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Abstract: Today, there is no company that does not attempt to control or assure software quality 
in a greater or lesser extent. Software quality has been mainly studied from the perspectives of 
the software product and the software process. However, there is no thorough research about how 
code quality is affected by the software development projects’ contexts. This study analyses how 
the evolution of the development effort (i.e., the number of developers and their contributions) 
influences the code quality (i.e., the number of bugs, code smells, cloning, etc). This paper 
presents a multiple case study that analyses 13 open-source projects from GitHub and 
SonarCloud, and retrieves more than 95,000 commits and more than 25,000 quality measures. 
The insights are that more developers or higher number of commits does not necessary influence 
worse quality levels. After applying a clustering algorithm, it is detected an inverse correlation 
in some cases where specific efforts were made to improve code quality. The size of commits 
and the relative weight of developers in their teams might also affect measures like complexity 
or cloning. Project managers can therefore understand the mentioned relationships and 
consequently make better decisions based on the information retrieved from code repositories. 
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1 Introduction 
Code quality has been widely investigated in the literature and has been recognized as 
one of the most significant factors with a direct impact in competitiveness in the 
software development industry [Abrahao, Baldassarre et al., 2016, Baggen, Correia et 
al., 2012, Janicijevic, Krsmanovic et al., 2016]. Some consequences generated by 
inadequate levels of quality are, for example, poor designs that lead to systems that are 
difficult to be maintained and extended [Schranz, Schindler et al., 2019], systems 
delivered with many defects resulting in a high dissatisfaction of end-users [Maxim and 
Kessentini, 2016], many dead or duplicated code that dramatically increase the 
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maintenance and evolution cost [Perez‐Castillo, Piattini et al., 2018], among many 
other harmful effects. 

Such problems, and their consequences, are usually addressed by researchers and 
practitioners considering a product and/or process quality approach. This means, 
software engineers control and assure the software quality regarding internal software 
features [Baggen, Correia et al., 2012, Papamichail and Symeonidis, 2020], as well as 
the processes to produce software in a proper way [Shrestha, 2018]. 

Both approaches have been supported by international standards for several 
decades. First, ISO/IEC 9126 emerged in 1991 (then updated in 2001) [ISO/IEC, 2001] 
providing a quality model with a set of software quality characteristics to be evaluated 
during software development. That standard was then superseded by ISO/IEC 25010 
(SQuaRE) [ISO/IEC, 2011] by including more characteristics and specifying in detail 
others. In a similar way, the process quality has been addressed by international 
standards like the ISO/IEC 33000 series [ISO/IEC, 2015] that allow the assessment and 
improvement of the software development process based on the capability evaluation. 
That standard superseded the previous one, ISO/IEC 15504 (SPICE) [ISO/IEC, 2004].   

Apart from the product and process software quality approaches, there is a third 
approach: the software quality treated from the project management perspective. While 
the process software quality approach considers the repetitive processes at 
organizational levels, the project perspective takes into consideration the factors of 
individual projects [Jia, Mo et al., 2018] (limited in time and conducted by specific 
development teams) and how those impact on code quality. For example, today 
development software projects deals with time-to-market pressure [Kuutila, Mäntylä et 
al., 2020], and continuous changes or new features requested by customers and end-
users [Papamichail and Symeonidis, 2020]. With agile software development 
approaches, software evolution methodologies should also consider new requested 
features while stable functionality has to be supported [Gao, Li et al., 2020]. Also, 
software development projects include large and highly distributed teams around the 
world [Borrego, Morán et al., 2019]. According to this contemporary context in 
software development project, there is an evident need to produce software with enough 
quality [ISO/IEC, 2011]. 

Although product and process quality has been extensively studied, there is a 
limited research about how the project context impacts on code quality. In particular, 
there is not a clear understanding of some relationship on project metrics and code 
quality metrics. This study tries to figure out how the development effort (i.e., numbers 
of contributors and the way in which they contribute during a software development 
project) influence certain code quality measures, such as bugs, code smells, cloning, 
among other. 

The main objective of this study is to analyse how some aspects in the context of 
software development projects influence software quality. The study follows a 
repository mining approach. During the last years, a lot of studies considered “mining 
of software repository data for software development analytics” [Czerwonka, 
Nagappan et al., 2013]. Some of these studies follow descriptive approaches (i.e., those 
that apply statistical tests and models to explain relationships between mined data) 
[Papamichail and Symeonidis, 2020, Saini and Chahal, 2018, Singh, Chaturvedi et al., 
2017, Verma and Kumar, 2017, Wang, Meng et al., 2019]. Whilst other studies are 
more predictive since those are based on artificial intelligence (AI) methods like 
machine (or deep) learning to predict software quality as a classification problem  
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[Dam, Pham et al., 2019, Hoang, Dam et al., 2019, Kiehn, Pan et al., 2019]. This means 
the quality of the new pieces of code are classified regarding the previous analysis of 
code that have been characterized. Despite the promising results, these AI, 
classification-based proposals have some weaknesses. For example, metrics vary 
between projects [Lewis, Lin et al., 2013] which prevent the reuse of these 
classification/predicting models since system has to be trained again [Ghotra, McIntosh 
et al., 2017]. Also, some of these models generate many false positive [Nayrolles and 
Hamou-Lhadj, 2018]. For this reason, this study follows a descriptive repository 
analysis approach based on statistical models rather than a predictive one based on AI 
techniques. 

