
Modelling Quantum Circuits with UML
Ricardo Pérez-Castillo

 University of Castilla-La Mancha
Talavera de la Reina, Spain

ricardo.pdelcastillo@uclm.es

Luis Jiménez-Navajas
University of Castilla-La Mancha

Ciudad Real, Spain
luis.jimeneznavajas@uclm.es

Mario Piattini
University of Castilla-La Mancha

Ciudad Real, Spain
mario.piattini@uclm.es

ABSTRACT
None of the quantum computing applications imagined will ever
become a reality without quantum software. Quantum
programmes have, to date, been coded with ad hoc techniques.
Researchers in the field of quantum software engineering are,
therefore, now demanding more systematic techniques and
methods with which to produce software with sufficient quality.
One of the challenges and lessons learned from classic software
engineering is the need for high-level, abstract and technology-
independent representations with which to design software
before it is coded. This paper specifically addresses this challenge
for quantum software design. Since UML is a well-proven
modelling language that has been widely employed by industry
for some time, we propose a UML extension for the
representation of quantum algorithms. Our proposal comprises
the definition of a UML profile based on various stereotypes that
can be applied to the existing UML activity diagrams in order to
represent quantum circuits. The advantage of this representation
is that UML quantum circuits can be interrelated with other
UML elements and diagrams, which will make it possible to
represent various concerns and viewpoints of the so-called
hybrid information systems. This will consequently enable
classical and quantum aspects to be modelled together in
integrated designs in a technological-agnostic manner that is
already supported by a considerable number of existing software
design tools.

CCS CONCEPTS
• General and reference → General conference
proceedings; Design; • Software and its engineering →
System description languages; Unified Modeling Language
(UML); Software design engineering; • Theory of
computation → Quantum computation theory; Quantum
information theory.

KEYWORDS
Quantum Software Engineering; Quantum Computing; UML;
Quantum algorithms; Activity diagrams.

1 INTRODUCTION
The impact of quantum computing on today’s society is
undeniable [1, 2]. Quantum computing has a many promising
applications [3], such as cryptography, financial services,
pharmacy and health, energy and farming, defence, etc.

None of the advantages that have been forecast to appear
with the advent of quantum computing will be achieved with

cutting-edge machines only, but these applications could be
brought into existence through the use of quantum software [4].
This new computing paradigm has devised a completely
different approach for programming, along with building blocks
for quantum programmes that are also unique. Quantum
software is typically designed as quantum circuits that apply a
set of quantum gates to various qubits in order to explore a
search space in a non-deterministic and probabilistic manner.

In this scenario, quantum software engineering needs to be
developed as a new field [4, 5] in order to provide new
techniques, methods and practices with which to analyse, design,
code and create quantum software with sufficient quality in a
more systematic manner. Other well-proven and successful
classical software engineering techniques and methods could,
together with these new techniques and methods, be adapted for
quantum software [5]. The adaptation of existing techniques and
methods is also important owing to the coexistence of classical
and quantum software, which in many cases operate together in
the so-called hybrid information systems.

We believe that hybrid information systems will become
mainstream as quantum computing machines are improved and
more and more companies invest in migrating parts of their
classical software towards quantum. However, it does not, from
an economic point of view, make sense to implement every tiny
and simplistic business process as quantum software, since
classical software still performs better in the case of certain
problems. Our envisioned scenario considers companies that
migrate some of their mission-critical functionalities to quantum
software while other new functionalities are implemented in
quantum software owing to the new possibilities facilitated by
this new computing paradigm. Classical and quantum software
should, therefore, be modernised in order to attain hybrid
information systems [6].

