
INFORMATICA, 2021, Vol. 0, No. 0, 1–42 1
© 2021 Vilnius University
DOI: https://doi.org/10.15388/21-INFOR454

A Systematic Mapping Study on Analysis of Code
Repositories

Jaime SAYAGO-HEREDIA1,∗, Ricardo PÉREZ-CASTILLO2,
Mario PIATTINI2
1 Pontificia Universidad Católica del Ecuador, Sede Esmeraldas,

Espejo y subida a Santa Cruz Casilla 08-01-0065, Ecuador
2 Information Technology & Systems Institute, University of Castilla-La Mancha,

Paseo de la Universidad, 4, 13071, Ciudad Real, Spain
e-mail: jaime.sayago@pucese.edu.ec, ricardo.pdelcastillo@uclm.es, mario.piattini@uclm.es

Received: October 2020; accepted: May 2021

Abstract. Code repositories contain valuable information, which can be extracted, processed and
synthesized into valuable information. It enabled developers to improve maintenance, increase code
quality and understand software evolution, among other insights. Certain research has been made
during the last years in this field. This paper presents a systematic mapping study to find, evaluate
and investigate the mechanisms, methods and techniques used for the analysis of information from
code repositories that allow the understanding of the evolution of software. Through this mapping
study, we have identified the main information used as input for the analysis of code repositories
(commit data and source code), as well as the most common methods and techniques of analysis
(empirical/experimental and automatic). We believe the conducted research is useful for developers
working on software development projects and seeking to improve maintenance and understand the
evolution of software through the use and analysis of code repositories.
Key words: code repository analysis, repository mining, code repository, GitHub, systematic
mapping study.

1. Introduction

Software engineering researchers have sought to optimize software development by
analysing software repositories, especially code repositories. Code repositories contain
important information about software systems and projects to analyse and process (Has-
san, 2008). Code repositories contain valuable information, which can be extracted, pro-
cessed and synthesized into output or resultant information. Information allows develop-
ers to improve maintenance, increase code quality and understand software evolution. For
some years now, software engineering researchers have been working on extracting this
information to support the evolution of software systems, improve software design and
reuse, and empirically validate new ideas and techniques (Amann et al., 2015).

∗Corresponding author.

https://doi.org/10.15388/21-INFOR454


2 J. Sayago-Heredia et al.

Researchers have a real challenge with the realization of these studies, since it is com-
plex to analyse the different artifacts contained in the code repositories. Despite the chal-
lenge of analysing code repositories, they can provide solutions to problems that arise in a
software development project such as defects, effort estimation, cloning, evolutionary pat-
terns. Understanding these issues, along with other parameters and metrics obtained from
the repository, can decrease maintenance costs and increase the quality of the software.

The objective of this Systematic Mapping Study (SMS) is to find, evaluate and inves-
tigate the mechanisms, methods and techniques used for the analysis of information from
code repositories that allow the understanding of the evolution of software and research of
this area. The primary studies for our research were taken from the main digital databases.
The process of searching, analysing, and debugging the literature on code repositories was
carried out through rigorous protocols and methodologies described (Section 4) in subse-
quent sections of the study. We obtained 236 documents out of a total of 3755 documents
published between 2012 and 2019. This selected period (seven years) is a reasonable time
period to avoid the selection of outdated, general or extensive works (Cosentino et al.,
2017; Tahir et al., 2013), but also to prevent studies as a result of fashion peaks in a very
short period (De Farias et al., 2016). The selected studies allowed us to learn about the
conducted research in this field and to answer the six research questions we posed.

This study reveals some trends in the current use of software coding evolution and
the massive use of code repositories as a platform for software development. We believe
this research is useful for developers who are working in software development projects,
seek to improve maintenance and understand the evolution of software through the use and
analysis of code repositories. These repositories included the source code and information
about the development process, which can be analysed and used for both developers and
project managers.

An important contribution is that we have defined a taxonomy which was divided ac-
cording to the input, method and output of the studies and which is a part of our research.
Through this mapping study, we have identified the main information inputs used in the
analysis of code repositories, as well as the use of a wide variety of tools and methods
for processing the information extracted from the code repository. Specifically, most of
the studies focus on the use of empirical and other experimental analyses used in other
research fields such as artificial intelligence, although there are plenty of other analysis
methods employed. The study allows us to understand how the analysis of code repos-
itories has evolved over the last decade. The scientific community has been constantly
investigating the potential benefits of code repository analysis for a decade to understand
the evolution of software, along with the possibility of validating techniques and tools
(Amann et al., 2015). It allows us to identify areas where researchers need to go deeper
and find new lines of future research.

The rest of this paper is structured as follows: Section 2 provides a brief background
on the definition and evolution of code repositories. Section 3 details the research method-
ology. Section 4 then describes the systematic mapping method applied in this study. Sec-
tion 5 presents the results of the systematic mapping. Section 6 discusses the main results
of the study and analyses them. Finally, Section 6 presents the conclusions of this study.



A Systematic Mapping Study on Analysis of Code Repositories 3

2. Background

The following is a description of the state of the art code repositories, showing the most
important concepts and evolution of this knowledge area. In addition, this section shows
papers on Systematic Literature Reviews (SLR), mapping studies and surveys.

2.1. Code Repository Analysis

One important task in this discipline is software comprehension, since software must be
sufficiently understood before it can be properly modified and evolved. Actually, some au-
thors argue that around 60% of software engineering effort is about software comprehen-
sion (Cornelissen et al., 2009). Researchers in this area use different methods, artifacts and
tools to analyse the source code and extract relevant knowledge (Chen et al., 2016; Chahal
and Saini, 2016). The analysis and understanding of software are complicated, alongside
the handling of the different versions of the software and other information of the software
development projects. To mitigate such problem, there are systems for controlling those
versions, servers, and code repositories, and other software artifacts in general.

• Version Control Systems (VCS). Version Control Systems (VCS) is a tool that or-
ganizes the source code of software systems. VCS are used to store and build all the
different versions of the source code (Ball et al., 1997). In general, a VCS manages the
development of an evolving object (Zolkifli et al., 2018), recording every change made
by software developers. In the process of building software, developers make changes
in portions of the source code, artifacts, and the structure of the software. Thus, it is
difficult to organize and document this process because it becomes a large and complex
software. Therefore, VCS is a tool that allows developers to manage and control the
process of development, maintainability and evolution of a software (Costa and Murta,
2013).

• Software repositories. Systems that store project data, e.g. issue control systems and
version control systems, are known as software repositories (Falessi and Reichel, 2015).
Software repositories are virtual spaces where development teams generate collabo-
rative artifacts from the activities of a development process (Arora and Garg, 2018;
Güemes-Peña et al., 2018; Ozbas-Caglayan and Dogru, 2013). Software repositories
contain large amount of software historical data that can include valuable information
on the source code, defects, and other issues like new features (De Farias et al., 2016).
Moreover, we can extract many types of data from repositories, study them, and can
make changes according to the need (Siddiqui and Ahmad, 2018). Due to open source,
the number of these repositories and its uses is increasing at a rapid rate in the last
decade (Amann et al., 2015; Costa and Murta, 2013; Wijesiriwardana and Wimalaratne,
2018). Such repositories are used to discover useful knowledge about the development,
maintenance and evolution of software (Chaturvedi et al., 2013; Farias et al., 2015).
It is important to identify software repositories. Hassan (2008) describes the various
examples of software repositories such as the following: historical repositories, run-
time repositories, code repositories. Our research mainly focuses on code repositories.



4 J. Sayago-Heredia et al.

• Code repositories. Code repositories are maintained by collecting source code from
a large number of heterogeneous projects (Siddiqui and Ahmad, 2018). Code reposi-
tories like SourceForge, GitHub, GitLab, Bitbucket and Google Code contain a lot of
information (Güemes-Peña et al., 2018). These companies offer services that go beyond
simple hosting and version control of the software (Joy et al., 2018). Therefore, source
code repositories have been attracting a huge interest from many researchers (Lee et al.,
2013).

These kinds of systems have been adopted by the industry and are used by a significant
number of open source projects (Joy et al., 2018). Thereby, such systems have become an
important source of technical and social information about software development that is
used to identify conventions, patterns, artifacts, etc. made by software development teams
to understand and improve the quality of software (Del Carpio, 2017). However, the repos-
itory platforms only allow searches on projects, so they do not allow any analysis or value-
added information to support the decision-making process (Hidalgo Suarez et al., 2018).
Researchers are interested in analysing these code repositories for information on differ-
ent software issues (e.g. quality, defects, effort estimation, cloning, evolutionary patterns,
etc.). Analysing code repositories is a difficult task that requires certain knowledge on how
to access, gather, aggregate and analyse the vast amount of data in code repositories (Dyer
et al., 2015). Our research focuses on performing an SMS to know what kind of research
has been done on the analysis of code repositories and to know what research areas have
not been covered yet.

2.2. Related Work

This section describes some secondary studies (e.g. SMS, SLR and surveys) about the
analysis of code repositories. To the best of our knowledge, in the relevant literature there
are few SLR or SMS studies that tackle analysis of code repositories. We can find some
works whose aim is to provide the state of the art in the field of code repository analysis.

In this line, De Farias et al. (2016), Siddiqui and Ahmad (2018) and Costa and Murta
(2013), present reviews to investigate the different approaches of Mining Software Repos-
itories (MSR), showing they are used for many purposes, mainly for understanding the
defects, analysing the contribution and behaviour of developers, and understanding the
evolution of software. In addition, the authors strive to discover the problems encountered
during the development of software projects and the role of mining software repositories
in solving those problems. A comparative study of data mining tools and techniques for
extracting software repositories is also presented, one of these tools being VCS. These
results can help practitioners and researchers to better understand and overcome version
control system problems, and to devise more effective solutions to improve version con-
trol in a distributed environment. Zolkifli et al. (2018) discusses the background and work
related to VCS that has been studied by researchers. The purpose of this document is to
convey the knowledge and ideas that have been established in VCS. It is also important to
understand the approaches to VCS, as different approaches will affect the software devel-
opment process differently. Kagdi et al. (2007) presents a study on approaches to MSRs



A Systematic Mapping Study on Analysis of Code Repositories 5

that includes sources such as information stored in VCS, error tracking requirements/sys-
tems, and communication files. The study provides a taxonomy of software repositories in
the context of the evolution of software, which supports the development of tools, methods
and processes to understand the evolution of software. In addition, Demeyer et al. (2013)
provides an analysis of the MSR conference. This paper reports on technologies that are
obsolete or emerging and current research methods for the date (2013) the study was con-
ducted. In conclusion, the research focuses on the change and evolution of software, along
with a few studies for the industry. The study already mentions the code repositories and
their importance as an important source of data for software analysis.

This work focuses on the concepts presented in Section 2.1. Consequently, the research
efforts (Costa and Murta, 2013; De Farias et al., 2016; Siddiqui and Ahmad, 2018; Zolkifli
et al., 2018) are at the coarse-grained level where a generalized taxonomy of the differ-
ent types of information analysed in software repositories is performed along with their
respective tools and techniques for information extraction. This allows to have a general
vision of the different code repositories, but it does not provide details of the informa-
tion that is obtained from these software repositories. For example, what is the resulting
information used for? What problems does it solve? and other questions linked to the
maintenance and evolution of the software.

Other studies such as Amann et al. (2015) and Güemes-Peña et al. (2018), show that
the main objectives of software repositories are mainly productivity objectives, such as
identifying the impacts of change, as well as making development more effective. Other
objectives are to support quality assurance, for example, by finding and predicting errors,
or by detecting code clones and calculating the testing effort. Management objectives, such
as estimating change effort, understanding human factors, or understanding processes, are
also pursued, but in far fewer studies. In addition, in their research on the use of software
repositories, they have identified the most relevant problems in the software development
community: software degradation, dependencies between exchanges, error prediction and
developer interaction. They pointed out that repositories record large volumes of data,
although standard data collection tools are not available to extract specific data from the
repositories. Most of the data sets came from open source projects with few contributions
from industry participants.

In general, those studies highlight the challenge for researchers of analysing code
repositories, as they need to deal with various software engineering artifacts, data sources,
consider the human factor as a primary component, understand the areas of research and
identify their current objectives, gaps and deficiencies, as well as to understand how to
better evaluate their purposes and results.

GitHub is the main tool for software repositories with 79 million repositories (Borges
and Tulio Valente, 2018). Cosentino et al. (2017), Kalliamvakou et al. (2016) analysed it
through a systematic mapping of software development with GitHub, in which most of the
work was focused on the interaction around the tasks related to coding and project commu-
nities. Some concerns were also identified about the reliability of these results because, in
general, the proposal used small data sets and poor sampling techniques, employed a nar-
row range of methodologies and/or was difficult to understand. They also documented the



6 J. Sayago-Heredia et al.

results of an empirical study aimed at understanding the characteristics of software repos-
itories such as GitHub; their results indicate that while GitHub is a rich source of data on
software development, the use of GitHub for research purposes should take into account
several potential hazards. Some potential dangers are manifested in relation to repository
activity; there should also be a call for quantitative studies to be complemented by quali-
tative data. There are gaps in the data that may jeopardize the conclusions of any rigorous
study. This software repository is a unique resource and continues to grow at a rapid rate;
its users are finding innovative ways to use it and it will continue to be an attractive source
for research in software engineering.

Therefore, in this section we can observe that SLRs, SMS, survey of the literature and
text mining obtain information from MSR conferences or focus directly on the analysis of
software repositories, with the purpose of knowing the software development process and
understanding the evolution of software (Table 1). However, those studies do not analyse in
detail other subsets that are a part of software repositories, such as code repositories, which
require a greater emphasis of studies in terms of information obtained, tools, techniques,
methodologies or information derived from these analyses, which will be identified in this
study.

Consequently, in order to understand and identify the information obtained, tools, tech-
niques and utilization of the software repository and its different research topics that re-
main to be covered, we perform an SMS that provides us with a complete view through
different perspectives and does not follow a systematic process of document selection and
data extraction, but rather a complete analysis validating the different approaches and pro-
posals of various researchers.