In particular, we analyse in combination GitHub and Sonarcloud (two open cloud 
services automatically accessed through their APIs) to retrieve code and quality 
measures information of the 13 open-source systems that are in both repositories at the 
same time. The proposal defines a common data model to collect and relate information 
collected from the two repositories. First, GitHub supports the code repositories of these 
projects, so information about commits and committers can be retrieved. Second, 
Sonarcloud is queried to get information about builds and associated software metrics 
(bugs, code smells, violations, duplications, etc.). In total, more than 95,000 commits 
and 782 builds (with more than 90 different metrics measured by each build) were 
analysed. After data were collected and pre-processed, some correlation and clustering 
algorithms were applied to figure out relationships between software development 
effort and software quality measures. 

The main insight achieved from this multiple case study is that the quantity of 
committers and commits may influence the code quality measures. Although the 
development effort does not necessarily affect code quality, there are some releases 
where the more committers and commits (relative to the system size), the worse code 
quality. The main implication of this insight is that project managers and, in general, 
software engineers can better understand the mentioned relationships and, therefore, 
they can make better decisions during project execution, so that, development effort 
can be adjusted, and code quality levels might be improved. 

The remaining of the paper is structured as follows. Section 2 first introduces some 
concepts necessary to understand the proposal. Section 3 presents work related to this 
research. Section 4 explains the research method followed in the study. Section 5 
presents the design and planning of the case study according to the research method. 
Section 6 shows the experimental results obtained after conducting the case study on 
13 open-source projects. Section 7 sets out our conclusions and directions for future 
work. 

2 Preliminaries 
This section introduces some concepts that are used throughout the whole paper.  

2.1 Concepts and measures 

First, the concept and associated measures used in the case study are introduced: 
Releasing. This concept refers to the version evolution of the development project. 

The release version is also an independent variable representing the unit of analysis 
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according to the case study design. It expresses the open-source project status for a 
specific version. 

Development effort. This concept attempts to measure the volume of changes and 
contributors in a specific released version. These measures are associated with values 
retrieved from GitHub (the public control version system employed in this study). 

• LOC is the total number of lines of code in the system for that release and 
represents the size of the system. 

• Commits is the total number of source code changes registered in the version 
control system for a certain release branch, which is normalized by the system 
size (i.e., LOC).  

• Committers is the total number of different developers who committed 
something on a certain release branch. It is normalized using LOC. 

• Changes by Commits is the average of changes by commit, i.e., total of 
additions and deletions in source code divided by the total number of commits 
during a specific release. 

• Committers weight represents the relative contribution of each individual 
committer during a specific release. This is used under the assumption that in 
some releases could be involved many different committers, but only few of 
them accumulate the majority of commits. Because of this, it measures 
compute the percentage of contribution of each committer. Then the measure 
aggregates all these percentages through a harmonic mean. In this way, we 
limited the weight of sporadic contributors. 

Code quality. This concept includes measures and indicators about the quality of 
the software that is released. Provide a definition for software quality is a hard task due 
to the numerous definitions in the literature. Probably, one of the most accepted 
definition is provided in ISO/IEC 25010, that defines software quality as “the degree to 
which the system satisfies the stated and implied needs of its various stakeholders, and 
thus provides value” [ISO/IEC, 2011]. Measures for this concept come from 
SonarCloud and are normalized considering the system size: 

• Bugs represents the number of bugs. According to SonarCloud, a bug is an 
issue that symbolizes something wrong in the source code. Thus, bugs should 
be fixed as soon as possible before actual defects appears.  

• Code Smells is the number of maintainability-related issues in the source code. 
Assuming this kind of issue is left as-is, maintainers will spend time on making 
code changes. Even worst, code smells can mislead maintainers and lead them 
to introduce additional errors when they make changes. 

• Complexity refers to the cyclomatic complexity and it is related to the number 
of different paths in the source code sequence. Intuitively, bifurcations in the 
control flow increments complexity. The calculation can slightly vary by 
programming language. 

• Violations is the number of rules checked by SonarCloud that are violated. 
Rules are the mechanism of SonarCloud to detect bugs and code smells but 
also security issues, vulnerabilities, and so on. So, this measure is an indicator 
of how many rules, as defined for the project, are not met. It should be noticed 
that rules can be managed and customized for every project despite there are 
some built-in sets of rules that are predefined in SonarCloud. 
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• Duplicated lines, it is the number of duplicated lines of source code. For a 
piece of code to be tagged as repeated, there should be at least a certain number 
of successive and duplicated tokens. Depending on the programming 
language, the threshold number of tokens could vary. For example, in 
COBOL, it is 30 lines of code, while in Java, it corresponds to 10 successive 
and duplicated statements. 

• Open issues represent the total of violations that have been marked by 
developers as ‘open’. Possible status values in SonarCloud are: Open, 
Confirmed, Reopened, Resolved. This measure is considered to pay attention 
to the effort on fixing issues. 

2.2 Data model 

The raw data of the case study is collected from two public data sources. On one hand, 
GitHub (an online version control system) is accessed to get the code base of projects 
together with all the information about development effort (e.g., numbers of 
committers, commits, etc.). On the other hand, the raw data concerning code quality 
metrics that were retrieved from SonarCloud (a platform to inspect continuously the 
quality of source code and detect bugs, vulnerabilities, and code smells). These two 
data sources are then integrated into a common database to be analysed. 

The data collected from both data sources are integrated into a single NoSQL 
database. Figure 1 shows the summarized data model for managing all the retrieved 
information. Top part represents GitHub entities while SonarCloud is represented in the 
bottom part. Entities from the two data sources are related through the concept of 
project and their releases (see Figure 1). This data model is then used during the pre-
processing phase to get the final data set to be analysed. 

 

Figure 1: Simplified data model for GitHub and SonarCloud information 
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2.3 Descriptive analysis 

This study focuses on a descriptive analysis based on statistical analysis. The study 
employs qualitative and quantitative data analyses. On one hand, the qualitative 
analysis consists of explanation building, as explained in [Yin, 2014]. This technique 
tries to identify patterns derived from the possible cause–effect relationships and 
develop possible explanations. Thus, it possible to discover and describe relationships 
concerning the tendency of the factors under analysis (i.e., commits and committers by 
release) and the code quality measures fluctuation alongside the project evolution. This 
qualitative analysis technique mainly relies on descriptive statistics as well as 
explanatory plots with visualization relating different variables. 