Many of the problems solved by the existing software
engineering methods and techniques are still the same as those
involved in the design and construction of hybrid information
systems [7]. For example, abstract representations for software
are a key aspect as regards discussing design concerns and
modelling systems with high-level representations, while
implementation details are hidden. One well-proven solution,
that is most widely used in classical software engineering, is the
usage of standard modelling languages such as UML [8] for the
analysis and design of information systems. We believe that
UML modelling is a powerful tool for the design of hybrid
information systems. This can be achieved by following a model-
driven engineering (MDE) approach that has at least two
important advantages. First, UML models focus on domain and

 R. Perez-Castillo et al.

conceptual representations in a technological-agnostic manner,
and second, automated model transformations can be established
from/to UML to/from source code for different platforms.
Quantum software engineering that designs and develops
quantum software by means of UML can consequently abstract
technical complexities while focusing on the domain of the
problem or business model, thus requiring only the functional
knowledge needed for the solution. The advantages of MDE are
a key aspect at this time of rapid evolution and a lack of
standardisation in quantum programming, since companies are
afraid of investing in platforms that will not continue in the
future.

Although the UML was defined in a general and technology-
independent manner, it was not originally conceived for the
design of quantum software. It is, therefore, necessary to extend
UML in order to cover the new quantum concerns. This paper
introduces the ongoing results of research focused on the
extension of the UML and presents a preliminary UML profile
with which to represent quantum circuits as activity diagrams.
The main implication of this work is that quantum circuits
(based on the variant of the Penrose graphical notation) can be
represented with UML, signifying that these elements can be
linked with other abstract design elements of hybrid information
systems that are also represented in the UML through the use of
existing [9] or future extensions.

The remainder of the paper is structured as follows: Section 2
states the relevance of using UML in quantum software
engineering, after which Section 3 introduces the UML profile
for use in modelling quantum circuits, with a running example
for the quantum teleportation algorithm. Finally, Section 4
discusses the main implication and future efforts of this research.

2 UML FOR QUANTUM SOFTWARE
This section presents the usage of UML in quantum software

engineering and how it can be extended.

2.1 Usage of UML in Quantum Software
The development of quantum or hybrid information systems
cannot simply consist of a collection of code modules. The
development of these systems should rather follow a whole life
cycle, i.e. a “pre-defined pathway for implementing and solving
large projects on quantum both in a time-efficient and resource-
efficient manner” [7]. It does not matter how long the life cycle
is, since it is certain that the quantum software must be designed
at some point. Software design defines the architecture, system
elements, interfaces and other characteristics of a system [10] in
order to accomplish goals using a set of primitive components,
and is subject to constraints [11].

UML can help by gathering and analysing software
requirements and incorporating them into a programme design
in a technology- and methodology-independent manner. This
will make it possible to additionally use UML with hybrid
information systems.

Although other modelling languages can be used to design
software, we believe that the usage of UML in quantum software
engineering will have several advantages:

1. Different perspectives. UML provides many different
diagrams types to look at systems from various
perspectives and represent different concerns. These
viewpoints are useful as regards modelling hybrid
information systems.

2. Design validation. The aforementioned perspectives
allow UML to help quantum software engineers to
communicate, explore potential designs and validate the
architectural design of the software. The UML is highly
extended in industry and is, in some cases and to a certain
extent, easy for non-technical staff to understand.

3. Best practices. UML represents a collection of best
engineering practices that have proved successful in the
modelling of large complex systems. These practices could
consequently be applied in quantum/hybrid information
systems. One example of this is the aforementioned MDE
approach, which ensures platform independence.

4. Structured Design. UML modelling makes it easier to
structure software as a collection of self-contained modules
or components. This enables the reuse of code, scalability,
and robustness. The state of the art of the quantum
software engineering field is demanding precisely this [5].

5. Tooling. Since UML is a widely adopted ISO/IEC standard,
most of the design and modelling tools support it. One of
the primary goals of the UML is to advance the state of
industry by enabling object visual modelling tool
interoperability [8]. Quantum software modelling could be
integrated into the tools used by many software engineers.

6. Software Modernisation. UML is not only used for
designing target hybrid systems that will then be
implemented by forward engineering. UML models can
also be generated by reverse engineering tools that analyse
existing software, e.g., in order to migrate or modernise
software towards hybrid information systems [6].