3. Research Methodology

Based on the problem identified in the previous section, we prepared the main research
question as follows:

RQ. What are the state of the art techniques and methods for the analysis of information
from code repositories?

SMS is a secondary study that aims to classify and thematically analyse previous re-
search (Kitchenham, 2007; Petersen et al., 2008). It is related to a broader secondary study,
a systematic literature review (SLR), which aims to gather and evaluate all research results
on a selected research topic (de Almeida Biolchini et al., 2007; Kitchenham et al., 2009).
There are several SLR methodologies, e.g. PRISMA y PRISMA – P2015 (Preferred Re-
porting Items for systematic reviews and meta-analyses for protocols 2015) (Shamseer et
al., 2015) which can be considered as a superior option, however, there are weaknesses
(Haddaway et al., 2018).

SMS usually use more general search terms, and aim to classify and structure the
research field, whereas the aim of SLR is to summarise and conclusively evaluate the
research results. Kitchenham (2007) also discuss the applications and state that SMS may



A Systematic Mapping Study on Analysis of Code Repositories 7

Table 1
Summary of the related work.

Paper Type study Objective Extracted Info Purpose

De Farias et al.
(2016), Siddiqui and
Ahmad (2018), Costa
and Murta (2013)

SMS Understand the
defects, analyse the
contribution and
behaviour of
developers, and
understand the
evolution of software

Software
repositories,
MSR

Software evolution

Zolkifli et al. (2018),
Kagdi et al. (2007),
Demeyer et al. (2013)

Systematic literature
review, survey of the
literature, text mining

Understand
approaches to VCS,
taxonomy of software
repositories, analysis
of obsolete or
emerging
technologies and
current research
methods

MSR, VCS,
Conference MSR

Software
development process,
understanding the
evolution of software,
the change and
evolution of software

Amann et al. (2015),
Güemes-Peña et al.
(2018)

Systematic literature
review,

identification of
impact change,
maintainability,
software quality,
developer effort and
bug prediction

Conference MSR Data mining, machine
learning, software
process

Borges and Tulio
Valente (2018),
Cosentino et al.
(2017), Kalliamvakou
et al. (2016)

SMS Coding and project
communities,
characteristics of
software repositories

GitHub Analysis Software
Repository

be particularly suitable if only a few literature reviews have been conducted on the selected
topic, and an overview of the field is sought.

Regardless of the selection, both approaches can be used to identify research gaps in
the current state of research, but SMS is usually more applicable if the problem or topic is
more generic (Kasurinen and Knutas, 2018). In addition, SMS can analyse what kind of
studies have been conducted in the field, and what are their methods and results (Bailey
et al., 2007). In Fig. 1 we present the systematic mapping process proposed by Petersen
et al. (2008) for the field of software engineering.

The goal of our SMS is to discover and evaluate the methods and techniques used for
the analysis of code repository information that allow understanding the evolution of this
research area of software engineering.

We have performed the SMS following the formal procedures defined by Petersen et
al. (2015, 2008) and Kitchenham et al. (2011) and several steps of the standard process
for SMS are presented in Section 3.1, while Section 3.2 describes the execution phase.



8 J. Sayago-Heredia et al.

Fig. 1. Results obtained from the search and selection process.

Table 2
Research questions.

Research questions Motivation

RQ1: What kind of information is taken as
input for the analysis of code repositories?

To know what kind of information is analysed and their
respective characteristics or approaches in code repositories.

RQ2: What techniques or methods are used
for analysing code repository?

To determine which are the main techniques and methods to
obtain information from code repositories.

RQ3: What information is extracted
(directly) or derived (indirectly) as a result
of the analysis of code repositories?

To analyse what information is extracted or derived through the
analysis of code repositories.

RQ4. What kind of research has proliferated
in this field?

Establish the type of research that is most frequent in this area,
e.g. solution proposal, applied research, research evaluation, etc.,
in order to know the maturity of the area and identify gaps.

RQ5. Are both academia and industry
interested in this field?

To analyse the degree of interest of industry in this field through
its participation in research work.

3.1. Definition Phase

In this phase, we define a set of activities for SMS which are the following: research
questions, search process, study selection procedure, quality assessment, data extraction
and taxonomy and collection methods.

3.1.1. Research Questions
The main research question (RQ), described in the previous section along with the main
goal of our SMS, is to discover and evaluate recent published studies on the methods
and techniques used for information analysis of code repositories in different digital li-
braries. We segment our main research question into more specific research questions in
order to cover the wide scope of our main research question. Table 2 shows these research
questions, together with their motivation. ‘The question definition is mostly based on the
grounded theory methodology which involves the construction of theory through system-
atic gathering and analysis of data’ (Stol et al., 2016).

RQ1 focuses on the input, that is, the information taken for the analysis of the code
repository. The method or technique used for the analysis of information from the code
repository is then analysed through RQ2. Finally, the purpose and output produced by the
analysis is finally investigated by means of RQ3., i.e. the information extracted or derived



A Systematic Mapping Study on Analysis of Code Repositories 9

Table 3
Main terms and synonyms or alternative terms.

Main terms AND expression division Alternative terms

Code repository Conceptual synonyms software repository
version control systems

Technological synonyms Git
Svn

Analysis Synonyms Mining
Inspection
Exploring

from the analysis. In addition, questions RQ4 and RQ5 describe the characteristics of the
study. RQ4 delimits the type of research, for example, whether it is applicable or proposes
a solution; RQ5 determines the involvement of the researchers who have conducted the
study, for example, if the researchers are from academia or industry. Once the RQs of our
study have been formulated (see Table 2), the following subsections describe the search
process, study selection procedure, quality assessment, data extraction and taxonomy and
collection methods.

3.1.2. Search Process
In a systematic mapping, an important step is to define the search process for primary
studies. These studies are identified by using searches in scientific bibliographies or by
browsing the research of specific known journals and conferences in the area. In our sys-
tematic mapping, we search five digital scientific databases considered relevant to software
engineering recommended by Kuhrmann et al. (2017) for primary studies: Scopus, IEEE
Xplore, ACM Digital Library, ScienceDirect and ISI Web of Science. The use of these
libraries allows us to find the largest number of primary studies related to the research
questions.

After selecting the scientific libraries for the search, the next step is to create the search
string. We define two main terms: “Code repository” and “Analysis”, to cover the terms
(input and output) that are identified in the black box system (Perez-castillo et al., 2019). In
addition, we used the term version control system to include it in the search string because
it goes similar with the main term and is a part of code repository (Dias de Moura et al.,
2014). Similarly, as technological synonyms, we include the terms Git and SVN because
of their wide adoption and use as the most popular tools (Just et al., 2016). With the main
terms defined, we chose to specify some synonyms and alternative terms (see Table 3). To
link the main defined terms we use AND, and to link the alternative terms we use OR. We
found (test search string) that using this combination of terms we get the most studies that
are a part of our approach (e.g. GitHub, GitLab, StackOverflow). The generated search
string is as follows:

("code repository" OR "software repository" OR

"version control system" OR git OR svn) AND

(analysis OR inspection OR mining OR exploring)



10 J. Sayago-Heredia et al.

Table 4
Inclusion and exclusion criteria.

Id Criteria

IC1 Peer reviewed paper, for example, proceeding chapters, book chapters, keynote abstracts, call for
papers and irrelevant publications.

IC2 The study employs some kind of techniques or methods to extract information through the analysis of
code repositories.

IC3 The study provides some idea or type of application that might be applied for the analysis of code
repositories.

IC4 The papers that were published from 1 January 2012 to 31 August 2019
EC1 The paper is duplicate
EC2 Non-English articles
EC3 The paper is a preliminary investigation which is extended or is dealt with in depth in a more recent

paper by the same authors which have already been included.
EC4 The focus of the article is not within the computer science area.

We search each of the five academic databases using the defined search string, with the
exception of the ISI Web of Science, which does not allow it, and therefore we apply the
search string only to the title, abstract and keywords. The search string was modified for
each digital library. For replication of the study, Appendix A shows each library together
with the search string with the syntax needed to be used in the digital library. An important
point is that a filter was made by considering only the studies from 2012 to 2019, so one
of the exclusion criteria was met. This selected period (seven years) is a reasonable time
period to avoid the selection of outdated, general or extensive works (Tahir et al., 2013;
Cosentino et al., 2017). Also, it helps to avoid works in fashion peaks, that is, works in a
very short period (De Farias et al., 2016).

3.1.3. Selection of Primary Studies Procedure
The results obtained in the search in digital scientific libraries contain studies that con-
tribute to our research and others that are irrelevant, so it is necessary to define both selec-
tion and exclusion criteria to filter those results. The practices and strategies of inclusion
and exclusion of studies are valuable for the Petersen and Gencel systematic reviews (Pe-
tersen and Gencel, 2013). We defined the following criteria:

The inclusion criteria (IC1 in Table 4) refer first to the studies (IC1) that analyse the
code repositories, extract information from the code repositories, using techniques and
methods, what type of information is extracted and what this retrieved information is used
for. The second inclusion criterion (IC2) refers to studies that propose innovative ideas or
techniques that can be adapted or modified to apply to the analysis of code repositories.

Exclusion criteria (ECn) refers to the common exclusion criteria widely used in SMS
to exclude, for example, duplicate papers, papers written in a language other than English,
studies that present lectures and presentations, or papers that present research in other
subject areas that do not meet the research area. We use the following procedure to select
primary studies:

Step 1. Paper is not a duplicate.



A Systematic Mapping Study on Analysis of Code Repositories 11

Step 2. Apply the exclusion/inclusion criteria to the studies obtained by using the search
string, along with the analysis of the title, keywords and abstract of the article con-
taining information related to our research topic. Therefore, we included studies
that met at least one of the criteria (see Table 4 for inclusion criteria). In case of
doubt, we proceeded to include the document for further analysis in Step 3.

Step 3. In order to perform a more exhaustive filtering and to know which studies should
be excluded or selected, we proceed to read the entire study using the exclu-
sion/inclusion criteria. The first author was responsible for selecting the studies.
In this step, selection issues were resolved by agreement among all authors af-
ter analysing the full text. We obtained the primary studies that we used for our
analysis and that allow us to answer the questions posed.

After Step 2, we use another procedure to mitigate subjectivity. The remaining authors
carried out the verification of the results of the study selection separately. The authors took
a random sample for Step 2 and the inclusion/exclusion criteria were applied. Once the
procedure was completed, the researchers checked the agreements on the selection and
classification procedure of the selected studies.

3.1.4. Quality Assessment
In order to provide the quality assessment of the selected studies, Petersen et al. (2015),
Kitchenham et al. (2013) propose criteria to perform a quality assessment for SMS in
software engineering. The highest score obtained from a study means that the results are
clear, with replicable results, its limitations have been analysed and its presentation is clear.
In a similar way, we used these parameters to assess the quality of publications related to
code repositories. An instrument with questions and a five-point rating scale was designed
to determine the quality of the primary studies.

This analysis contains five subjective closed-ended and two-point objective questions.
The assessment scale considers a range from 1 to 5 in quantitative terms, i.e. based on
the Likert-scale (Pedreira et al., 2015). The possible answers to these questions show the
reviewer’s level of agreement, and range between 1 = “Strongly disagree” 2 = “Disagree”,
3 = “Neither agree nor disagree”, 4 = “Agree”, 5 = “Strongly agree”. In order to carry out
the evaluation of the selected papers, considering subjectivity, group discussion sessions
were held with other experts, so that the assessment of each evaluation question for each
paper was obtained by consensus and independently.

The quality assessment provided us with guidelines and aspects related to research in
area of code repositories and the information that is entered, processed, analysed, and is
used in different aspects. Table 5 presents the questions of the instrument used. (AQ1) eval-
uates the primary studies in relation to the analysis of information from code repositories
(a systematic approach); (AQ2) if the study presents a result of the analysis of informa-
tion from code repositories; (AQ3) if the study uses an artifact (method, technique, tool)
for the processing of information from code repositories; (AQ4) if the study provides a
solution to the problems of quality, development and evolution of software or not. (AQ5)
if the research provides any artifact (method, technique, tool) that can be applied in an
industrial environment (see Table 5). (AQ6) estimates the number of citations, which we



12 J. Sayago-Heredia et al.

Table 5
Quality assessment questions.

Nr. Assessment questions Criteria

AQ1 Does the study have a systematic method for obtaining baseline information
for code repository analysis?

Defined methods

AQ2 Does the study present a result of code repository information analysis? Data analysis

AQ3 Does the study present an artifact (technique, tool, or method) for
processing information from code repositories?

Study presentation results

AQ4 Does the research show a solution to the problems of software quality,
development and evolution?

Study focus

AQ5 Does the research provide an artifact (technique, tool or method) that can be
applied in industrial environments?

Application

AQ6 Do other authors cite the selected study? Utility
AQ7 Is the journal or conference that publishes the study important or relevant? Relevant

obtained from the various digital scientific databases. For AQ6, the scale values we use are
the value of ‘1’ for the score of the studies with the least amount and the value of ‘5’ with
the studies with the most amount of citations. In addition, we standardized the papers, di-
viding the number of citations by the number of total years published. The standardization
of papers helps us to avoid penalties for recent publications. AQ7 determines whether the
conference or journal publishing the study is outstanding or important. To measure this
question, we considered the relevance index collected by two conference classifications:
CORE ERA and Qualis. These conferences were standardized with ranges (‘A’, ‘B’, ‘C’)
for the first one and (‘A1’, ‘A2’, ‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’) for the second one to fi-
nally obtain a calculated average. In the case of journal articles, we rely on the Journal
Citation Reports (JCR) quartiles, which have their index (‘Q1’ = ‘5’, ‘Q2’ = ‘4’, ‘Q3’ =
‘3’, ‘Q4’ = ‘2’, ‘Q5’ = ‘1’) that is in a descending order with the lowest ‘1’ representing
non-indexed journals.