On the other hand, quantitative analysis is used in combination to confirm 
preliminary insights obtained through the preliminary qualitative inspection. In this 
sense, the technique used is the statistical correlation tests and, in particular, the 
Spearman correlation test. In statistics, the Spearman correlation coefficient is a 
measure of the linear correlation between two variables. We have chosen Spearman’s 
test instead of Pearson correlation test since some of the managed measures are not 
normally distributed variables. Also, Spearman’s test produces better results for outlier 
values, which is the case of some measures with various atypical cases. The Spearman’s 
correlation factor has a value ranging between -1 and 1. Values close to 1 are positive 
linear correlation, 0 is a non-linear correlation, and −1 is a negative (inverse) linear 
correlation. The correlation values are used to determine (with a certain statistical 
significance) if a specific development effort factor affected code quality measures.  

Together with the correlation test, this study uses a clustering algorithm. This kind 
of algorithms classifies data points int different groups. Data points in the same group 
share common features, while data points in different groups should have clear 
dissimilarities features. The rationale for using a clustering algorithm is that we can 
groups different releases with similar properties. As we mentioned, the relationships 
between development effort and quality measures might vary for different releases. For 
example, a higher and hectic development effort could lead to poor quality levels in 
some cases, while thorough development efforts specifically focus on improving 
quality may lead to the different result. 

The clustering algorithm used in this study is the K-means. This machine learning 
algorithm classifies data according to their attributes into K number of clusters. This 
algorithm is a method of unsupervised learning. The user first defines K, the algorithm 
then defines K centroids for K clusters (initially very distant). Data points are then 
classified into one of the clusters according to the minimal centroid distance. In every 
step, centroid is then recalculated according to the points in each cluster, and data points 
changes with the new centroids. The K-means algorithm ends when clusters elements 
are stable. 

3 Related Work 
First, section 3.1 presents some works that have analysed the impact of development 
project context on software quality. Second, some works that have analysed code 
repositories to extract both software project and quality metrics are presented in section 
3.2. 
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3.1 Project influence on Software Quality 

The research hypothesis of this research is in line with previous works that have 
analysed the impact of project context and environment on software quality metrics. 
For example, [Chunli and Rongbin, 2016] investigated the main problems of software 
project management (as well as software project risk management) and defined a 
strategy of improving the quality management of software project based on CMMI. 
Among other things, the defined strategy of that work focuses on the comprehensive 
ability of software developers. In the same line, [Hayat, Rehman et al., 2019] have 
focused on the impact of agile methodologies on the software project management, 
including quality management. Moreover, [Wong, Yu et al., 2018] studied the 
relationships of some project activities alongside project lifecycle. This study analysed 
those relationships based on the monitoring of software changes. Authors stated that “it 
is important for every project team member to comply and adhere to change control 
standards following best practices maximizing business advantages, and enhancing 
product quality”. Our study based on the analysis of commits and committers is in line 
with the investigation of change control standards of that study.  

[Janicijevic, Krsmanovic et al., 2016] proposed a markovian decision system that 
models the “stochastic processes of a quality management system and selection of the 
optimum set of factors impacting software quality”. Among other factors, this research 
evaluates how programmer skills and software development methods impact the 
customer requirements fulfilment. In comparison with this work, this is too much 
focussed on customer satisfaction regarding requirement fulfilment. [Papamichail and 
Symeonidis, 2020] analysed different software by employing the trends of static 
analysis metrics for evaluating software maintainability. Although this approach 
analyses different releases, this research does not consider information about commits 
or committers, neither do other works. 

[Jia, Mo et al., 2018] investigated through a cluster analysis how environmental 
factors influence software quality. This research analyses more than 200 factors 
grouped into 11 categories such as challenging work, enterprise assistance, suitable 
physical conditions, the nature of the activity, team distribution, technical competence, 
among other. In contrast with our proposal, this study focuses on decision-making 
behaviour in software development project instead of the relationship of such factor 
and software quality. [Schranz, Schindler et al., 2019] addressed the challenge of 
dissatisfaction and lack of engagement of developers in free open-source software and 
how it affects code metrics. However, this study presents only a case study in the 
context of a refactoring process of a single open-source system. 

Moreover, there have already been studies analysing the relationship between 
quality and number of developers in open-source projects. [Norick, Krohn et al., 2010] 
did not find significant evidence about the effect of number of developers in some code 
metrics like cyclomatic complexity, lines of code per function, comment density, and 
maximum nesting in various open-source systems. [Voulgaropoulou, Spanos et al., 
2012] draw similar conclusions after analysing various R statistical open-source 
systems. A more recent study by [Roehm, Veihelmann et al., 2019] rejected the 
hypothesis of code developed by a team has better quality than code developed by an 
individual, since the analysis thousands of GitHub repositories did not provide such 
evidence. 
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In a more specific manner, [Greiler, Herzig et al., 2015] investigated the 
dependency between code ownership (through the usage of several ownership metrics 
proposed in [Bird, Nagappan et al., 2011]) and the probability of having defects in 
source code at file and directory level. The code quality is analysed by only measuring 
the number of bugs. Also, although our study uses some metrics similar to the 
ownership metrics, these are analysed regarding various quality metrics at release level.  
In addition to code ownership, [Rodriguez, Tanaka et al., 2018] analysed how are the 
working behaviours of developers (basically the temporal dimension) and the effects 
these habits have on coding efficiency. [Joonbakhsh and Sami, 2018] also study the 
interactions logs gathered by the integrated development environments to compute 
Personal Software Process (PSP) [Humphrey, 2005] quality metrics. PSP includes 
metrics like number of defects introduced by a developer but are oriented to the 
improvement of the developer performance. Whilst our study focuses on the analysis 
of a project and their quality metrics during its whole lifecycle. Also, [Wang, Meng et 
al., 2019] provided an automatic way for calculating some developer scores in GitLab 
that is based on the amount of code and their quality values, their contribution, 
personalized commit time, and projects in which they are involved. Similar to the 
previous one, this study focuses on quality of software developers instead of software 
quality. 