Despite these advantages, UML needs to be adapted in order
to capture all the new semantics and building blocks involved in
quantum software. Literature already contains some first
approximations. For example, in [9], Q-UML is proposed as a
concrete syntax definition with which to represent certain
quantum elements in class and sequence diagrams. In [6], UML
is stated to be a relevant model for use in software
modernisation processes, such as the reverse engineering or
restructuring phase, and a UML extension is introduced with an
example for use case diagrams. Other authors have already used
UML (without providing extensions) to model quantum software
[12].

2.2 UML Extensibility
UML was defined on the basis of the MOF (Meta-Object Facility),
which is a meta-metamodel. UML is, therefore, a metamodel
that is used to define different UML models, and the extension of
UML consequently consists of extending the metamodel. It is
necessary to bear in mind that all metamodels have both an

Modelling Quantum Circuits in UML

abstract syntax (that describes the concepts in the language,
their characteristics and interrelationships) and a concrete
syntax (that defines the specific textual or graphical notations
required for the abstract elements). It is possible to extend the
UML by principally following three different approaches [13].

1. A new instance of the MOF model. This approach
consists of creating a completely new metamodel based on
MOF. The result of this heavyweight approach is a new
Domain-Specific Modelling Language (DSML).

2. Derivation of a new UML metamodel. This approach
adds new metamodel elements to the existing one. As
occurs with the first approach, it is a different metamodel,
but at least considers the original UML metamodel as it is.

3. UML Profile. This is a lightweight extension approach
that is based on the UML built-in extension mechanism,
UML Profiling. UML profiles are created as a set of
stereotypes, tagged values and constraints defined for
some of the existing UML elements.

These three approaches have various pros and cons. The
expressiveness of the two first approaches is powerful, since
conformity with UML is not necessary (particularly in the case of
approach 1). Despite the fact that the expressiveness of UML
profiles is limited, standardisation and conformance are better,
since the extension is fully compliant with UML. This advantage
is a key aspect as regards the usage of the defined profile with
existing UML modelling tools. Moreover, it is easier to maintain
extensions that have been defined as UML profiles since the
associated modelling tools do not need to be adjusted after each
change, as occurs with a DSML. DSMLs (approaches 1 and 2), in
fact, usually end up with an overloaded and imprecise language.
The aforementioned advantages lead us to believe that the UML

profile is the best way in which to define the UML extension for
quantum information systems.

Figure 1 presents the part of the UML metamodel (abstract
syntax) employed to define UML Profiles. A UML profile is
defined as a package containing a set of defined stereotypes (that
may or may not have a specific image). The UML profile must
then be applied to a certain model. The attributes used to filter
which UML elements are available when the Profile is applied
are metamodelReference and metaclassReference. When a
stereotype is applied to a model element, the values of the
properties are traditionally referred to as tagged values.

3 QUANTUM UML PROFILE
This section presents the preliminary UML profile defined in
order to represent quantum programmes as activity diagrams by
using a graphical notation similar to that employed by quantum
circuits. It should be noted that a broader UML profile will be
defined for the representation of not only quantum circuits but
also the analysis and design concerns of hybrid information
systems. These other UML diagrams are not, however, within
the scope of this paper.

The entire Quantum UML Profile is presented in Figure 2.
The UML profile consists of 6 stereotypes with which to add the
new semantic related to quantum circuits (see dark gray
elements at right-hand side of Figure 2): quantum circuit, qubit,
quantum gate, control qubit, measure, reset. The left-hand side of
Figure 2 shows an excerpt of the UML metamodel employed to
represent UML Activity Diagrams, i.e., the base diagram used to
model quantum circuits with UML.

Figure 1: UML metamodel employed to define UML Profiles (Adapted from [8]).

 R. Perez-Castillo et al.

Figure 2: Quantum UML Profile.

The metaclass elements (light gray) in Figure 2 are those that
are not abstract and are, therefore, the elements available to be
included in the UML Activity Diagram. The leftwards arrows
from stereotypes to metaclass elements in Figure 2 are extension
elements (see Figure 1) that are used to indicate that the
properties of a metaclass are extended through the use of the
respective stereotype.