3.1.5. Procedure for Data Extraction and Taxonomy
We obtained clear and systematic information using a data extraction instrument (see Ap-
pendix B). We defined the possible answers for research questions posed in the previous
sections (see Table 2). We obtain a homogeneous cluster by extracting the criteria from the
selected studies and allowing for a taxonomy. For taxonomy we take as a basis the taxon-
omy provided (Dit et al., 2013), other similar studies (Kagdi et al., 2007; Cavalcanti et al.,
2014) and our pilot study. Main category consists of a set subcategory that shares common
characteristics and type quantitative. For example, the category “Empirical/Experimental”
in Table 6, which corresponds to RQ3, is grouped together with research that employs
methods and techniques, mentioned bellow: empirical study, empirical evaluation, con-
trolled experiment, experimental study case, study empirical analyses, exploratory study.
Extraction procedure was tested using the form in a pilot study (see Appendix B). Inten-
tion of the pilot studies is “to evaluate both technical issues, such as the completeness of
the forms, and usability issues, such as the clarity of the instructions for use and the order
of the questions” (Kitchenham, 2007). The process of item categorization was carried out



A Systematic Mapping Study on Analysis of Code Repositories 13

Table 6
Taxonomy.

RQs Categories

RQ1 Project Features Info
Defects
Comments
Branches
Source Code
Informal Information
Committers
Commit Data
Logs
Graphs/News Feed
Issue
Pulls/Pull Request
Level of Interest
Repository Info

RQ2 Automatic Processing
Branching Analysis
Changes Analysis
Commits/Committers Classification
Cloning Detection
Code Review
Commit Analysis
Defect/Issues Analysis
Developer Behaviour
Design Modelling
Maintainability Information
Metrics/Quality
Source Code Improvements
Testing Data

RQ3 Ad Hoc Algorithms
Data Mining
Automatic
Artificial Intelligence/Machine Learning
Qualitative Analyses
Heuristic Techniques
Empirical/Experimental
Statistical Analyses
Prediction
Reverse Engineering
Testing-Based Techniques

RQ4 Evaluation Research
Proposal of Solution
Validation Research
Philosophical Papers
Opinion Papers
Personal Experience Papers

RQ5 Industry
Academia
Freelance



14 J. Sayago-Heredia et al.

by the authors individually. Items with some disagreements were identified and a discus-
sion table was held about them. The set of attributes was extracted and defined by the
authors. The characterization of the articles by the authors allows us to verify the quality
of the taxonomy, minimising possible bias. At the discussion table, disagreements served
as a parameter that our taxonomy and content needed to be refined. Table 6 shows in more
detail the taxonomy we developed for each research question.

3.1.6. Summary Methods
We summarize the results through both qualitative and quantitative approaches. The qual-
itative approaches are as follows:

• Quality assessment is an important parameter when selecting studies according to re-
search questions.

• We delimit the research questions with a classification and a quality evaluation.

The quantitative approaches are as follows:

• We generate a taxonomy of the selected studies according to each research question (see
Table 6).

• We made a summary with the total number of articles per country and per year (see
Fig. 3).

• We prepared a matrix of each primary study distributed in rows containing information
on the research questions, proposed taxonomy and quality assessment.

• To summarize the results of the SMS, we generated a bubble chart where the different
research questions intersect with the number of the selected primary studies.

According to Petersen and others (Petersen et al., 2008), a bubble plot “is basically two
x − y scatter plots with bubbles at category intersections”. The proportion of the bubble
size depends on the number of studies that are distributed in the (x − y) categories of the
bubble.

3.2. Execution Phase

The execution of our SMS was carried out by three researchers, with time of 9 months to
finish. The systematic mapping study schedule began with protocol development and im-
provement, extraction, and elimination of duplicates. This was followed by study selection
by analysing the title, abstract and keywords. Another iteration applied the inclusion and
exclusion criteria. Then, all the primary studies selected in this step were downloaded.
The selection process is determined by the full text, we apply taxonomy, classification,
and quality assessment. Conflict resolution is carried out by focus group sessions. And
finally, report of all the steps executed and the activities carried out throughout the study
was generated. In Figure 2 we can see a summary of the search and selection process of
primary studies and their respective results.

Altogether, we obtained 3755 publications as a result of the automatic search in the
digital libraries. As a first step, we eliminated duplicates (502 studies) obtaining a total of



A Systematic Mapping Study on Analysis of Code Repositories 15

Fig. 2. Results obtained from the search and selection process.

3409 studies. Then, applying the exclusion and inclusion criteria, we selected 732 publica-
tions. As the last one that corresponds to the complete reading of the study, we selected 236
studies. Appendix C shows the list of the primary studies we selected. We subsequently
conducted the extraction of data, classification and synthesis with these 236 primary stud-
ies. It is possible to view the tables obtained from the data extraction, classification and
synthesis online at https://GitHub.com/jaimepsayago/SMS.

4. Results of the Systematic Mapping Study

The search process was carried out by following the criteria and strategies described in
the previous section. Figure 3 and Appendix A show a summary of the number of papers
obtained in each step of the search process regarding the year in which the primary studies
were published and which country their authors were from, respectively.

According to the results shown in Fig. 3, the number of primary studies obtained may
appear to be large. We considered studies published between 2012 and 2019 for the reasons
explained in Section 3.1.3. The distribution shows an upward trend regarding the papers



16 J. Sayago-Heredia et al.

Fig. 3. Distribution of primary studies by year.

retrieved from digital libraries in the most recent years. The first primary studies focusing
on code repositories were published at the beginning of the 2000s. The number of studies
published in 2012 are on par with those of 2013. The amount of studies is much higher in
2014 and 2015. In this sense, the number of primary studies published in 2016 is lower
than in the previous years. Nevertheless, there is a spike in the number of articles published
in 2017 and 2018. In the year 2019, the number of studies decreases because of the cut
in our mapping: the search lasted from January to August, although the trend of papers
for the year 2019 is high. This result seems to follow the trend even though we do not
complete the whole year 2019. Yet we can see a growing interest from researchers in code
repositories.

Figure 4 shows the distribution of the studies (we include affiliation and location of
each of the authors) according to the year they were published. It reveals that most of the
selected papers come from the American continent, the first is USA (17%), followed by
Brazil (10%), Canada (10%) and then China (9%), Japan (9%) and India (8%). Despite
these top countries, code repository analysis is widely studied around the world, demon-
strating the importance of the topic.

In terms of the type of publication, the studies were published as conference proceed-
ings with 60% and conference papers with 10%, respectively (see Fig. 5). Journal articles
represented only 23% of the total selected primary studies. The 4% correspond to series
and 3% to book sections. By analysing these results, we can observe that there are certain
efforts to achieve a greater maturity in this field of research. However, it must be taken
into account that this is a field that has been intensively researched during the last decade.



A Systematic Mapping Study on Analysis of Code Repositories 17

Fig. 4. Distribution of primary studies by country.

Fig. 5. Types of publications considered in research.

In this section an analysis is performed with the 236 primary studies obtained following
the classification criteria and research questions that have been previously outlined (see
Table 2 and 6). The answers to the stated research questions, according to the analysis
performed on the primary studies selected are depicted in next sections.



18 J. Sayago-Heredia et al.

4.1. RQ1. What Kind of Information is Taken as Input for the Analysis of Code
Repositories?

Table 7 shows the classification of categories made for the first research question. The
selected studies exhibit different artifacts that require some kind of grouping. For this
purpose, we have created a taxonomy for code repositories. For this taxonomy, we take as
a basis the taxonomy provided in Dit et al. (2013) as well as other similar studies (Kagdi et
al., 2007; Cavalcanti et al., 2014). The 14 possible inputs considered for RQ1 are grouped
and evaluated as shown in Table 7.

Table 7 shows how the selected primary studies are distributed in relation to (RQ1),
the number of studies for each category and the percentage distribution. We observed that
the proposed distribution includes the different components present in a code repository
(commits, pulls, branches, etc.). We identified several studies that combine more than one
source of data to achieve their analysis of the code repository but do not reach a signifi-
cant number within our research (less than 2%). For the analysis of code repositories are
the commits; commit messages is the most recurrent input employed in selected studies,
with 115 studies in total (34%). This means the type of information most used as input,
contributors, commit history, etc. In particular, the most relevant studies of this category
focus on the use of repository commits that record changes in the source code made by
developers.

Some of the studies in this category focus on taking as the main information the com-
mitments to follow up on issues that may occur in the project or with the developers, and
that represent a challenge when executing software maintenance. Thus, the study 115 (Jar-
czyk et al., 2017), the closing of issues (errors and characteristics) is studied using it as
main information for the analysis (commits) in software projects, which allows a better
understanding of the factors that affect the completion rates of issues in software projects.
As for example in the study 130 (Kagdi1 et al., 2014), the authors propose to use commits
in repositories that record changes to source code submitted by developers to version con-
trol systems. This approach consists of recommending a classified list of expert developers
to assist in the execution of software change requests.

The second most common entry with 90 studies (26%) (see Table 7) is the input
“source code” which represents a huge body of software and related information for re-
searchers who are interested in analysing different properties related to the source code of
software. Specifically, source code allows a meaningful understanding of software devel-
opment artifacts and processes (Dyer et al., 2015). For example, the study 187 (Negara et
al., 2014) provides an approach that previously identifies unknown frequent code change
patterns of a sequence of fine-grained code changes and that allows understanding the
evolution of the code.

Other studies in this category also focus on analysing the repository code to investigate
the development process. The study 80 (Finlay et al., 2014) takes as main information
(input) the code and comments to obtain metrics to relate them to the development effort.

The third most common entry is the input “information repository” with 23 studies
(7%) (see Table 7), it mainly groups historical data, dataset repository and historical code



A Systematic Mapping Study on Analysis of Code Repositories 19

Table 7
Classification of selected papers by the input used (RQ1).

Input Papers # studies %

Commit data 62, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 138, 139, 140, 141, 142, 143, 146, 147, 148, 149, 150, 151,
152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165,
166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 185,
189, 203, 223, 225, 226, 227, 229, 230, 233, 235

115 34

Source code 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
84, 85, 86, 167, 176, 203, 224, 226, 228, 229, 230, 235, 236

90 26

Repository info 61, 179, 180, 181, 182, 190, 191, 192, 193, 194, 195, 213, 214, 215,
216, 217, 218, 219, 220, 221, 222, 232, 234

23 7

Issue 84, 85, 166, 167, 173, 174, 175, 178, 195, 196, 197, 198, 199, 200,
201, 202, 225, 229, 234

19 6

Comments 63, 64, 65, 66, 87, 88, 89, 90, 91, 157, 158, 159, 185, 198, 199, 200 16 5
Branches 1, 2, 3, 147, 148, 149, 165, 177, 185, 186, 187, 188, 189 13 4
Defects 4, 5, 6, 80, 81, 82, 150, 151, 152, 153, 154, 155, 233 13 4
Pulls/pulls request 146, 172, 173, 174, 175, 205, 206, 207, 208, 209, 210, 223, 225 13 4
Commiters 83, 102, 153, 154, 155, 160, 161, 162, 163, 164, 165, 233 12 4
Informal information 86, 156, 168, 169, 170, 171, 203, 204 8 2
Level of interest 177, 188, 189, 211, 212, 223 6 2
Proyect features info 61, 62, 86, 100, 101, 189 6 2
Logs 6, 144, 145, 183, 184 5 1
Graphs/news feed 201, 202 2 1

repository. These studies focus on obtaining the general information of the repository order
to obtain useful knowledge for the development and maintenance of the software.

In this category, we found the study 232 (Wu et al., 2014) that takes the information
from the code repository to analyse social characteristics of collaboration between devel-
opers. The authors focus on demonstrating that code repositories are a part of a broad
ecosystem of developer interactions. Another example is the study 191 (Novielli et al.,
2018) that takes the information from the code repository to analyse the emotions of de-
velopers, applying sentiment analysis to the content of communication traces left in col-
laborative development environments.

The remaining categories are as follows. The next input is the “issues” category with
19 studies (6%) (see Table 7), the issues are processed for the resolution of the problem
or question of something specific. The fifth input is the “comments” category with 16
studies (5%) which can be seen as an important complementary analysis component in a
repository. These five categories are the most common inputs for this classification.

Other studies employ alternative inputs that are used in groups of 12 to 13 studies,
representing less than 5% (see Table 7). Those categories are “branches”, “defects”, and
“pulls and pull requests” and “committers”. The studies take characteristics from code



20 J. Sayago-Heredia et al.

repositories as mentioned in Section 2.1. In study 75 (Elsen, 2013) mention that a potential
contributor may participate in the development or maintenance process by submitting a
pull request, which will be reviewed for acceptance or rejection by the central development
team. It is here, that in addition to hosting software repositories, features such as “defects”
of the developers and the “branches” or “forks” of the projects are incorporated into the
development process (Liu et al., 2016). These actions and interactions of the developers
are to be collected and allows the possibility of analysis within the code repositories.

Other five categories with 27 studies in total represent no more than 8% (see Table 7)
of the total studies in RQ1. These studies are directed at features of the code repositories
presented in Section 2.1. The categorization with the type of information as input is “infor-
mal information” which focuses on “chats”, “mails” and “messages” interchanged. “Level
of interest” relates to the social components of the project such as “stars”, “follows” and
“watches”, that are mechanisms typically offered in public open source repositories like,
for example, GitHub. “Project features info” involves aspects like the “size”, “owner”,
“weeks”, “contributors” which are a part of the general features of the code repository.
“Logs” and “graphs/news feed” are categories that also contribute as inputs to the analy-
sis of the code repository.

4.2. RQ2. What Techniques or Methods are Used for Analysing Source Code
Repository?

The methods or techniques used in the process of analysis of the code repository can be
observed in Table 8 together with the distribution of studies for this question. Results for
this question were obtained using the procedure for data extraction and taxonomy pro-
vided in Section 3.1.5. There are some papers that are present in more than one category,
i.e. different methods contributed by the paper were counted. As a result, the percentage
column in Table 8 represents the total.