[Perez‐Castillo, Piattini et al., 2018] provided a similar study considering 
information of project context collected from code repositories, although the scope of 
the study was code cloning while other software quality metrics were not included, and 
this work also performs a clustering to figure out different project trends. Additionally, 
the new contribution of this paper is the method for automatically collecting and 
analysing data from GitHub and SonarCloud. Other similar study that is focuses on 
project information is provided by [Gautam, Vishwasrao et al., 2017]. This study 
analyses through a clustering algorithm the continuous integration practices followed 
by teams in open-source development projects and how these practices impact in the 
projects’ success. The practices analysed are activity, popularity, size, testing, and 
stability (different to those used in our study) and are used to help with developer hiring. 

3.2 Repository Mining for Quality Analytics 

There is an increasing interest on analysing source code repositories since it is 
perceived that there is a vast amount of knowledge that can be mined with plenty of 
application [Güemes-Peña, López-Nozal et al., 2018, Kalliamvakou, Gousios et al., 
2016]. Some works like [Papamichail and Symeonidis, 2020, Perez‐Castillo, Piattini et 
al., 2018, Wang, Meng et al., 2019] presented in the previous section also consider the 
analysis of source code repositories. 

[Namiot and Romanov, 2020] discuss recurrent neural networks used to analyse 
software repositories. This study provides a survey about predictive analysis methods 
used for analysing code repositories, such as methods of classification, clustering and 
deep learning. This is secondary study and, therefore, does not provide a particular 
proposal to analyse code repositories. However, this study illustrates the problems that 
can be addressed through predictive analysis like classifying and predicting errors, 
changing the properties of code in the process of its evolution, detecting design flaws 
and debts, or assist for code refactoring. 
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[Saini and Chahal, 2018] analysed changes and their associated, intentional 
messages in code repositories. This research analysed through a classification algorithm 
hundreds of projects with the aim of deriving change evolution patterns. Similarly, 
[Coelho, Valente et al., 2020] present a data-driven proposal to evaluate the 
maintenance degree of projects in GitHub. The scope of these two proposals is the 
software evolution and maintainability analysis, without considering a wide software 
quality perspective. 

[Singh, Chaturvedi et al., 2017] provided a method to estimate the release time of 
a software product by analysing the complexity of code the code change complexity 
(defined as entropy), code improvements, implementation of new functionality and 
bugs fixing. Some of the metrics are used in our study, however we analyse how these 
metrics are impacted by others (i.e., as dependent variables), instead of using it as 
independent variables. This goal of the study was to analyse the estimation of releasing 
time rather than software quality.  

[Verma and Kumar, 2017] proposed a method for predicting defect density in 
software through the usage of code repository metrics and applying linear regression 
models. In a similar way, [Querel and Rigby, 2018] analyses source code statically and 
commits in code repositories to provide precise bug warnings. 

In contrast to these statistical methods, [Hoang, Dam et al., 2019] use AI to predict 
defects for every new commit. This study uses a deep learning algorithm to classify the 
new change regarding the history of last changes and assumes that defects that 
happened under similar changes can be reproduced. Similarly, [Dam, Pham et al., 2019] 
predict defects through a deep learning algorithm, however it uses the internal code 
structure (the abstract syntax tree) to predict code defects. In the same line, [Kiehn, Pan 
et al., 2019] define a machine learning model for classifying change risks. These studies 
are aimed at predicting defects by considering the characterization of code changes and 
code structure, while our study focuses on the project development effort data and 
follows a statistical analysis approach instead. There are some common problems for 
all these AI, classification-based proposals. First, metrics usually vary from one project 
to another, preventing the reuse of these classification/prediction models [Lewis, Lin et 
al., 2013]. Moreover, these models something generate high false positive rates by 
classifying elements [Nayrolles and Hamou-Lhadj, 2018]. Also, the accuracy defect 
classifiers is impacted by the features used in the training phase [Ghotra, McIntosh et 
al., 2017]. 

Finally, [Manzano, Ayala et al., 2019] provided a combination of descriptive and 
predictive method. They proposed a generic tool based on R scripts that is able to 
generate a REST API to predict the evolution of metrics based on various forecasting 
models. This generic tool can consume data from various repositories such as source 
control, defect tracking systems and project management tools. 

4 Research Method  
The main goal of this research is to analyse how some factors in the context of software 
development projects (such as commits and committers among others) affect code 
quality metrics (such as bugs, code smells, cloning, complexity, among other). The 
study follows a repository mining approach, i.e., it is based on the data stored in code 
and quality repositories regarding real-life software development projects. Specifically, 
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the study is based on statistical methods to carry out a descriptive analysis of the 
correlation relationships between factors analysed.  

To achieve the main goal, the specific research method used in this paper is a 
multiple case study. The multiple case study is designed, conducted and reported 
according to the method proposed by [Runeson, Host et al., 2012]. Multiple case study 
is an empirical research method that allows to extend the study to various cases (see 
Figure 2). Thus, examining more software development projects leads to further 
information about the phenomenon under study. “This is not only due the increased 
amount of data collected from the informants but also based on the characteristics of 
the selected cases themselves” [Runeson, Host et al., 2012]. Nevertheless, multiple case 
studies must not be associated with the concept of statistical sampling or statistical 
replication. While statistical approaches are based on sampling and representativeness, 
case studies rely on the cases and their features [Runeson, Host et al., 2012] 
(independently cases are typical or special in some way). 