The intuitive idea behind representing quantum circuits with
UML activity diagrams is that each algorithm is represented with
a single compound activity with the stereotype <<quantum
circuit>>. The entire circuit is, therefore, defined in this activity,
and the compound activity can be reused in other circuits, as
occurs in quantum programming. The various activity partitions
(graphically represented as horizontal swim lanes) can be
defined in the parent activity by employing the <<qubit>>
stereotype. The circuit has as many activity partitions as different
qubits used in the algorithm. All the different quantum gates
applied in the circuits are, therefore, represented as action
elements and are placed in the respective swim lane, according
to the qubit under which the gate is applied or controlled. On the
one hand, ordinary quantum gates (such as H, Y, Z, etc.) are
represented as call operation actions plus the <<quantum gate>>
stereotype. On the other hand, conditional gates are represented
with multiple action elements. The control qubits are
represented with send signal action elements with the stereotype
<<controlled qubit>>, while the gate applied is represented with

the counterpart element, accept event action, plus the <<quantum
gate>> stereotype (see Figure 2). Additionally, in order to add the
semantic concerning the relationships between the control
qubits, various UML constraint elements are established between
the action elements involved.

In addition to these core elements, special operations, such as
qubit measuring and qubit resetting, are represented with value
specification action elements and their respective stereotypes
<<measure>> and <<reset>>.

The control flow of quantum circuits is represented in the
UML Activity Diagram with control flow elements that connect
two action elements. In quantum circuits, isolated quantum gates
that are applied independently in different qubits can sometimes
be executed in any order. In this case, a control flow is
established from top to bottom for every qubit. On other
occasions, the order of certain quantum gates is important, and
barriers are used in graphical quantum circuits. In this case,
these synchronizations are represented in the UML Activity
Diagram with fork and join nodes. The control flow in UML
Activity Diagrams should eventually be defined in a continuous
manner, starting from the special element initial node, and
ending in the special element activity final node. This signifies
that the result should be a fully connected graph. This is a
change as regards graphical quantum circuits, in which the
control flow could, to a certain extent, be ambiguous. The UML
extensions we provide support and advocate the definition of an

Modelling Quantum Circuits in UML

exact control flow, similar to that provided by quantum
programming languages such as Q# or QASM.

3.1 Running Example
In order to illustrate how the Quantum UML Profile is applied,
and to demonstrate its applicability, the paper provides a
running example by using the teleportation algorithm [14] (see
Figure 3).

Figure 3: Quantum circuit for the teleportation algorithm.

This algorithm supports quantum teleportation, a technique
used to transfer quantum information from source to destination
by employing entangled states. In this example, q0 is the qubit
that represents the message to be sent, q1 is an auxiliary qubit,
and q2 is the target qubit that will receive the information coded
in q0. In this example, Hadamard (H) gates are used in order to
place a qubit into a state of superposition. CNOT is a conditional
X gate that rotates the position of the qubit in the X axis (like a
NOT gate for classical computers) if the value of another qubit is
one. It similarly uses a conditional Z gate that applies a rotation
in the Z axis depending on the value of another qubit. In
addition to these gates, two measures are taken in qubit q0
(message) and q1 (auxiliary) that collapse these qubits and take
certain values. At the end of the algorithm, q2 (target) will have
the same value that q0 had.

Figure 4 shows how the Quantum UML Profile is applied in
an activity diagram in order to represent the equivalent quantum
circuit for the teleportation algorithm. As explained previously,
the whole circuit is enclosed in a composed activity with the
respective stereotype. This circuit, therefore, has three horizontal
activity partitions (one for each qubit). The quantum gates and
measures are then placed as action elements in the same position
as in the original quantum circuit (compare Figure 3 and Figure
4). The usage of a fork and join elements for the original

synchronization barriers should also be noted. With regard to
the quantum gates CNOT and CZ, these are modelled with pairs
of send signal action and accept event action connected by a
restriction edge (together with the stereotypes <<controlled
qubit>> and <<quantum gate>>).