The mapping indicates that the most common is “empirical/experimental” with 93
studies (38%) (see Table 8). This type of studies is a systematic, disciplined, quantifiable
and controlled way to evaluate information and approaches against other existing ones and
to know under which criteria they are better (Genero Bocco et al., 2014). These methods
include empirical studies, empirical evaluations, experimental studies, empirical analyses,
case studies, systematic literature reviews, research strategy, etc.

The second most recurrent methods are tagged as “automatic” with 29 studies (12%)
(see Table 8).These studies focus on using tool automation techniques to perform a specific
task. For example, 67 (Dias et al., 2015) proposes an automatic tool to untangle fine grain
code changes in groups, allowing good results with an average success rate of 91%. The
proposal of study 176 (Martínez-Torres et al., 2013) develops an automatic categorization
tool to extract text for the analysis of knowledge sharing activities in projects.

The third input is “artificial intelligence/machine learning” (AI/ML) with 29 studies
(12%) (see Table 8). These studies use techniques that are relevant today as they have
achieved a remarkable momentum that, if properly used, can meet the best expectations
in many application sectors across the research field (Barredo Arrieta et al., 2020). Due
to this importance, we provide a specific classification within this category.



A Systematic Mapping Study on Analysis of Code Repositories 21

Table 8
Classification of selected papers by concern/topic, number or studies and percentage (RQ2).

Methods-techniques Papers # studies %

Empirical/experimental 2, 5, 8, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 34, 35,
36, 42, 43, 44, 45, 46, 48, 52, 56, 57, 59, 60, 62, 63, 64, 65, 66, 68,
74, 77, 83, 88, 91, 97, 100, 101, 102, 107, 111, 113, 114, 118, 120,
121, 128, 138, 139, 143, 147, 148, 151, 154, 161, 163, 165, 169, 177,
179, 184, 185, 186, 189, 192, 193, 194, 196, 197, 202, 206, 209, 211,
212, 213, 215, 216, 220, 222, 223, 225, 226, 227, 229, 233, 235

93 39

Automatic 14, 51, 54, 55, 67, 71, 75, 76, 78, 81, 82, 85, 90, 96, 99, 105, 109,
116, 131, 153, 159, 168, 171, 174, 176, 181, 208, 219, 230

29 12

Artificial
intelligence/machine
learning

1, 3, 4, 33, 49, 50, 53, 69, 70, 80, 87, 106, 108, 122, 126, 127, 130,
142, 150, 157, 158, 166, 175, 178, 182, 203, 205, 207, 214

29 12

Statistical analyses 6, 9, 12, 21, 37, 38, 39, 58, 86, 89, 94, 98, 112, 136, 167, 199, 201,
204, 210, 217, 228, 232, 234, 236

24 10

Ad hoc algorithms 20, 29, 41, 47, 61, 63, 72, 92, 103, 104, 115, 129, 137, 140, 146, 149,
162, 166, 173, 183, 187, 188, 195

23 10

Data mining 7, 15, 53, 95, 110, 132, 141, 145, 152, 157, 164, 200, 217, 221, 231 15 6
Qualitative analyses 13, 125, 127, 144, 158, 160, 191, 218, 224 9 4
Prediction 10, 53, 134, 157, 190, 198, 203, 214 8 3
Reverse engineering 11, 73, 84, 133, 155, 180 6 3
Heuristical techniques 93, 119, 123, 124, 156, 172 6 3
Testing-based techniques 40, 79, 117, 135 4 2

The vertiginous increase of artifacts using AI/ML techniques demonstrates the incli-
nation of the software engineering community towards this branch. These are not isolated
cases or fads (Harman, 2012). Nowadays, the nature of software goes hand in hand with
human intelligence; this is where AI/ML techniques are becoming a part of software,
specifically in the field of code repositories.

The renewed interest and number of AI/ML techniques has led to many advances re-
lated to this field. For example, Bayesian statistics (Abdeen et al., 2015), Convolutional
Neural Network (Li et al., 2019) and Random Forest Classifier (Maqsood et al., 2017).
These are used to understand bugs or make predictions of possible code changes, finding
and predicting defects in a code repository or identifying code repository errors. Besides,
it has been criticised that many of these approaches to building smarter software are too
far from human-level intelligence and are therefore likely to be insufficient (Feldt et al.,
2018). This situation has focused on the need for less complex algorithms and tools to be
integrated into the systems and solutions that are used by organizations.

Table 9 shows the taxonomic subcategories that we have carried out based on (Bal-
trusaitis et al., 2019) and (Agarwal et al., 2019) for “Machine Learning” and (Gani et
al., 2016) for “Artificial Intelligence”. These techniques and methods aim to build models
that can process and relate information from multiple sources. It is worth mentioning that
these techniques have a growing importance and an extraordinary potential.

There exist examples where AI/ML models are applied to improve software develop-
ment, specifically in the area of code repositories. For example, the study 87 (Fu et al.,
2015) uses the technique Latent Dirichlet Allocation (LDA) to extract information from



22 J. Sayago-Heredia et al.

Table 9
Components of the category artificial intelligence/machine learning.

Artificial intelligence/machine learning Papers # studies %

Random Forest Classifier 49, 50, 157, 175 4 14
Natural Language Processing (NLP) 126, 130, 178 3 10
Bayesian classifier 3, 205 2 7
Search-based genetic algorithm 33, 207 2 7
Latent Dirichlet Allocation (LDA) 87, 106 2 7
Naive Bayes-based approach 122, 166 2 7
Artificial Intelligence 4, 70 2 7
Statistical learner 203, 214 2 7
Sentiments analysis tools 69 1 3
Deep model structur (convolutional Neural Network) 158 1 3
Rule-based technique 1 1 3
semantics-based methodology 150 1 3
SGDClassifer 142 1 3
Machine learning techniques 127 1 3
Hoeffding tree classification method 80 1 3
Dynamic topic models 108 1 3
Naive bayes classifier 182 1 3
Gradient boosting machine 157 1 3

the change messages of the repository to classify them in an automatic way. Another ex-
ample is the study 127 (Joblin et al., 2015) where a general approach is proposed for the
automatic building of developer networks based on source code structure and commit in-
formation, obtained from a code repository that is applicable to a wide variety of software
projects.

Other examples are the study 122 (Jiang et al., 2019) that uses a random forest clas-
sifier and naive bayes classifier together with the study 3 (Abdeen et al., 2015) that uses
a Bayesian classifier. Both studies use those classifiers as the main technique to process
and analyse the input information and generate models to predict different aspects of the
code repositories (change impact or code review, among others).

The proposed taxonomy aids the understanding and comprehension of AI/ML tech-
niques used in code repository analysis.

Continuing with the taxonomy for (RQ2), other relevant techniques used in the se-
lected studies are those related to “statistical analyses” appearing with 24 studies (10%)
(see Table 8), this category groups different techniques such as “Micro-Productivity Pro-
files Method”, “Quantitative analysis”, “Models regression”, “Regression tree”, etc. Some
examples of the application of these techniques are studies 89 (Gamalielsson and Lundell,
2014) through a review quantitative analysis of project repository data in order to inves-
tigate the sustainability in OSS communities with a detailed analysis of developer com-
munities, the authors of study 86 (Foucault et al., 2015) provide a quantitative analysis of
the rotation patterns and effects of developer that along with the activity of external new-
comers, affect negatively the quality of the software; or the study 38 (Borges and Tulio
Valente, 2018) provides strong empirical quantitative evidence about the meaning of the
number of stars in the code repository, recommending to monitor this metric to use it as
a pattern for repository selection.



A Systematic Mapping Study on Analysis of Code Repositories 23

Following the classification we find the use of “ad hoc algorithms”, that are used in 23
studies, representing 9% (see Table 8). In these studies, specific algorithms are provided,
for example, semantic slicing, gumtree, prediction partial matching, etc. These are applied,
for example, for information analysis, as in the study 61 (Datta et al., 2012) algorithms
to determine social collaboration teams are employed. Also, the study 173 (Malheiros et
al., 2012) provided an algorithm to analyse change requests and recommend potentially
relevant source code that will help the developer.

Another category is “data mining” with 15 studies (6%) (see Table 8). Data mining
refers to the extraction or “mining” of knowledge from large volumes of data (Grossi
et al., 2017). Studies rely on these techniques (“Hierarchical agglomerative clustering”,
“Information retrieval (IR)”, “Decision Tree”, “C4.5”, “Logistic Regression”, “k-Nearest
Neighbour (k-NN)”, etc.) to process data from code repositories.

The rest of the studies add up to 15% of RQ2. Qualitative analyses with 9 studies (4%).
“prediction” with 8 studies (3%), “reverse engineering with 6 studies (2%). “heuristical
techniques” with 6 studies (2%). Finally, “testing-based techniques” with 4 studies (2%)
(see Table 8).

4.3. RQ3. What Information is Extracted (Directly) or Derived (Indirectly) as a Result
of the Analysis of Source Code Repositories?

Having analysed the studies according to RQ3, the main output generated is informa-
tion related to “developer behaviour” with 65 studies (26%) (see Table 10). Currently
researchers have been motivated by the lack of research on developer-related social pro-
cesses oriented to management, analysis, maintenance and teamwork (Gamalielsson and
Lundell, 2014) and we see this is reflected in the mapping study. The category groups dif-
ferent characteristics of the developer that can be extracted from the code repositories, for
example, with the purpose of knowing developers’ patterns, developers’ sentiment clas-
sification, developer contribution analysis, developer social networks, development pro-
cesses, etc. These outputs are eventually used to improve the maintenance and generally
to comprehend the evolution of software.

For example, we can point out the study 186 (Murgia et al., 2014) where emotion min-
ing is performed, applied to developers’ problem reports, and it can be useful to identify
and monitor the mood of the development team, which allows to anticipate and solve pos-
sible threats in their team. Another example is the study 130 (Kagdi1 et al., 2014) that
proposes an approach to recommend a classified list of expert developers to assist in the
implementation of software change requests (e.g. bug reports and feature requests).

The second most recurrent output is “changes analysis” with 35 studies (14%) (see
Table 10). These studies are interesting since the information extracted from these code
changes can be used to predict future defects, analyse who should be assigned a particular
task, obtain information on specific projects or measure the impact of the organizational
structure on software quality (Herzig et al., 2016).

For example, the study 138 (Kirinuki et al., 2014) proposes a technique to prevent
“tangled changes” in which it is identified whether a developer’s changes are tangled and



24 J. Sayago-Heredia et al.

Table 10
Classification of selected papers by concern/topic, studies and percentage (RQ3).

Output Papers # studies %

Developer Behaviour 1, 5, 8, 11, 13, 17, 21, 26, 30, 36, 37, 38, 39, 40, 43, 48, 52, 55, 56, 60,
61, 64, 65, 66, 69, 71, 77, 89, 92, 99, 101, 116, 120, 121, 127, 130, 147,
151, 160, 161, 163, 169, 175, 177, 181, 186, 189, 190, 191, 192, 196,
200, 204, 208, 211, 215, 216, 220, 221, 222, 230, 231, 232, 233, 234

65 26

Changes Analysis 3, 4, 31, 32, 33, 42, 45, 51, 59, 63, 67, 70, 102, 104, 107, 108, 114,
118, 124, 136, 138, 155, 162, 171, 174, 179, 180, 184, 187, 194, 195,
217, 223, 229, 235

35 14

Metrics/Quality 23, 29, 58, 74, 78, 79, 80, 84, 90, 91, 105, 115, 128, 131, 145, 153,
164, 166, 168, 170, 185, 198, 199, 228

24 10

Deffect/Issue Analysis 10, 12, 15, 16, 27, 34, 41, 44, 84, 97, 113, 119, 134, 150, 167, 197,
198, 203, 205, 207, 224

21 9

Source Code
Improvements

2, 9, 18, 19, 25, 49, 54, 63, 67, 72, 73, 95, 102, 110, 125, 133, 141,
164, 165, 202, 212

21 9

Commits/Committers
Classification

6, 20, 46, 50, 87, 96, 98, 111, 126, 142, 146, 157, 176, 178, 182, 209,
210

17 7

Cloning Detection 22, 35, 81, 82, 85, 94, 112, 144, 149, 159, 188, 227, 236 13 5
Maintenability
Information

7, 28, 57, 62, 68, 76, 83, 106, 143, 168, 226 11 4

Design Modelling 86, 88, 100, 103, 129, 148, 193, 206, 213, 218 10 4
Commit Analysis 14, 24, 47, 53, 122, 123, 137, 214, 219 9 4
Automatic Processing 109, 117, 126, 158, 172, 173, 183 7 3
Code Review 132, 139, 166, 201, 225 5 2
Branching Analysis 24, 75, 140, 152, 156 5 2
Testing Data 93, 135, 154 3 1

using the technique, developers can be made aware that their changes are potentially tan-
gled and can be given the opportunity to commit the tangled changes separately. The study
187 (Negara et al., 2014) presents an approach that identifies previously unknown frequent
code change patterns of a sequence of fine-grained code changes.

The next output is tagged as “metrics/quality” with 24 studies (10%) (see Table 10).
Software metrics and measurements are those processes or tools that include the assess-
ment of the software product, project or process in order to obtain values that can help
give indicators of one or more software attributes (Abuasad and Alsmadi, 1994, (2012)).
This category is made up of these specific outputs like change analysis, change contracts,
change histories, change impact analysis, etc. To exemplify, the study 80 (Finlay et al.,
2014) describes the extraction of metrics from a repository and the application of data
flow mining techniques to identify useful metrics to predict the success or failure of the
construction. We can also mention the study 145 (Kumar et al., 2018) that proposes the
creation of an effective failure prediction tool by identifying and investigating the pre-
dictive capabilities of several well-known and widely used software metrics for failure
prediction.