 

Figure 2: Overview of multiple case study (Adapted from [Yin, 2014]) 
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last task is manually done, which consists of the analysis and interpretation of the 
obtained results in R. 

 

Figure 3: Case study procedure 
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• C1. It should be an open-source system. This criterium ensures that the 
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systems and thus guarantee the generalisation of the results. The limit was 
established as 5000 lines of source code. It should be noticed that this value 
could vary for the different versions, so in or to compute and apply this 
criterium we consider the value for the last release. 

After applying the mentioned selection criteria, 13 open-source systems were 
selected to be analysed in this study. Table 1 provides the owner organization and 
project keys in GitHub, as well as the project name in SonarCloud. Thus, the GitHub 
URL can be composed as: https://github.com/<organizaton_key>/<project_key>; 
while the SonarCloud URL can be composed as: https://sonarcloud.io/dashboard?id= 
<project_key>. Table 1 also provides a brief description of the systems, the 
programming language in which the systems was coded (the most common one), the 
number of lines of source code, and the number of releases (versions) to be analysed. 

GitHub data collection
<<python>>

SonarCloud data collection
<<python>>

Data Pre-processing
<<python>>

Importing data to R

Perform data analysis
-descriptive statistics

-correlation tests
-clustering algorithm

Analyze results

Analysis Results
<<R markdown>>

Dataset
<<R>>Aggregated data

<<CSV file>>

Raw Data
<<Mongo DB>>

Visual Paradigm Standard(Ricardo Pérez-Castillo(Computer Science Shool))
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Table 1: Open-source projects included in the case study 
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5 Case Study Design & Planning 
This section presents the design and plan of the multiple case study according to  
the aforementioned method [Runeson, Host et al., 2012].  

5.1 Rationale and objective of the study 

The motivation of the study is the need to get a better understanding about some specific 
relationships between development effort aspects (such as committing or releasing) and 
the evolution of code quality metrics throughout different releases. The main rationale 
for this, from the practitioners’ point of view, is to depict and build a theory to provide 
a deeper comprehension of such relationships.  

Considering such motivation, the goal of the study is to determine how code quality 
metrics in different releases in open-source development projects are influenced by 
some specific properties in the development effort. We expect to enhance the prediction 
and, consequently, the prevention of inadequate quality levels and, therefore, it 
contributes to make better decisions. This goal is lead to the research questions that are 
introduced afterword. 

5.2 Cases and units of analysis 

The design of the study consists of a holistic multiple case study [Yin, 2014] since it 
focuses on 13 development projects that are, in turn, analysed for each project release. 
Actually, the unit of analysis (acting as independent variable) is each different project 
release. A project release is typically associated with a version in the version control 
system that is queried. Although GitHub, the version control system, can be queried 
with data for individual commits, SonarCloud, the quality measuring system, is 
typically used to take measures for every version after the respective release. The study 
consequently first considers all the raw data from both systems, and then it pre-
processes data to aggregate some metrics by version. This is then explained in section 
5.7. 

5.3 Theoretical framework 

In this study, Section 3, that presents related work, is considered as the theoretical 
framework. Those works shows other research analysing the effects of projects’ 
development efforts, along with the evolution of code quality metrics throughout the 
project lifecycle to predict and prevent inadequate quality levels. The limited theoretical 
development in the area of predicting and decision-making process for managing code 
quality in development projects signifies that it is hard to generalize the theoretical base. 
Nevertheless, the aforementioned research has influenced the design of this study. 

5.4 Research questions 

• RQ1. How does the development teams’ effort during project releasing affect 
the evolution of code quality measures? 

• RQ2. Are there specific trends or patterns in the evolution of code quality 
measures regarding different development effort configurations? 
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The study defines two research questions: RQ1 and RQ2. RQ1 is based on the main 
assumption that the kind of commits and number of contributors can affect some quality 
measures and indicators. With RQ1 we attempt to figure out what measures are affected 
and how are affected, i.e., positively or negatively. RQ2 is then proposed to investigate 
if there is certain trends or patterns during the evolution of software development 
projects concerning code quality measures and development effort ones. The analysis 
of these possible patterns might be useful to predict and make decision during software 
project lifecycles.  

5.5 Propositions and hypotheses 

The defined research questions are related to the evolution of certain development effort 
measures retrieved for each project release, and how certain aspects may influence on 
the fluctuation of code quality measures. Regarding RQ1, the formulated hypotheses 
consist of a null and alternative hypothesis as follows.  

• 𝑯𝟎!"#: There is no significant difference in the code quality measures for 
different numbers of commits and committers. 

• 𝑯𝟏!"#: ¬𝐻#!"# 
With regard to these hypotheses, the proposition is that a higher number of 

committers and commits in a release leads to variations in code quality measures. This 
assumption is based on the idea that the more developers there are contributing to the 
same time, the less communication there might be in the development team, thus 
making reuse difficult and leading to more bugs, code smells or code violations 
[Harder, 2013, Perez‐Castillo, Piattini et al., 2018]. It should be noticed that the 
examination to the number of committers and commits implies two factors that do not 
necessarily have a linear relationship. Also, it should be pointed out that this hypothesis 
assumes values normalized by the system size in number of lines of code. It is probably 
expected to have a higher number of committers and commits for bigger systems. 

For the second question (RQ2), the proposition is that the relationships between 
development effort (e.g., number of commits, committers, etc.) and quality measures 
(as investigated in RQ1) could vary alongside the project lifecycle.  