One interesting aspect of the quantum circuit represented
with UML is that measures can be connected with data store
nodes that represent classical values after a qubit is measured
(see msg1 and register1 in Figure 4). Other ordinary UML
elements, outside the whole circuit, could be connected with
elements of the quantum circuit in order to define relationships
with classical elements. This is specifically valuable as regards
representing three relevant concerns:

• Quantum requests from the classical programmes (also
known as drivers) to the quantum programmes, i.e., the
remote calls from the master server.

• Cost functions that manage the multiple calls to the
quantum circuits and the aggregation of results in the
classical source code of the drivers. This is a key aspect,
since the non-deterministic and probabilistic nature of
quantum algorithms makes it necessary to execute the
quantum circuits multiple times.

• Optimizers are other functions that are interesting to
model in association with the quantum circuits. These
functions are used to invoke quantum circuits with
different parameters with the goal of optimizing certain
circuits (e.g., reduction of quantum gates or qubits).

Finally, with regard to the running example, the execution
flow of the circuit in UML is explicitly represented through the
use of control flow elements from the initial node to the activity
final node through all the quantum gates (see Figure 4). This
explicit flow contrasts with the original quantum circuit in
Figure 3, in which the execution flow is implicit. If attention is
paid to the equivalent QASM source code of the teleportation
algorithm (see Figure 5), it will be noted that the explicit control
flow modelled with the Quantum UML Profile is almost the same
as that defined using the source code (QASM or any other
quantum programming language). The explicit execution flow
has some advantages in some cases, such as the optimization of
quantum algorithms, during which the specific order of the
quantum gates may be of interest.

Figure 4: Quantum circuit represented with UML for the teleportation algorithm.

Figure 5: The QASM code for the teleportation circuit.

4 DISCUSSION
This paper introduces the idea of modelling quantum circuits

in UML Activity Diagrams. Although several quantum circuit
notations with which to graphically represent quantum
algorithms already exist, the UML adds a similar notation that is
understood by main role players in the quantum software
engineering field and which is available in many existing
modelling tools. In fact, the approach followed in this research
consists of a lightweight extension based on a UML profile (the
built-in extension mechanism provided by UML). Unlike other
heavy-weight extension mechanisms, we believe the Quantum
UML Profile has two clear advantages: (i) the reuse of existing
UML modelling tools, and (ii) integration with other standard
UML elements, which is useful as regards representing hybrid
information systems.

The Quantum UML Profile designed in this paper consists of
6 stereotypes that can be applied to various standard UML
elements used in activity diagrams. These stereotypes have been
intentionally defined without a graphical icon, as would have
been possible. This design decision was made in order to
preserve the UML profile in order to make it as aseptic as
possible. Literature shows that there is a certain variation in
graphical representations of quantum gates. For example, the CZ
gate is represented with a bullet point for the control qubit
connected to a square labelled with ‘Z’, or can alternatively be
represented with two bullet points that are connected (as shown
in Figure 3). It was for this reason that we decided to avoid
specific graphical representations of the stereotypes defined.
Thus, all the quantum gates are supported, and the ordinary
graphical UML notation can additionally be associated with
similar UML elements (with the same graphical notation) in
order to model classical software parts. The modelling of hybrid
information systems with a common notation can consequently
be improved through a reduction in complexity, thus attaining a
better understandability.

The main implication of this work is that quantum circuits
can be designed and modelled in the UML. The existing UML-
based code generators could, therefore, be extended in order to
automatically generate quantum source code in various

programming languages, such as QASM, Q#, or Qiskit, among
others. The implication of this work should not, however, be
understood from the mere point of view of forward engineering.
These UML representations may be key aspects during the
software modernisation processes employed to migrate classical
and quantum software towards hybrid information systems. For
example, reverse engineering tools could abstract UML quantum
circuits from quantum source code.

This paper proposes the UML extension as part of more
extensive long-term research devoted to providing a Quantum
UML Profile that will cover other viewpoints and aspects of the
analysis and design of hybrid information systems. For example,
use case, class, sequence, component and deployment diagrams
will be extended with the Quantum UML Profile, and our future
research lines will comprise precisely this.