Then, the output “deffect/issue analysis” with 21 studies (9%) (see Table 10) groups
studies focusing on repository data and are employed to provide software analytics and
predict where defects might appear in the future (Rosen et al., 2015). An example of
this is the paper 207 (Rosen et al., 2015), which presents a tool that performs analysis



A Systematic Mapping Study on Analysis of Code Repositories 25

and predicts risks in software by performing commits. Alternatively, the study 97 (Gupta
et al., 2014) proposes a run-time process model for the error resolution process using a
process mining tool and an analysis of the performance and efficiency of the process is
performed.

Another category of importance is “Source Code Improvements” with 21 studies (9%)
(see Table 10), grouped according to identifiers in source code, source code legibility,
annotations, source code plagiarism detection, scope of source code comments, etc.

The output “Commits/Committers” with 17 studies (7%) (see Table 10) corresponds
to studies that usually extract information to perform a classification of commit messages,
change messages, committers or commits from the code repository.

The following output categories in RQ3 correspond to “Cloning Detection” with 13
studies (5%) and is made up of studies where information about code cloning that aims
to detect all groups of code blocks or code fragments that are functionally equivalent in a
code base is derived (Nishi and Damevski, 2018). “Maintainability Information” with 11
studies (4%) is made up of studies on traceability, maintainability or technical debt. “De-
sign Modelling” with 10 studies (4%) has studies that extract information on UML models,
EMF patterns or patterns of social forking. “Commit Analysis” has 9 studies (4%), “Auto-
matic Processing”, 7 studies (3%), “Code Review”, 5 studies (2%), “Branching Analysis”,
5 studies (2%) and “Testing Data”, 3 studies (1%) (see Table 10).

Figure 6 presents a bubble graph summarizing the combination of principal ques-
tions (RQ1, RQ2, RQ3) organized as the black box model, starting with the input, the
method/technique and the output (Section 3.1.1). The largest bubble (47 studies) repre-
sents studies that take as input the category “Source Code” and the methods or techniques
for processing are “Empirical/Experimental”. After this, the second largest bubble (37
studies) represents that the information taken for the analysis is the “Commit Data” and
the techniques, used for processing it, are equally empirical or experimental. On the other
hand, the third bubble (37 studies) in terms of information extracted from the analysis of
the repositories shows that it is used for “Developer Behaviour”. We observe that in the
bubbles of “Automatic”, “Data Mining” and “Artificial Intelligence/Machine Learning”
these techniques are used to process information and it has become an emerging field to
process information from the repositories. Another interesting point to highlight is that all
categories of both input and output use empirical/experimental techniques and methods
to process information.

Analysing the data obtained from the SMS, we observe that the main trend in code
repository research focuses on using empirical or experimental techniques (93 studies) in
source code, code review and code repository commits to obtain results, especially related
to developers’ analysis (67 studies). Research trends seem to gravitate towards analyses of
code changes and the impact they have on software maintenance and evolution. Analyses,
metrics, measurements and classification of developers’ feelings, efforts and contributions
are the trends revealed by the SMS. Another marked trend in the research is the analysis
of defects, issues and bugs present in the software and looking for patterns or ways to find
these defects or predict them.



26 J. Sayago-Heredia et al.

Fig. 6. Bubble graph intersecting research questions RQ1, RQ2 and RQ3.

4.4. RQ4. What Kind of Research Has Proliferated in this Field?

Figure 7 describes the arrangement of the primary studies according to research ques-
tions RQ4 and RQ5. The definition of the kind of contribution for each paper was done
alongside the data extraction procedure (Section 3.1.5). There also may be papers that are
present in more than one category to provide a solution. The main and central contribution
for each paper was analysed for figuring out its classification. Regarding the nature of the
research, the graph shows that the majority of studies (90%) provides solution proposals.
A further 4% of studies are applied research. Two percent of studies are classified as vali-
dation research. Finally, remaining 4% are classified as evaluation research (1%), opinion
articles (1%), personal experience articles (1%), philosophical articles (1%).

4.5. RQ5. Are Both Academia and Industry Interested in this Field?

With respect to industry interest in the field of research, Fig. 7 shows that 97% of the
selected studies are authored by at least one affiliate of a university or research centre.
This percentage is very high, which allows us to know that researchers are interested in



A Systematic Mapping Study on Analysis of Code Repositories 27

Fig. 7. Description the layout of the primary studies according to research questions RQ4 and RQ5.

the different areas of code repositories. The classification that follows is “Both” with 3%,
these studies have a mixed authorship between academia and industry.

4.6. Quality Assessment

Finally, we used the instrument for quality assessment (Section 3.1.4) with the primary
studies. Figure 8 shows the quality assessment of the seven assessment questions, in which
the instrument is applied with its respective scale. AQ1 to AQ5 are questions that are eval-
uated in quantitative terms, while AQ6 and AQ7 are objective questions. The systematic
method (AQ1) of the selected studies, which represents whether it is possible to repli-
cate the methods and techniques systematically, resulted in the majority with high values
(mostly evaluated as ‘5’), the other studies were rated between 3 and 4. Regarding the
presentation of a result of the analysis of the code repository (AQ2), most of the studies
(176) were rated as ‘5’ (see Fig. 8). This shows that the studies present some proposal
or result of the analysis carried out. In terms of methods, tools or related aspects (AQ3),
most of the studies obtained a value of ‘5’ (see Fig. 8). As for problems of quality, develop-
ment or evolution of software (AQ4), the studies seek solutions through an artifact (tool,
framework, methodology, etc.), and most of them were evaluated with ‘5’ (see Fig. 8). In
relation to the proposals being able to be implemented in industrial environments (AQ5),
they were evaluated with a high value (‘5’). This means that a study is considered replica-
ble, but there are strong dependencies in terms of tools, software and configurations that
should be considered (see Fig. 8).

Finally, questions AQ6 and AQ7 objectively assess the citations and relevance of the
conferences and journals in which the selected studies were published (see Fig. 8). Most
studies have been referenced several times. Table 11 shows the most cited documents.
The most cited paper is the study 2 (Abdalkareem et al., 2017) (143 times). That study
focuses on providing an insight into the potential impact of reusing repository code in
mobile applications, through an exploratory study where open source applications in a



28
J.

Sa
ya

go
-H

er
ed

ia
et

al
.

Fig. 8. Summary of the quality assessment.



A Systematic Mapping Study on Analysis of Code Repositories 29

Table 11
Most cited papers.

Study # Citations Year AQ5

2 143 2017 5
186 72 2014 5
25 69 2014 5
9 66 2013 5
61 62 2012 5
187 46 2014 5
130 43 2012 5
165 42 2012 5
89 42 2014 5
159 40 2012 5

code repository are analysed. These results can benefit the research community in the
development of new techniques and tools to facilitate and improve code reuse.

In addition to the analysis of the most cited articles, we have carried out a social net-
work analysis (SNA), which allows us to generate a graph and identify the main groups of
authors together with the most relevant authors in the area (Franco-Bedoya et al., 2017).
The methodology used for our analysis is based on (Wang et al., 2016). The analysis is
done with our SMS studies and is the main column of the network.

In the co-citation analysis, a matrix is compiled by retrieving the quotation counts of
each pair of the important documents that were identified in the citation analysis, and a
major component of the factor analysis is to reveal the knowledge clusters of the code
repository research (Wang et al., 2016).

We use the VOSviewer software that enables sophisticated cluster analysis without the
need for in-depth knowledge of clusters and without the need for advanced computer skills
(van Eck and Waltman, 2017).

In Fig. 9, the size of a cluster reflects the number of papers belonging to the cluster.
Larger clusters include more publications. The distance between two clusters roughly in-
dicates the relationship of the clusters in terms of citations. The clusters that are close
to each other tend to be strongly related in terms of co-citations, while clusters that are
farther apart tend to be less related (van Eck and Waltman, 2017). The curved lines be-
tween clusters also reflect the relationship between them, and the thickness of a line rep-
resents the number of citations between two clusters. VOSviewer has its own clustering
technique (Waltman et al., 2010). This clustering technique was used to divide in 14 clus-
ters with four main branches. This was done based on the citation relationships between
the analysed studies. In Fig. 9, each cluster has a colour indicating the group to which
the cluster was assigned. Thus, a breakdown of papers concerning code repositories into
broad subfields is obtained. A rough interpretation can be depicted as follows: The cluster
in the down-left corner that becomes a branch (green, orange and pink nodes) seems to
cover research about changes analysis, maintenance and code review to maintain software
quality. The branch on the down-right (purple, red and brown nodes) seems to cover the
research about code changes, commit analysis, automatic processing by focusing on bugs
and software defects. The branch in top-left corner (blue and pink nodes) might be related



30 J. Sayago-Heredia et al.

Fig. 9. Relationship between authors and research knowledge groups in code repositories.

to research in source code improvements and metrics/quality. Finally, the top-right branch
(light blue and green) is more related to research in the field of defect/issue analysis, main-
tainability information and developer behaviour.

5. Discussion

This section presents the main results obtained through SMS for research and industry.

5.1. Principal Findings

The main research question and the reason for this SMS was to know the information that
is extracted from the code repositories along with the methods and tools to process it and
the output that is obtained from this process. Our SMS has scrutinized and schematized
this field of research and determined its current status by analysing, evaluating, and under-
standing the research to date in relation to extraction, methods/tools and output generated
from code repositories. The main findings are:

• F1. The research field regarding code repository analysis is in the process of improving
its matureness. Researchers have worked in this discipline very hard in the last 10 years
with several different proposals with some evidence. However, most of them have not
been extensively applied in the industry. In addition, most of the papers have been pub-
lished in high impact conferences and journals. Therefore, several objectives have been



A Systematic Mapping Study on Analysis of Code Repositories 31

found to be covered by these research proposals. As a result, many of the proposals turn
out to be innovative and built on previous research.

• F2. The authors consider several methods/techniques for the analysis of information
obtained from code repositories. The collected studies point out that there are different
techniques and methods from other research areas that can be applied in the analysis of
information extracted from code repositories. We can detect some recurrent patterns.
For example, the most recurrent techniques are those related to empirical or experi-
mental analyses which are present for various inputs and outputs. Another insight is the
extensive use of artificial intelligence and, more specifically, machine learning to anal-
yse the information extracted from code repositories with good results. Finally, some
tools and techniques combine some automatic processes with other sources to achieve
the research goal.

• F3. The selected proposals contribute to the understanding of software quality and evo-
lution. Several methods, techniques and tools have been found for the process of anal-
ysis of information extracted from code repositories, their application in the industry
is given in a minimum measure and poor ascent, as it is demonstrated by some studies
that give viability through empirical results. Although there are studies that go hand in
hand between industry and academia, few initiatives are found in digital libraries.

• F4. The output obtained from the analysis of information from code repositories focuses
on most studies to investigate the developer, such as classifying it or finding patterns
of feelings (like through sentiment analysis) that infer from the coding. In summary,
this analysis allows the developer to know the quality and evolution of the software
beyond counting and measuring the lines of code and focuses on the human factor as a
fundamental part within the software development.

• F5. Finally, another important output obtained from the analysis of information from
code repositories is the analysis of changes. These studies focus on obtaining the impact
of changes in the software code that is developed to try to find error patterns and to
be able to make predictions of possible failures in the code before they occur. These
changes in the code can greatly influence the quality and maintenance of the software,
as well as have serious repercussions on costs and developers of the software project.

5.2. Implications for Researchers and Practitioners

The main findings presented above have some implications for researchers and practition-
ers working in the industry who research code repositories. For the academic world, the
most used inputs for information analysis are mostly source code and commit data, the
categories that have less amount of studies are an area of research to be explored. As for
the methods and techniques used for the analysis of information in the repository, a wide
variety of tools, techniques and methods are used (see Fig. 7), especially most approaches
focus on empirical studies or artificial intelligence, which provides different approaches to
information processing, and most studies seek to improve data processing to meet the stud-
ied objectives. As shown in Fig. 3, research involving analysis of information from code
repositories is increasing every year. Therefore, it becomes a wide area of future research.



32 J. Sayago-Heredia et al.

Another important implication for researchers is that most of the proposed methods and
techniques require several tools and software to replicate the studies. This makes these
techniques somewhat complex to replicate in the industry. Finally, researchers should also
focus on how the obtained information is applied to solve problems of software quality
and evolution, which is the important point for both academia and industry and therefore
seeks to improve software development.

5.3. Evaluation of Validity

In this section we discuss the limitations of our systematic mapping study, based on the
types of validity proposed by Petersen and Gencel (2013), which we describe below:

5.3.1. Descriptive Validity
“Descriptive validity refers to threats to the ability to capture and accurately represent the
observations made” (Badampudi et al., 2016). In an MSS, the main objective is to obtain
available studies without any research bias. To avoid bias, we applied a review protocol,
which was evaluated and approved by the authors as a means of quality assurance. As
mentioned above, SMS guidelines of Kitchenham et al. (2011) and Petersen et al. (2015)
were important for optimizing internal validity. The authors of this SMS double-checked
the results of the selection procedure. These researchers took a random sample of 50% of
the studies selected by the primary author and applied the inclusion/exclusion criteria for
the selection procedure. To reduce the threats to data extraction, we created a form and
used it in the pilot study (see Appendix B), which was validated by researchers. As well
as Badampudi et al. (2016), the text of the selected primary studies was highlighted and
marked, which made it easy to consult the document if a review was required. Finally,
during the data extraction process, the researchers conducted several focus group sessions
to discuss any potential controversies regarding quality assessment.

5.3.2. Theoretical Validity
Uncertainty of some factors by the author may affect theoretical validity (Badampudi et
al., 2016). In the case of our SMS, one of the main threats was the use of multiple terms and
classifications to refer to code repositories. We mitigated this threat by using a synonym
term defined in the search string, which was validated in the pilot search.