• 𝑯𝟎!"$: There are no different correlation values among development effort 
and code quality measures in different releases. 

• 𝑯𝟏!"$: ¬𝐻#!"$ 
The main hypothesis in this case is based on the idea that we could find patterns 

during project lifecycle in which the relationships are different. The assumption here is 
that different development efforts with different goals and motivations can be carried 
out during the project lifecycle. Let us imagine that a development team discovers that 
they have an upward trend concerning the cloning ratio. In this hypothetical case, they 
might decide to accomplish a reduction of cloning through code refactoring. During 
releases in which this refactoring goal is in the developers’ minds, some quality 
measures could revert the upward trend, and even if the total of commits and 
committers is higher, cloning could experiment an opposite correlation during these 
releases. The detection of these different configurations during project lifecycle is the 
main rationale of RQ2 and these hypotheses. 
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5.6 Variables 

Various measures are considered (which are organized in 3 concepts) to answer the 
research questions. Table 1 summarizes all the variables. For each variable is defined: 
(i) the concept to which the variable belongs (releasing, development effort, code 
quality) as defined in background (cf. Section 2.1); (ii) the variable name; (iv) if the 
variable is independent or dependent; (iv) the scale (i.e., interval, ratio, nominal or 
ordinal); (v) the range definition for the possible values; and finally (vi) if the variable 
comes from GitHub, SonarCloud or is a computed measure derived from others. 
 

Table 2: Concept and measure definitions (Type: I – independent, D – dependent; 
Origin: G – GitHub, S – SonarCloud, D – derived value) 

Concept Variable Type Scale Definition or Range Origin 

Releasing 
Project I Nominal Project name G/S 
Release 
version 

I Nominal Release branch number X.Y.Z different 
for every project 

G 

Development 
Effort 

Commits D Interval x = 	 #"#$$%&'
()*

					    x ∈ ℝ G/D 

Committers D Interval x = 	 #"#$$%&&+,'
()*

					    x ∈ ℝ G/D 

Changes by 
commits 

D Interval x = 	 #"-./0+'
#"#$$%&'

					x ∈ ℝ G/D 

Committers 
weight 

D Ratio x =
#𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑟𝑠

∑ /#𝑐𝑜𝑚𝑚𝑖𝑡𝑠#𝑐𝑜𝑚𝑚𝑖𝑡𝑠1
01	∈	{15667889:;}=>=

 

x ∈ ℝ, x ∈ [0, 1] 

G/D 

Code Quality 

LOC D Interval Number of lines of code, x ∈ ℕ S 
Bugs D Interval x = 	 #?@0'

()*
					    x ∈ ℝ S/D 

Code Smells D Interval x = 	 #"#A+	'$+BB'
()*

					    x ∈ ℝ S/D 

Complexity D Interval cyclomatic	complexity, x ∈ ℕ S 
Violations D Interval x = 	 #C%#B.&%#/'

()*
					    x ∈ ℝ S/D 

Duplicated 
lines 

D Interval x = 	 #A@DB%".&+A	E7F9;
()*

					    x ∈ ℝ S/D 

Open issues D Interval x = 	 ##D+/	%''@+'
()*

					    x ∈ ℝ S/D 

5.7 Data collection methods 

The raw data of the case study is collected from GitHub and SonarCloud and are then 
integrated into a common case study database according to the data model presented in 
Section 2.2. 

Both data sources, GitHub and SonarCloud, are widely adopted open-source 
platforms that can be systematically queried through public API based on RESTful web 
services. In order to consume the API endpoints, we coded two client programs in 
Python. In order to ensure the replicability of the case study, these programs are online 
available in this repository [Pérez-Castillo, 2020]. Both APIs provides textual results 
based on JSON format. Because of that and the expected data volume, we decided to 
manage imported data with a Mongo database. Mongo is a NoSQL database 
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management system and, for our purpose, it makes the integration and management of 
collected data simpler. 

5.7.1 GitHub data collection 

GitHub1 site provides the API information2. Algorithm 1 illustrates the client written in 
Python. First, a list of commits is retrieved with general information (step 1). Then, 
detailed information is individually queried (step 3). The information regarding a single 
commit coming from the queries in steps 1 and 3 is integrated and made persistent in 
Mongo (step 4). It should be noticed that the length of the list of commits is limited by 
GitHub, so it has to be queried by chunks, named also as page, since in somehow results 
are accesses with some kind of pagination. Also, although it has been omitted in 
Algorithm 1 by simplicity, the rate limit has to be queried in the loop to ensure the 
algorithm can continue do requests to GitHub API. These rate limits are common in 
public API to guarantee certain service levels for every user. Table 3 shows the endpoint 
URLs used in step 1 and step 3 respectively, as well as the parametrization we used. 

Algorithm 1:  Pseudocode for GitHub data retrieval 

step 1. Query next commits page with commits’ general information 
step 2. For every commit in commit page 
step 3.  Query detailed info for the commit 
step 4.  Store commit info 
step 5. Are there more commits pages? If yes, go to Step 1. Else, go to 

Step 6 
step 6. End  
  

Table 3: GitHub API endpoints used to retrieve development effort information 

Commits’ 
General info 
Endpoint 

https://api.github.com/repos/<owner>/<project>/commits 
?page=<page>&per_page=<page_size> 

owner Name of the user or organization in GitHub 
project Name of the project for a certain organization in GitHub 
page Number of result page to be accessed 
page_size Number of total commits to be retrieved by page. Page size up to 100. 
Detailed 
Commit info 
Endpoint 

https://api.github.com/repos/<owner>/<project>/commits/<coimmit_sha> 

owner Name of the user or organization in GitHub 
project Name of the project for a certain organization in GitHub 
commit_sha It is the commit hash used in git to identify commits in a unique way 

