management,
software processes, software measurement and agile methods. He has a
M.Sc. degree and a Ph.D. degree in Computer Science from the UCLM,
and is a member of the Alarcos Research Group of that University, which
specialises in Information Systems, Databases and Software Engineering.
He can be contacted at Escuela Superior de Informática, Paseo de la
Universidad 4, 13071 Ciudad Real, Spain; Felix.Garcia@uclm.es.

Mario Piattini is a professor at the UCLM. His research interests include
software quality, metrics and maintenance. He has a Ph.D. degree in
Computer Science from the Technical University of Madrid, and leads the
Alarcos Research Group. He is CISA and CISM by ISACA. He leads the
Joint SOLUZIONA-UCLM Software Research and Development Center.
He is member of ACM and the IEEE Computer Society. He can be
contacted at Escuela Superior de Informática, Paseo de la Universidad 4,
13071 Ciudad Real, Spain; Mario.Piattini@uclm.es.

Corrado Aaron Visaggio is a lecturer at the University of Sannio. His main
research interests are empirical software engineering, agile methods,
software process modelling and management, and knowledge manage-
ment applied to software engineering. He has a Ph.D. degree from the
University of Sannio and he graduated in Electronic Engineering at the
Politecnico of Bari, Italy, in 2001. He developed his master thesis at
the Fraunhofer IESE, Kaiserslautern, Germany, in the field of Software
Process Modelling. He is a member of the Research Centre on Software
Technology (RCOST) of the University of Sannio in Benevento, Italy. He
can be contacted at RCOST – Research Centre on Software Technology,
Viale Traiano 1, 82100 Benevento, Italy; visaggio@unisannio.it.

http://gerardo.canfora@unisannio.it
http://cimitile@unisannio.it
http://Felix.Garcia@uclm.es
http://Mario.Piattini@uclm.es
http://visaggio@unisannio.it

	Evaluating performances of pair designing in industry
	Introduction
	Related works
	The experiment in industry
	Participants
	Material
	Experimental tasks
	Variables
	Hypotheses

	Results of the experiment
	Descriptive statistics
	Data analysis

	Limits of the experiment
	Comparison with the previous exploratory experiment in Academia
	Conclusion and future work
	Acknowledgements
	Appendix A
	References