5.3.3. Generalizability
There are several limitations that can affect our SMS, this is the generalization presented
by Petersen and Gencel (2013) and a distinction between internal and external generality.
As far as systematic mapping is concerned, internal capacity is not a major threat (Pe-
tersen and Gencel, 2013), we believe that the most important limitation in our SMS is
publication bias, because it is not possible to extract all the studies published in this area
of research. We mitigate this threat by using five digital scientific databases considered
relevant to software engineering recommended by Kuhrmann et al. (2017) as sources for
study extraction. The consulted databases do not cover certain digital material that could
be useful and relevant to our research, for example “technical reports, blog entries and



A Systematic Mapping Study on Analysis of Code Repositories 33

video presentations” (Laukkanen et al., 2017). Thus, this aspect is a strong limitation in
research of code repositories in terms of research done by industry that is hardly ever
published publicly. This limitation is reflected in low authorship between academia and
industry. Anyway, this does not prove that the industry is not interested in analysing code
repositories.

External generalizability measures the ability to generalize results, that is, the extent to
which the results reported in a publication can be generalized in other contexts (Munir et
al., 2016; Wohlin et al., 2012). In this regard, the main threat to external generalizability
refers to our subjectivity in selecting, classifying, and understanding the point of view of
the original authors of the studied works. A misperception or misunderstanding by us of
a given paper may have led to a misclassification of the study. To minimize the chances
of this, we apply a quality assurance system (Section 3.1.4). In addition, as we present
the review protocol in detail in Section 3, our mapping is intended to be reliable to other
investigators in terms of the search strategy, inclusion/exclusion criteria, and applied data
extraction (Borg et al., 2014).

5.4. Interpretive Validity

Interpretive validity is achieved when the drawn conclusions are reasonable from the data
obtained and lead to the validation of the mapping (Petersen and Gencel, 2013). The main
threat is author bias in the interpretation of the data. To mitigate this, the discussion groups
and the classification process of the primary study selection were carried out. The re-
searchers participated in various meetings to analyse and interpret the obtained data, in
which their conclusions were discussed, and they made sure to maintain the same criteria.

5.5. Reliability

Repeatability is the ability of other researchers to replicate the results. To achieve reli-
ability, research steps must be repeatable (Badampudi et al., 2016). Detailed measures
adopted in searches are limitations to theoretical validity and may lead to a lack of re-
porting capacity (Munir et al., 2016). For example, the used search strings and databases
extract the sought information, due to the documented inclusion/exclusion criteria, which
increases reliability.

There is always a risk of losing primary studies with only one search string for all
selected databases (Cosentino et al., 2017). Therefore, a preliminary test with several ver-
sions of search strings was performed in the pilot search.

In addition, the inclusion/exclusion criteria were defined as in Genero et al. (2011).
Collection of as many articles as possible aligned with the theme of the code reposi-
tory. Repeatability of data extraction is important. We mitigated this threat by extract-
ing and sorting the gathered papers in focus group sessions in which all researchers par-
ticipated. The steps and information of our research are documented and published at
https://GitHub.com/jaimepsayago/SMS including tables, graphs and the corresponding
tables and analyses found in the document. In addition, all studies were classified accord-
ing to the criteria of rigour and relevance adapted from Ivarsson and Gorschek (2011).
This facilitates the traceability and repeatability of our study.

https://GitHub.com/jaimepsayago/SMS


34 J. Sayago-Heredia et al.

6. Conclusions

In this work, we conducted a SMS of the research published in the last eight years of
five digital libraries. Through an extensive search and a systematic process, which has not
been done in other similar studies, we have extracted and analysed data from more than
3700 papers, from which 236 documents have been selected. Relevant papers have been
systematically analysed for answering the questions posed in this research.

This study reveals some trends in the current use of the evolving software coding
and the massive use of code repositories as a platform for software development. These
projects can range from an academic practice to large enterprise software projects. This
allows us to analyse the information from these repositories, such as obtaining patterns,
metrics and predictions in software development.

We believe that the conducted research is useful for developers working on software
development projects that seek to improve maintenance and understand the evolution of
software through the usage and analysis of the code repositories.

One important contribution is that we have defined a taxonomy that was divided ac-
cording to input, method and output of the analysed proposals. Through this mapping
study, we have identified the main information inputs used within code repositories that
are commonly analysed: source code and commit information (RQ1).

A wide variety of tools and methods were used for the processing of information ex-
tracted from the code repository, especially most studies focus on using empirical and
other experimental analyses, but also researchers are aligned to different approaches to
information processing used in other fields of research such as artificial intelligence, with
a special mention to machine learning. Together with these, data mining and other auto-
matic techniques are employed to improve data processing in code repositories to meet
the investigated objectives (RQ2).

Our analysis also raises the type of information derived from the processing of infor-
mation from the code repository. In this sense, most studies are focused on investigating
the developer behaviour or change analysis (RQ3). The analysis of the developer behaviour
allows to know the quality and evolution of the software beyond counting and measuring
the lines of code and focuses on the most important factor in software development. Mean-
while, the change analysis focuses on obtaining the impact of changes in the code of the
software being developed, in order to try to find patterns of errors and to be able to make
predictions of possible failures in the code.

In future work, we will focus on investigating the areas that have not yet been taken into
consideration and that were identified in this systematic mapping study. We will attempt to
directly research about artifacts for developer analysis. Finally, we will focus our research
efforts on the analysis, measurement or testing of artifacts to determine and predict the
impact on software quality from developer sentiments.

A. Search Strings

This appendix shows the search strings with specific syntax for the digital libraries used
in the systematic mapping study (Table 12).



A Systematic Mapping Study on Analysis of Code Repositories 35

Table 12
Concrete syntax of the search string for each digital library.

Source Search String

Scopus TITLE-ABS-KEY ((“code repository” OR “software repository” OR “version control
system” OR “GIT” OR “SVN”) AND (“analysis” OR “inspection” OR “mining” OR
“exploring”)) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”)
OR LIMIT-TO (DOCTYPE, “cr”) OR LIMIT-TO (DOCTYPE, “re”) OR LIMIT-TO
(DOCTYPE, “ch”) OR LIMIT-TO (DOCTYPE, “bk”)) AND (LIMIT-TO (SUBJAREA,
“COMP”) OR LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA,
“MATH”) OR LIMIT-TO (SUBJAREA, “DECI”)) AND (LIMIT-TO (PUBYEAR,
2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR
LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO
(PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014) OR LIMIT-TO (PUBYEAR,
2013) OR LIMIT-TO (PUBYEAR, 2012)) AND (LIMIT-TO (LANGUAGE, “English”))

IEEE Xplore (((“Document Title”:”code repository” OR “software repository” OR “version control
system” OR git OR svn AND analysis) AND “Abstract”:”code repository” OR “software
repository” OR “version control system” OR git OR svn AND analysis) AND “Author
Keywords”:”code repository” OR “software repository” OR “version control system”
OR git OR svn AND analysis)

ACM Digital Library “query”: {acmdlTitle:(code repository software repository git svn) AND
acmdlTitle:(analysis inspection mining exploring) AND recordAbstract:(code repository
software repository git svn) AND recordAbstract:(analysis inspection mining exploring)
AND keywords.author.keyword:(code repository software repository git svn) AND
keywords.author.keyword:(analysis inspection mining exploring) }”filter”:
{”publicationYear”:{ “gte”:2012, “lte”:2019 }},{owners.owner = HOSTED}

Science Direct (“code repository” OR “software repository” OR “version control system” OR git OR
svn) AND (analysis OR inspection OR mining OR exploring)

ISI Web of Science TS = (“code repository” OR “software repository” OR “version control system” OR git
OR svn) AND TS = (analysis OR inspection OR mining OR exploring)

B. Data Extraction Form

Information RQ/AQ

Meta-Information
number
Author
Title
Abstract
Keywords
Conference/Journal
Year
Reference Type
DOI
Tracking information about the selection of primary studies

. . .
Classification

Type Information Extract RQ1
Methods/Techniques RQ2
Type Information Result RQ3

(continued on next page)



36 J. Sayago-Heredia et al.

Table 12
(continued)

Information RQ/AQ

Type of Research RQ4
Industry/Academia RQ5

Journal and Conference Relevance/Citations
ERA
QUALIS
JCR
Q-JCR
cited by (*Scopus)
Score
Quality Assessment
Information Extract AQ1
Information Result AQ2
Methods/Techniques AQ3
Solution Problem AQ4
Application AQ5
Q-cited AQ6
Relevance of Conference/Journal AQ7

C. Selected Primary Studies

It is possible to view the select primary studies obtained to SMS in the next link https:
//GitHub.com/jaimepsayago/SMS.

Funding

This study has been partially funded by the G3SOFT (SBPLY/17/180501/000150),
GEMA (SBPLY/17/180501/000293) and SOS (SBPLY/17/180501/000364) projects
funded by the ‘Dirección General de Universidades, Investigación e Innovación – Conse-
jería de Educación, Cultura y Deportes; Gobierno de Castilla-La Mancha’. This work is
also a part of the projects BIZDEVOPS-Global (RTI2018-098309-B-C31) and ECLIPSE
(RTI2018-094283-B-C31) funded by Ministerio de Economía, Industria y Competitivi-
dad (MINECO) & Fondo Europeo de Desarrollo Regional (FEDER).

References

Abdalkareem, R. Shihaba, E., Rillingb, J. (2017). On code reuse from StackOverflow: an exploratory study
on Android apps. Information and Software Technology, 88, 148–158. https://doi.org/10.1016/j.infsof.
2017.04.005.

Abdeen, H. Bali, K., Sahraoui, H., Dufour, B. (2015). Learning dependency-based change impact predictors
using independent change histories. Information and Software Technology, 67, 220–235. https://doi.org/
10.1016/j.infsof.2015.07.007.

Abuasad, A., Alsmadi, I.M. (1994, (2012)). The correlation between source code analysis change recommenda-
tions and software metrics. In: ICICS ’12: Proceedings of the 3rd International Conference on Information
and Communication Systems. https://doi.org/10.1145/2222444.2222446.

https://GitHub.com/jaimepsayago/SMS
https://GitHub.com/jaimepsayago/SMS
https://doi.org/10.1016/j.infsof.2017.04.005
https://doi.org/10.1016/j.infsof.2017.04.005
https://doi.org/10.1016/j.infsof.2015.07.007
https://doi.org/10.1016/j.infsof.2015.07.007
https://doi.org/10.1145/2222444.2222446


A Systematic Mapping Study on Analysis of Code Repositories 37

Agarwal, H., Husain, F., Saini, P. (2019). Next generation noise and affine invariant video watermarking scheme
using Harris feature extraction. In: Third International Conference, ICACDS 2019, Ghaziabad, India, April
12–13, 2019, Revised Selected Papers, Part II, Advances in Computing and Data Sciences. Springer, Singa-
pore, pp. 655–665. https://doi.org/10.1007/978-981-13-9942-8.

de Almeida Biolchini, J.C., Mian, P.G., Natali, A.C.C., Conte, T.U., Travassos, G.H. (2007). Scientific research
ontology to support systematic review in software engineering. Advanced Engineering Informatics, 21(2),
133–151. https://doi.org/10.1016/j.aei.2006.11.006.

Amann, S., Beyer, S., Kevic, K., Gall, H. (2015). Software mining studies: goals, approaches, artifacts, and
replicability. In: Meyer, B., Nordio, M. (Eds.), Software Engineering. LASER 2013, LASER 2014, Lecture
Notes in Computer Science, Vol. 8987. Springer, Cham. https://doi.org/10.1007/978-3-319-28406-4_5.

Arora, R., Garg, A. (2018). Analysis of software repositories using process mining. Smart Computing and Infor-
matics Smart Innovation, Systems and Technologies, 78, 637–643. https://doi.org/10.1007/978-981-10-5547-
8_65.

Badampudi, D., Wohlin, C., Petersen, K. (2016). Software component decision-making: in-house, OSS, COTS or
outsourcing – a systematic literature review. Journal of Systems and Software, 121, 105–124. https://doi.org/
10.1016/j.jss.2016.07.027.

Bailey, J., Budgen, D., Turner, M., Kitchenham, B., Brereton, P., Linkman, S. (2007). Evidence relating to object-
oriented software design: a survey. In: Proceedings of the First International Symposium on Empirical Soft-
ware Engineering and Measurement. IEEE Computer Society, USA, pp. 482–484. https://doi.org/10.1109/
ESEM.2007.46.

Ball, T., Kim J., Siy H.P., (1997). If your version control system could talk. In: ICSE Workshop on Process
Modelling and Empirical Studies of Software Engineering https://doi.org/10.1.1.48.910.

Baltrusaitis, T. Ahuja, C., Morency, L. (2019). Multimodal machine learning: a survey and taxonomy. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423–443. https://doi.org/10.1109/TPAMI.
2018.2798607.

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez,
S., Molina, D., Benjamins, R., Chatila, R., Herrera, F. (2020). Explainable Explainable Artificial Intelligence
(XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58,
82–115. https://doi.org/10.1016/j.inffus.2019.12.012.

Borg, M., Runeson, P., Ardö A. (2014). Recovering from a decade: a systematic mapping of information retrieval
approaches to software traceability. Empirical Software Engineering, 19(6), 1565–1616. https://doi.org/
10.1007/s10664-013-9255-y.

Borges, H., Tulio Valente, M. (2018). What’s in a GitHub Star? Understanding repository starring practices
in a social coding platform. Journal of Systems and Software, 146, 112–129. https://doi.org/10.1016/j.jss.
2018.09.016.

Cavalcanti, Y.C. da Mota Silveira Neto, P.A., do Carmo Machado, I., Vale, T.F., de Almeida, E.S.,
de Lemos Meira, S.R. (2014). Challenges and opportunities for software change request repositories: a sys-
tematic mapping study. Journal of Software: Evolution and Process, 26(7), 620–653. https://doi.org/10.1002/
smr.1639.

Chahal, K.K., Saini, M. (2016). Open source software evolution: a systematic literature review (Part 1). In-
ternational Journal of Open Source Software and Processes, 7(1), 1–27. https://doi.org/10.4018/IJOSSP.
2016010101.

Chaturvedi, K.K., Sing, V.B., Singh, P. (2013). Tools in mining software repositories. In: Proceedings of the
2013 13th International Conference on Computational Science and Its Applications, ICCSA 2013, pp. 89–98.
https://doi.org/10.1109/ICCSA.2013.22.