 
1 https://github.com/ 
2 https://developer.github.com/v3/ 
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5.7.2 SonarCloud data collection 

SonarCloud3 also provides information for its API4. Algorithm 2 shows how the coded 
client for SonarCloud operates. First all project analyses and attached events are queried 
in step 1 to 3 (see the first endpoint in Table 4). SonarCloud offers information about 
analyses, i.e., explicit actions for analysing source code as is in the code repository in 
that moment. This retrieves general information, for example, who and when the 
analysis was performed, but nothing about measuring is retrieved yet. Step 5 then 
queries project’s measures (see the second endpoint and its parameters in Table 4). 
Before doing this, all metric keys have to be queried first in step 4. Metric keys 
represent the available metrics in SonarCloud that can be retrieved (e.g., bugs, code 
smells, duplicated lines, etc.). These metric keys are used as mandatory parameter in 
step 5. The result set obtained in step 5 is a list with all the metric names, which contains 
in turn a list with the history of all the measure values according to the analyses 
performed. All these values are persisted in Mongo (see step 6). As for GitHub, it is 
necessary to manage the pagination, which is represented in step 7. 

Algorithm 2:  Pseudocode for SonarCloud data retrieval 

step 1. Query project analyses 
step 2. For every analysis in project analyses 
step 3.  Store analysis info 
step 4. Query all metric keys 
step 5. Query next project measures page for available metric keys 
step 6. Store all project measures 
step 7. Are there more project measures pages? If yes, go to Step 5. Else, 

go to Step 8 
step 8. End  

 

Table 4: SonarCloud API endpoints used to retrieve development effort information 

Endpoint for searching 
project analyses 

https://sonarcloud.io/api/project_analyses/search?project=<project> 

project Name of the SonarCloud project to be queried. 
Endpoint for searching 
measures history of a 
project. 

https://sonarcloud.io/api/measures/search_history?component= 
<project>&metrics=<metrics>&p=<page>&ps=<page_size> 
&from=<from>&to=<to> 

project Name of the SonarCloud project to be queried. 
metrics Comma-separated list of metric keys 
page 1-based page number 
page_size Number of measures per page. It must be between 1 and 1000 
from Filter measures created after the given date (inclusive). 
to Filter measures created before the given date (inclusive). 
Endpoint to get 
information on 
automatic metrics 

https://sonarcloud.io/api/metrics/search?ps=<page_size> 

page_size Number of metrics per page. It must be between 1 and 500. 

 
3 https://sonarcloud.io/ 
4 https://sonarcloud.io/web_api 
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5.7.3 Data Pre-processing 

After raw data is collected and stored into the database, it has to be pre-processed before 
it can be analysed in a way that can help to answer our research questions. This pre-
processing is automatically done through another python script we coded. It consists of 
aggregating data from commits and committers for every release (system version) as 
well contrast it with code quality measures that are produced in the same period for the 
SonarCloud analyses retrieved. As a result, a CSV (Coma-Separated Values) file is 
generated with values, in a tabular layout, for all the variables depicted in section 5.6. 
It should be noticed that some variables are computed (i.e., derived from values of other 
variables), which is also done through this pre-processing script.  

5.8 Data analysis methods 

The study relays on a set of statistical methods, both qualitative and quantitative, as 
these have previously been depicted in section 2.3. The proposed analysis methods are 
performed in R. R is a programming language and a statistical suite all together. R is 
highly flexible and can be customized with many statistical tools (also third-party 
extension) [Cano, Moguerza et al., 2015]. R has reproducible research and literate 
programming capabilities, i.e., data analysis can be integrated within reports that can 
be rebuilt, so these are reproducible by ourselves or by third parties. Therefore, all the 
analysis performed are integrated into a R markdown file that is online available at 
[Pérez-Castillo, 2020]. 

5.9 Quality control and assurance 

We have considered four mechanisms to ensure certain levels of quality int the multiple 
case study: 

• Some external peers have been requested to review a draft of the case study 
design. 

• We conducted a pilot case study to assess a preliminary case study design. The 
pilot study analysed two single cases, projects P6 and P8. All data collection 
and statistical and clustering analyses were applied to ensure all the expected 
data can be gathered and analysed as it was preliminary designed. 

• In parallel with the case study protocol execution, the actual progress of the 
case study is reviewed against the planned progress to figure out possible 
deviations. Additionally, a thorough review was accomplished after data 
collection and storage steps for each of the 13 open-source development 
projects. 

• In order to assure the reproducibility of the multiple case study, we decided to 
generate the analysis results as an R markdown that is available for the 
research community. 

6 Result Analysis  
After the execution of the case study, the collected data is analysed to draw chains of 
evidence that help to answer research questions RQ1 and RQ2. All the experimental 
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data are available online at [Pérez-Castillo, 2020], so that research community can 
replicate the study or the whole dataset is used for future research. 

6.1 RQ1. Development effort against code quality 

According to RQ1, it is hypothesized that the more commits and committers, the worse 
quality levels in software. Figure 4 shows the box plots with the commits and 
committers distribution by releases for each project. This reflects that there is a huge 
variability. There are some projects that counts with few contributors and a reduced 
number of commits, while there are other with higher volume of commits and 
committers (up to 600 and 24 respectively in absolute terms). Also, it can be realized 
that there are projects like dss (P2) with few committers and many commits, while there 
are others like monica (P6) with more committers and relatively few commits. It 
demonstrates that the defined variable committers weight is important to consider 
relative contribution of individuals. Despite these differences, Figure 5 shows that the 
more committers, the more commits. Actually, according to the density area, it shows 
that most of the projects vary between 0 and 0.2 committers for every thousands of lines 
of source code, and up to 2 commits per release and KLOC. 