Acknowledgments
This work is part of the SMOQUIN project (PID2019-104791RB-
I00) funded by the Spanish Ministry of Science and Innovation
(MICINN) and “QHealth: Quantum Pharmacogenomics Applied
to Aging”, 2020 CDTI Missions Programme (Center for the
Development of Industrial Technology of the Ministry of Science
and Innovation of Spain). We would like to thank all the
aQuantum members, and particularly Guido Peterssen and Pepe
Hevia, for their help and support.

REFERENCES
[1] The Economist. Wall Street’s latest shiny new thing: quantum computing. 2020

Dec 19th 2020 [cited 2021 07/01/2021]; Available from:
https://www.economist.com/finance-and-economics/2020/12/19/wall-streets-
latest-shiny-new-thing-quantum-computing.

[2] Ackerman, D. Explained: Quantum engineering. MIT News 2020 December 10,
2020 07/01/2021]; Available from: https://news.mit.edu/2020/explained-
quantum-engineering-1210.

[3] Mueck, L., Quantum software. Nature, 2017. 549(7671): p. 171-171.
[4] Piattini, M., G. Peterssen, and R. Pérez-Castillo, Quantum Computing: A New

Software Engineering Golden Age. 2020. 45(J SIGSOFT Softw. Eng. Notes): p.
12–14.

[5] Piattini, M., et al., The Talavera Manifesto for Quantum Software Engineering
and Programming, in QANSWER 2020. QuANtum SoftWare Engineering &
pRogramming, M. Piattini, et al., Editors. 2020, CEUR-WS: Talavera de la Reina.
p. 1-5.

[6] Pérez-Castillo, R., M.A. Serrano, and M. Piattini, Software modernization to
embrace quantum technology. Advances in Engineering Software, 2021. 151: p.
102933.

[7] Dey, N., M. Ghosh, S.S. kundu, and A. Chakrabarti. The Quantum Development
Life Cycle. 2020 15 Oct 2020 08/01/2021]; Available from:
https://arxiv.org/abs/2010.08053v1.

[8] OMG, UML 2.5.1. https://www.omg.org/spec/UML/2.5.1/PDF. 2017, Object
Management Group.

[9] Perez-Delgado, C.A. and H.G. Perez-Gonzalez, Towards a Quantum Software
Modeling Language, in 2020 IEEE/ACM 42nd International Conference on
Software Engineering Workshops (ICSEW). 2020: Han River, Seoul, South Korea.
p. 441-444.

[10] ISO/IEC/IEEE, ISO/IEC/IEEE 24765:2017(E) International Standard - Systems and
software engineering--Vocabulary. 2017. p. 1-541.

[11] Ralph, P. and Y. Wand, A Proposal for a Formal Definition of the Design
Concept. 2009, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 103-136.

[12] McCaskey, A., E. Dumitrescu, D. Liakh, M. Chen, W.-c. Feng, and T. Humble,
Extreme-Scale Programming Model for Quantum Acceleration within High
Performance Computing, in arXiv preprint. 2017:
https://arxiv.org/abs/1710.01794v2.

[13] Ribo, J.M. and J. Franch Gutiérrez. A two-tiered methodology to extend the UML
metamodel. https://upcommons.upc.edu/bitstream/handle/2117/97437/R02-52.pdf.
2002 https://upcommons.upc.edu/bitstream/handle/2117/97437/R02-52.pdf.

[14] Bennett, C.H., G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K.J.P.r.l.
Wootters, Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels. 1993. 70(13): p. 1895.

https://www.economist.com/finance-and-economics/2020/12/19/wall-streets-latest-shiny-new-thing-quantum-computing
https://www.economist.com/finance-and-economics/2020/12/19/wall-streets-latest-shiny-new-thing-quantum-computing
https://news.mit.edu/2020/explained-quantum-engineering-1210
https://news.mit.edu/2020/explained-quantum-engineering-1210
https://arxiv.org/abs/2010.08053v1
https://www.omg.org/spec/UML/2.5.1/PDF
https://arxiv.org/abs/1710.01794v2
https://upcommons.upc.edu/bitstream/handle/2117/97437/R02-52.pdf
https://upcommons.upc.edu/bitstream/handle/2117/97437/R02-52.pdf