Chen, T.H. Thomas, S.W., Hassan, A.E. (2016). A survey on the use of topic models when mining software
repositories. Empirical Software Engineering. https://doi.org/10.1007/s10664-015-9402-8.

Cornelissen, B. Zaidman, A., van Deursen, A., Moonen, L., Koschke, R. (2009). A systematic survey of program
comprehension through dynamic analysis. IEEE Transactions on Software Engineering, 35(5), 684–702.
https://doi.org/10.1109/TSE.2009.28.

Cosentino, V., Cánovas Izquierdo J.L. Cabot J. (2017). A systematic mapping study of software development
with GitHub. IEEE Access, 5, 7173–7192. https://doi.org/10.1109/ACCESS.2017.2682323.

Costa, C., Murta, L. (2013). Version control in Distributed Software Development: a systematic mapping study.
In: IEEE 8th International Conference on Global Software Engineering, ICGSE 2013, pp. 90–99. https://
doi.org/10.1109/ICGSE.2013.19.

https://doi.org/10.1007/978-981-13-9942-8
https://doi.org/10.1016/j.aei.2006.11.006
https://doi.org/10.1007/978-3-319-28406-4_5
https://doi.org/10.1007/978-981-10-5547-8_65
https://doi.org/10.1007/978-981-10-5547-8_65
https://doi.org/10.1016/j.jss.2016.07.027
https://doi.org/10.1016/j.jss.2016.07.027
https://doi.org/10.1109/ESEM.2007.46
https://doi.org/10.1109/ESEM.2007.46
https://doi.org/10.1.1.48.910
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1002/smr.1639
https://doi.org/10.1002/smr.1639
https://doi.org/10.4018/IJOSSP.2016010101
https://doi.org/10.4018/IJOSSP.2016010101
https://doi.org/10.1109/ICCSA.2013.22
https://doi.org/10.1007/s10664-015-9402-8
https://doi.org/10.1109/TSE.2009.28
https://doi.org/10.1109/ACCESS.2017.2682323
https://doi.org/10.1109/ICGSE.2013.19
https://doi.org/10.1109/ICGSE.2013.19


38 J. Sayago-Heredia et al.

Datta, S., Datta, S., Naidu, K.V.M. (2012). Capacitated team formation problem on social networks. In: Pro-
ceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1005–1013. https://doi.org/10.1145/2339530.2339690.

De Farias, Novais, M.A.F.R., Colaço Júnior, M., da Silva Carvalho, L.P. (2016). A systematic mapping study
on mining software repositories. In: SAC ’16: Proceedings of the 31st Annual ACM Symposium on Applied
Computing, pp. 1472–1479. https://doi.org/10.1145/2851613.2851786.

Del Carpio, P.M. (2017). Extracción de Nubes de Palabras en Repositorios Git. 2017 12th Iberian Conference
on Information Systems and Technologies (CISTI) https://doi.org/10.23919/CISTI.2017.7975911.

Demeyer, S. Murgia, A., Wyckmans, K., Lamkanfi, A. (2013). Happy birthday! A trend analysis on past MSR
papers. In: 2013 10th Working Conference on Mining Software Repositories (MSR), pp. 353–362. https://
doi.org/10.1109/MSR.2013.6624049.

Dias de Moura, M.H., Dantas do Nascimento H.A., Couto Rosa T. (2014). Extracting new metrics from ver-
sion control system for the comparison of software developers. In: ARES ’14: Proceedings of the 2014
Ninth International Conference on Availability, Reliability and Security, pp. 41–50. https://doi.org/10.1109/
SBES.2014.25.

Dias, M., Bacchelli, A., Gousios, G., Cassou, D., Ducasse, S., (2015). Untangling fine-grained code changes. In:
2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER),
pp. 341–350. https://doi.org/10.1109/SANER.2015.7081844.

Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D. (2013). Feature location in source code: a taxonomy and
survey. Journal of Software: Evolution and Process, 25(1), 53–95. https://doi.org/10.1002/smr.567.

Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N. (2015). Boa: Ultra-large-scale software repository and
source-code mining. ACM Transactions on Software Engineering and Methodology, 25, 1. https://doi.org/
10.1145/2803171.

Elsen, S. (2013). VisGi: visualizing Git branches. 2013 First IEEE Working Conference on Software Visualiza-
tion (VISSOFT). https://doi.org/10.1109/VISSOFT.2013.6650522.

Falessi, D., Reichel, A. (2015). Towards an open-source tool for measuring and visualizing the interest of
technical debt. In: 2015 IEEE 7th International Workshop on Managing Technical Debt (MTD), pp. 1–8.
https://doi.org/10.1109/MTD.2015.7332618.

Farias, M., Novais, R., Ortins, P., Colaço, M., Mendonça, M. (2015). Analyzing distributions of emails and
commits from OSS contributors through mining software repositories: an exploratory study. In: ICEIS 2015:
Proceedings of the 17th International Conference on Enterprise Information Systems, Vol. 2, pp. 303–310.
https://doi.org/10.5220/0005368603030310.

Feldt, R., de Oliveira Neto, F.G., Torkar, R. (2018). Ways of applying artificial intelligence in software engi-
neering. In: 2018 IEEE/ACM 6th International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering (RAISE), pp. 35–41.

Finlay, J. Pears, R., Connor, A.M. (2014). Data stream mining for predicting software build outcomes us-
ing source code metrics. Information and Software Technology, 56(2), 183–198. https://doi.org/10.1016/
j.infsof.2013.09.001.

Foucault, M., Palyart, M., Blanc, X., Murphy, G.C., Falleri, J.-R. (2015). Impact of developer turnover on quality
in open-source software. In: ESEC/FSE 2015: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, pp. 829–841. https://doi.org/10.1145/2786805.2786870.

Franco-Bedoya, O. Ameller, D., Costal, D., Franch, X. (2017). Open source software ecosystems: a systematic
mapping. Information and Software Technology, 91, 160–185. https://doi.org/10.1016/j.infsof.2017.07.007.

Fu, Y., Yan, M., Zhang, X., Xu, L., Yang, D., Kymer, J.D. (2015). Automated classification of software change
messages by semi-supervised Latent Dirichlet Allocation. Information and Software Technology, 57(1),
369–377. https://doi.org/10.1016/j.infsof.2014.05.017.

Gamalielsson, J., Lundell, B. (2014). Sustainability of Open Source software communities beyond a fork:
How and why has the LibreOffice project evolved? Journal of Systems and Software, 89(1), 128–145.
https://doi.org/10.1016/j.jss.2013.11.1077.

Gani, A. Siddiqa, A., Shamshirband, S., Hanum, F. (2016). A survey on indexing techniques for big data: tax-
onomy and performance evaluation. Knowledge and Information Systems, 46(2), 241–284. https://doi.org/
10.1007/s10115-015-0830-y.

Genero, M., Fernandez, A.M., James Nelson, H., Poels, G. (2011). A systematic literature review on the quality
of UML models. Journal of Database Management, 22(3), 46–66. https://doi.org/10.4018/jdm.2011070103.

Genero Bocco M.F., Cruz-Lemus J.A., Piattini Velthuis M.G. (2014). Métodos de investigación en ingeniería
del software. Ra-Ma.

https://doi.org/10.1145/2339530.2339690
https://doi.org/10.1145/2851613.2851786
https://doi.org/10.23919/CISTI.2017.7975911
https://doi.org/10.1109/MSR.2013.6624049
https://doi.org/10.1109/MSR.2013.6624049
https://doi.org/10.1109/SBES.2014.25
https://doi.org/10.1109/SBES.2014.25
https://doi.org/10.1109/SANER.2015.7081844
https://doi.org/10.1002/smr.567
https://doi.org/10.1145/2803171
https://doi.org/10.1145/2803171
https://doi.org/10.1109/VISSOFT.2013.6650522
https://doi.org/10.1109/MTD.2015.7332618
https://doi.org/10.5220/0005368603030310
https://doi.org/10.1016/j.infsof.2013.09.001
https://doi.org/10.1016/j.infsof.2013.09.001
https://doi.org/10.1145/2786805.2786870
https://doi.org/10.1016/j.infsof.2017.07.007
https://doi.org/10.1016/j.infsof.2014.05.017
https://doi.org/10.1016/j.jss.2013.11.1077
https://doi.org/10.1007/s10115-015-0830-y
https://doi.org/10.1007/s10115-015-0830-y
https://doi.org/10.4018/jdm.2011070103


A Systematic Mapping Study on Analysis of Code Repositories 39

Grossi, V., Romei, A., Turini, F. (2017). Survey on using constraints in data mining. Data Mining and Knowledge
Discovery, 31(2), 424–464. https://doi.org/10.1007/s10618-016-0480-z.

Güemes-Peña, D., López-Nozal, C., Marticorena-Sánchez, R. (2018). Emerging topics in mining software repos-
itories: machine learning in software repositories and datasets. Progress in Artificial Intelligence, 7, 237–247.
https://doi.org/10.1007/s13748-018-0147-7.

Gupta, M., Sureka, A., Padmanabhuni, S. (2014). Process mining multiple repositories for software defect resolu-
tion from control and organizational perspective. In: MSR 2014: Proceedings of the 11th Working Conference
on Mining Software Repositories, pp. 122–131. https://doi.org/10.1145/2597073.2597081.

Haddaway, N.R., Macura, B., Whaley, P. (2018). ROSES Reporting standards for Systematic Evidence Synthe-
ses: Pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental system-
atic reviews and systematic maps. Environmental Evidence, 7(1), 4–11. https://doi.org/10.1186/s13750-018-
0121-7.

Harman, M. (2012). The role of artificial intelligence in software engineering. In: 2012 First International
Workshop on Realizing AI Synergies in Software Engineering (RAISE). IEEE. https://doi.org/10.1109/
RAISE.2012.6227961.

Hassan, A.E. (2008). The road ahead for mining software repositories. In: 2008 Frontiers of Software Mainte-
nance, pp. 48–57. https://doi.org/10.1109/FOSM.2008.4659248. 2008.

Herzig, K., Just S., Zeller A., (2016). The impact of tangled code changes on defect prediction models. Empirical
Software Engineering , 21(2), 303–336. https://doi.org/10.1007/s10664-015-9376-6.

Hidalgo Suarez, C.G., Bucheli, V.A., Restrepo-Calle, F., Gonzalez, F.A. (2018). A strategy based on tech-
nological maps for the identification of the state-of-the-art techniques in software development projects:
Virtual judge projects as a case study. In: Serrano, C.J., Martínez-Santos, J. (Eds.), Advances in Com-
puting. CCC 2018, Communications in Computer and Information Science, Vol. 885. Springer, Cham.
https://doi.org/10.1007/978-3-319-98998-3_27.

Ivarsson, M., Gorschek, T. (2011). A method for evaluating rigor and industrial relevance of technology evalu-
ations. Empirical Software Engineering, 16(3), 365–395. https://doi.org/10.1007/s10664-010-9146-4.

Jarczyk, O., Jaroszewicz, S., Wierzbicki, A., Pawlak, K., Jankowski-Lorek, M. (2017). Surgical teams on
GitHub: modeling performance of GitHub project development processes. Information and Software Tech-
nology, 100, 32–46. https://doi.org/10.1016/j.infsof.2018.03.010. 2018.

Jiang, J., Lo, D., Zheng, J., Xia, X., Yang, Y., Zhang, L., (2019). Who should make decision on this pull request?
Analyzing time-decaying relationships and file similarities for integrator prediction. Journal of Systems and
Software, 154, 196–210. https://doi.org/10.1016/j.jss.2019.04.055.

Joblin, M., Apel, S., Riehle, D., Mauerer, W., Siegmund, J. (2015). From developer networks to verified com-
munities: a fine-grained approach. In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering (ICSE), pp. 563–573. https://doi.org/10.1109/ICSE.2015.73.

Joy, A., Thangavelu, S., Jyotishi, A. (2018). Performance of GitHub open-source software project: an empirical
analysis. In: 2018 Second International Conference on Advances in Electronics, Computers and Communi-
cations (ICAECC), pp. 1–6. https://doi.org/10.1109/ICAECC.2018.8479462.

Just, S., Herzig, K., Czerwonka, J., Murphy, B. (2016). Switching to git: the good, the bad, and the ugly. In:
2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), pp. 400–411. https://
doi.org/10.1109/ISSRE.2016.38.

Kagdi, H., Collard, M.L., Maletic, J.I. (2007). A Survey and Taxonomy of Approaches for Mining Software
Repositories in the Context of Software Evolution. Journal of Software: Evolution and Process, 19(2),
77–131. https://doi.org/10.1002/smr.344.

Kagdi1, H., Gethers, M., Poshyvanyk, D., Hammad, M. (2014). Assigning change requests to software develop-
ers. Journal of Software: Evolution and Process, 26(12), 1172–1192. https://doi.org/10.1002/smr.530.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D. (2016). An in-depth study
of the promises and perils of mining GitHub. Empirical Software Engineering, 21(5), 2035–2071. https://
doi.org/10.1007/s10664-015-9393-5.

Kasurinen, J., Knutas, A. (2018). Publication trends in gamification: a systematic mapping study. Computer
Science Review, 27, 33–44. https://doi.org/10.1016/j.cosrev.2017.10.003.

Kirinuki, H., Higo, Y., Hotta, K., Kusumoto, S. (2014). Hey! Are you committing tangled changes? In:
ICPC 2014: Proceedings of the 22nd International Conference on Program Comprehension, pp. 262–265.
https://doi.org/10.1145/2597008.2597798.

Kitchenham, B. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering.
https://doi.org/10.1145/1134285.1134500.

https://doi.org/10.1007/s10618-016-0480-z
https://doi.org/10.1007/s13748-018-0147-7
https://doi.org/10.1145/2597073.2597081
https://doi.org/10.1186/s13750-018-0121-7
https://doi.org/10.1186/s13750-018-0121-7
https://doi.org/10.1109/RAISE.2012.6227961
https://doi.org/10.1109/RAISE.2012.6227961
https://doi.org/10.1109/FOSM.2008.4659248
https://doi.org/10.1007/s10664-015-9376-6
https://doi.org/10.1007/978-3-319-98998-3_27
https://doi.org/10.1007/s10664-010-9146-4
https://doi.org/10.1016/j.infsof.2018.03.010
https://doi.org/10.1016/j.jss.2019.04.055
https://doi.org/10.1109/ICSE.2015.73
https://doi.org/10.1109/ICAECC.2018.8479462
https://doi.org/10.1109/ISSRE.2016.38
https://doi.org/10.1109/ISSRE.2016.38
https://doi.org/10.1002/smr.344
https://doi.org/10.1002/smr.530
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1016/j.cosrev.2017.10.003
https://doi.org/10.1145/2597008.2597798
https://doi.org/10.1145/1134285.1134500


40 J. Sayago-Heredia et al.

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S. (2009). Systematic literature
reviews in software engineering – a systematic literature review. Information and Software Technology, 51(1),
7–15. https://doi.org/10.1016/j.infsof.2008.09.009.

Kitchenham, B., Sjøberg, D.I.K., Dyba, T., Pearl Brereton, O., Budgen, D., Höst, M. (2013). Trends in the quality
of human-centric software engineering experiments – a quasi-experiment. IEEE Transactions on Software
Engineering, 39(7), 1002–1017. https://doi.org/10.1109/TSE.2012.76.

Kitchenham, B.A., Budgen, D., Pearl Brereton, O. (2011). Using mapping studies as the basis for further re-
search – a participant-observer case study. Information and Software Technology, 53(6), 638–651. https://
doi.org/10.1016/j.infsof.2010.12.011.

Kuhrmann, M., Méndez Fernández, D., Daneva, M. (2017). On the pragmatic design of literature studies in
software engineering: an experience-based guideline. Empirical Software Engineering, 22(6), 2852–2891.
https://doi.org/10.1007/s10664-016-9492-y.

Kumar, L., Sripada, S.K., Sureka, A., Rath, S.K. (2018). Effective fault prediction model developed using Least
Square Support Vector Machine (LSSVM). Journal of Systems and Software, 137, 686–712. https://doi.org/
10.1016/j.jss.2017.04.016.

Laukkanen, E., Itkonen, J., Lassenius, C. (2017). Problems, causes and solutions when adopting continuous
delivery—a systematic literature review. Information and Software Technology, 82, 55–79. https://doi.org/
10.1016/j.infsof.2016.10.001.

Lee, H., Seo, B., Seo, E. (2013). A git source repository analysis tool based on a novel branch-oriented approach.
In: 2013 International Conference on Information Science and Applications (ICISA), pp. 1–4. https://doi.org/
10.1109/ICISA.2013.6579457.

Li, H.Y., Li, M., Zhou, Z.-H. (2019). Towards one reusable model for various software defect mining tasks. Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 11441 LNAI,
212–224. https://doi.org/10.1007/978-3-030-16142-2_17.

Liu, J., Li, J., He, L. (2016). A comparative study of the effects of pull request on GitHub projects. In:
2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), pp. 313–322.
https://doi.org/10.1109/COMPSAC.2016.27.

Malheiros, Y., Moraes, A., Trindade, C., Meira, S. (2012). A source code recommender system to support new-
comers. In: COMPSAC ’12: Proceedings of the 2012 IEEE 36th Annual Computer Software and Applications
Conference, pp. 19–24. https://doi.org/10.1109/COMPSAC.2012.11.

Maqsood, J., Eshraghi, I., Sarmad Ali, S. (2017). Success or failure identification for GitHub’s open source
projects. In: ICMSS ’17: Proceedings of the 2017 International Conference on Management Engineering,
Software Engineering and Service Sciences, pp. 145–150. https://doi.org/10.1145/3034950.3034957.

Martínez-Torres, M.R., Toral, S.L., Barrero, F.J., Gregor, D. (2013). A text categorisation tool for open source
communities based on semantic analysis. Behaviour & Information Technology, 32(6), 532–544. https://
doi.org/10.1080/0144929X.2011.624634.

Munir, H., Wnuk K., Runeson P. (2016). Open innovation in software engineering: a systematic mapping study.
Empirical Software Engineering, 21(2), 684–723. https://doi.org/10.1007/s10664-015-9380-x.

Murgia, A., Tourani, P., Adams, B., Ortu, M. (2014). Do developers feel emotions? An exploratory analysis
of emotions in software artifacts. In: MSR 2014: Proceedings of the 11th Working Conference on Mining
Software Repositories, pp. 262–271. https://doi.org/10.1145/2597073.2597086.

Negara, S., Codoban M., Dig D., Johnson R.E. (2014). Mining fine-grained code changes to detect unknown
change patterns. In: ICSE 2014: Proceedings of the 36th International Conference on Software Engineering,
pp. 803–813. https://doi.org/10.1145/2568225.2568317.

Nishi, M.A., Damevski, K. (2018). Scalable code clone detection and search based on adaptive prefix filtering.
Journal of Systems and Software, 137, 130–142. https://doi.org/10.1016/j.jss.2017.11.039.

Novielli, N., Girardi D., Lanubile F. (2018). A benchmark study on sentiment analysis for software engineering
research. In: MSR ’18: Proceedings of the 15th International Conference on Mining Software Repositories,
pp. 364–375. https://doi.org/10.1145/3196398.3196403.

Ozbas-Caglayan, K., Dogru, A.H. (2013). Software repository analysis for investigating design-code compli-
ance. In: 2013 Joint Conference of the 23rd International Workshop on Software Measurement and the
8th International Conference on Software Process and Product Measurement, pp. 231–233. https://doi.org/
10.1109/IWSM-Mensura.2013.40.

Pedreira, O., García, F., Brisaboa, N., Piattini, M. (2015). Gamification in software engineering – a sys-
tematic mapping. Information and Software Technology, 57(1), 157–168. https://doi.org/10.1016/j.infsof.
2014.08.007.

https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1109/TSE.2012.76
https://doi.org/10.1016/j.infsof.2010.12.011
https://doi.org/10.1016/j.infsof.2010.12.011
https://doi.org/10.1007/s10664-016-9492-y
https://doi.org/10.1016/j.jss.2017.04.016
https://doi.org/10.1016/j.jss.2017.04.016
https://doi.org/10.1016/j.infsof.2016.10.001
https://doi.org/10.1016/j.infsof.2016.10.001
https://doi.org/10.1109/ICISA.2013.6579457
https://doi.org/10.1109/ICISA.2013.6579457
https://doi.org/10.1007/978-3-030-16142-2_17
https://doi.org/10.1109/COMPSAC.2016.27
https://doi.org/10.1109/COMPSAC.2012.11
https://doi.org/10.1145/3034950.3034957
https://doi.org/10.1080/0144929X.2011.624634
https://doi.org/10.1080/0144929X.2011.624634
https://doi.org/10.1007/s10664-015-9380-x
https://doi.org/10.1145/2597073.2597086
https://doi.org/10.1145/2568225.2568317
https://doi.org/10.1016/j.jss.2017.11.039
https://doi.org/10.1145/3196398.3196403
https://doi.org/10.1109/IWSM-Mensura.2013.40
https://doi.org/10.1109/IWSM-Mensura.2013.40
https://doi.org/10.1016/j.infsof.2014.08.007
https://doi.org/10.1016/j.infsof.2014.08.007


A Systematic Mapping Study on Analysis of Code Repositories 41

Perez-Castillo, R., Ruiz-Gonzalez, F., Genero, M., Piattini, M. (2019). A systematic mapping study on enterprise
architecture mining A systematic mapping study on enterprise architecture mining. Enterprise Information
Systems, 13(5), 675–718. https://doi.org/10.1080/17517575.2019.1590859.

Petersen, K., Gencel, C. (2013). Worldviews, research methods, and their relationship to validity in empiri-
cal software engineering research. In: 2013 Joint Conference of the 23rd International Workshop on Soft-
ware Measurement and the 8th International Conference on Software Process and Product Measurement,
pp. 81–89. https://doi.org/10.1109/IWSM-Mensura.2013.22.

Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M. (2008). Systematic mapping studies in software engineering.
In: EASE’08: Proceedings of the 12th international conference on Evaluation and Assessment in Software
Engineering, pp. 68–77.

Petersen, K., Vakkalanka S. Kuzniarz L. (2015). Guidelines for conducting systematic mapping studies in
software engineering: an update. Information and Software Technology, 64, 1–18. https://doi.org/10.1016/
j.infsof.2015.03.007.

Rosen, C., Grawi, B., Shihab, E. (2015). Commit guru: analytics and risk prediction of software commits. In:
ESEC/FSE 2015: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pp.
966–969. https://doi.org/10.1145/2786805.2803183. 2015.

Shamseer, L. Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A. (2015).
Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration
and explanation. The BMJ, 349, 1–25. https://doi.org/10.1136/bmj.g7647.

Siddiqui, T., Ahmad, A. (2018). Data mining tools and techniques for mining software repositories: a systematic
review. Advances in Intelligent Systems and Computing, 654, 717–726. https://doi.org/10.1007/978-981-10-
6620-7_70.

Stol, K.J., Ralph P., Fitzgerald B. (2016). Grounded theory in software engineering research: a critical review
and guidelines In: ICSE ’16: Proceedings of the 38th International Conference on Software Engineering,
pp. 120–131. https://doi.org/10.1145/2884781.2884833.

Tahir, A., Tosi, D., Morasca, S. (2013). A systematic review on the functional testing of semantic web services.
Journal of Systems and Software, 86(11), 2877–2889. https://doi.org/10.1016/j.jss.2013.06.064.

van Eck, N.J., Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and
VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7.

Waltman, L., van Eck N.J. Noyons Ed.C.M. (2010). A unified approach to mapping and clustering of bibliometric
networks. Journal of Informetrics, 4(4), 629–635. https://doi.org/10.1016/j.joi.2010.07.002.

Wang, N., Liang, H. Jia, Y. Ge, S. Xue, Y. Wang, Z. (2016). Cloud computing research in the IS discipline: a
citation/co-citation analysis. Decision Support Systems, 86, 35–47. https://doi.org/10.1016/j.dss.2016.03.006.

Wijesiriwardana, C., Wimalaratne, P. (2018). Fostering real-time software analysis by leveraging heteroge-
neous and autonomous software repositories. IEICE Transactions on Information and Systems E, 101D(11),
2730–2743. https://doi.org/10.1587/transinf.2018EDP7094.

Wohlin, C., Runeson, P., Höt, M., Ohlsson, M.C., Regnell, B., Wesslén, A. (2012). Experimentation in Software
Engineering. Springer Publishing Company, Incorporated.

Wu, Y., Kropczynski, J., Shih, P.C., Carroll, J.M. (2014). Exploring the ecosystem of software developers on
GitHub and other platforms. In: CSCW Companion ’14: Proceedings of the companion publication of the
17th ACM conference on Computer Supported Cooperative Work & Social Computing, pp. 265–268. https://
doi.org/10.1145/2556420.2556483.

Zolkifli, N.N., Ngah, A., Deraman, A. (2018). Version control system: a review. Procedia Computer Science,
135, 408–415. https://doi.org/10.1016/j.procs.2018.08.191.

J. Sayago-Heredia is a PhD student at the University of Castilla-La Mancha (UCLM),
Spain. His research interests include software engineering. He is a professor at the School
of Systems and Computing of the Pontificia Universidad Católica del Ecuador, Sede Es-
meraldas. Contact him at jaime.sayago@pucese.edu.ec.

https://doi.org/10.1080/17517575.2019.1590859
https://doi.org/10.1109/IWSM-Mensura.2013.22
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1136/bmj.g7647
https://doi.org/10.1007/978-981-10-6620-7_70
https://doi.org/10.1007/978-981-10-6620-7_70
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1016/j.jss.2013.06.064
https://doi.org/10.1007/s11192-017-2300-7
https://doi.org/10.1016/j.joi.2010.07.002
https://doi.org/10.1016/j.dss.2016.03.006
https://doi.org/10.1587/transinf.2018EDP7094
https://doi.org/10.1145/2556420.2556483
https://doi.org/10.1145/2556420.2556483
https://doi.org/10.1016/j.procs.2018.08.191


42 J. Sayago-Heredia et al.

R. Perez-Castillo is a researcher at the Information Technologies and Systems Insti-
tute, University of Castilla-La Mancha (UCLM), Spain. His research interests include
architecture-driven modernization, model-driven development, business-process archae-
ology, and enterprise architecture. Perez-Castillo received a PhD in computer science from
UCLM. Contact him at ricardo.pdelcastillo@uclm.es.

M. Piattini is the director of the Alarcos Research Group and a full professor at the Univer-
sity of Castilla-La Mancha, Spain. His research interests include software and data qual-
ity, information-systems audit and security, and IT governance. Piattini received a PhD
in computer science from Madrid Technical University, Spain. Contact him at mario.piat-
tini@uclm.es.


	Introduction
	Background
	Code Repository Analysis
	Related Work

	Research Methodology
	Definition Phase
	Research Questions
	Search Process
	Selection of Primary Studies Procedure
	Quality Assessment
	Procedure for Data Extraction and Taxonomy
	Summary Methods

	Execution Phase

	Results of the Systematic Mapping Study
	RQ1. What Kind of Information is Taken as Input for the Analysis of Code Repositories?
	RQ2. What Techniques or Methods are Used for Analysing Source Code Repository?
	RQ3. What Information is Extracted (Directly) or Derived (Indirectly) as a Result of the Analysis of Source Code Repositories?
	RQ4. What Kind of Research Has Proliferated in this Field?
	RQ5. Are Both Academia and Industry Interested in this Field?
	Quality Assessment

	Discussion
	Principal Findings
	Implications for Researchers and Practitioners
	Evaluation of Validity
	Descriptive Validity
	Theoretical Validity
	Generalizability

	Interpretive Validity
	Reliability

	Conclusions
	Search Strings
	Data Extraction Form
	Selected Primary Studies