   

Figure 4: Distribution of commits and committers by project releases (normalized by 
KLOC) 

After checking how the development effort is distributed, Figure 6 summarizes the 
correlation tests performed between all the variables (see background scale at right 
side). Coloured cells represent correlations that are statistically significant. Green 
colour in correlation cells means a negative correlation and it is used (in contrast with 
red) because most of the used measures represents better software quality levels for 
lower values (e.g., number of bugs, code smells, complexity, among other). The value 
in every cell is the Spearman’s correlation value. First, we can show that some of the 
code quality variables are extremely correlated. It might be guessed before this study, 
but this is an important insight since it demonstrates that bugs, code smells, violations 
and open issues are related, i.e., these improves or degrade together. However, 
complexity and cloning do not show the same relation with other code quality. 
Regarding commits and committers, we can observe there is a certain positive 
correlation with quality measures (see Figure 6). In particular, complexity is reduced 
for higher number of commits and committers, and duplicated lines is also reduced with 

Ant-Media-Server

dss

jacoco

jmeter

jradio

monica

Payara

simgrid

sling-org-apache-sling-app-cms

sling-org-apache-sling-scripting-jsp

sling-org-apache-sling-scripting-sightly-compiler

sonar-dotnet

sonarqube

0 2 4 6 8
commits

pr
oj
ec
t

Ant-Media-Server

dss

jacoco

jmeter

jradio

monica

Payara

simgrid

sling-org-apache-sling-app-cms

sling-org-apache-sling-scripting-jsp

sling-org-apache-sling-scripting-sightly-compiler

sonar-dotnet

sonarqube

0.0 0.1 0.2 0.3
committers

pr
oj
ec
t



   1115 
 

 

Pérez-Castillo R., Piattini M.: Understanding the Impact of ...  

more committers. We can observe that the size of commits (changes by commit) has a 
negative impact in code smells, violations and open issues. 

 

 

Figure 5: Density of commits-committers scatter plot 

 

Figure 6: Density of commits-committers scatter plot 

Other interesting insight regarding the committers weight is its relationship with 
duplicated lines. This signifies that releases in which few committers accumulating 
most of the commits could lead to higher cloning rates.  
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Before providing an assertive answer for RQ1, despite the correlation found 
between development effort and code quality measures, these correlations are weak in 
most of the cases and others do not present statistically significant correlations. As 
result, differences between projects should be analysed. Figure 7 shows some 
individual scatter plots and correlations values for four specific projects and certain 
variables.  

 

Figure 7: Individual correlations for some variables in specific projects 

First, the top-left plot in Figure 7, evaluates the correlation between committers 
and complexity for the project ant (P1). It shows a certain correlation, with R=0.44. 
This correlation is statistically significant and is against the overall results (see Figure 
6) which reported a negative correlation with R=-0.03. Second, the top-right plot in 
Figure 7 shows another positive correlation for the project jacoco (P3). In this case, 
between commits and code smells. This shows a stronger correlation (R=0.57) than is 
also against the aggregated results that do not show a correlation between this pair of 
variables. Thus, it demonstrates that the number of commits can influence the density 
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of code smells in some project releases. Another counter example is shown in the 
bottom-left plot in Figure 7 for the project monica (P6). It certainly presents the absence 
of correlation among changes by commits and code smells, while the overall results in 
Figure 6 show at least a weak correlation. Finally, the bottom-right plot in Figure 7 
shows the scatter plot and correlation value for commits and bugs for the project 
sonarqube (P13). It shows a strong positive correlation (i.e., the more commits, the 
more bugs found) while the general result does not show the same. 

To conclude the analysis of RQ1, we can state that 𝑯𝟎!"#can be rejected, since 
there is difference in the quality software measures for different numbers of commits 
and committers. However, this affirmation has to be carefully considered. While some 
projects exhibit strong, positive correlation between the factors analysed and the code 
quality measures, other projects do not report conclusive results. This is in line with 
results presented by [Norick, Krohn et al., 2010] and [Voulgaropoulou, Spanos et al., 
2012] that did not find significant evidence in the correlation study of the number of 
committers and some code metrics, although the quality metrics in those studies were 
different. For this reason, the analysis of RQ2 through the clustering algorithm is useful 
to complement the answer provided for RQ1. 

6.2 RQ2. Patterns in code quality management 

The goal of this question is to figure out the trends or patterns of code quality measures 
regarding different development effort configurations. As we explained before, the 
clustering algorithm used is K-means. Since the number of clusters must be defined 
before for this algorithm, we computed first the optimal number of clusters. We looked 
for a bend or elbow in the sum of squared error plot. The location of the first elbow in 
the resulting plot suggests a suitable number of 4 clusters for the K-means algorithm.  

The K-means algorithm is then executed and every row in the dataset under 
analysis (identified by project and release) is annotated with the cluster id (1 to 4). 
Clusters 2 and 4 agglomerate most of the releases with 36 and 78 respectively, while 
clusters 1 and 3 group only 27 and 15 releases. After this, the correlation plots are 
executed again for every cluster dataset (see Figure 8). These plots show clear 
differences for the four clusters. These differences are explained in the next paragraphs. 

Cluster 1 groups 27 releases with most of them belonging to projects P5 and P6. 
The correlation plot in Figure 8 shows that the more commits and the more committers, 
the more code smells are detected. However, higher numbers of committers are related 
with lower values of complexity. Regarding duplications, larger commits seem to lead 
to higher cloning density. It might be due to larger commits being locally developed by 
developers have higher probability to be overlapped after all those changes are 
committed. Results also show that releases with few committers, that accumulate most 
of the commits, lead to lower cloning density. These insights about cloning are aligned 
with those reported by [Perez‐Castillo, Piattini et al., 2018]. 
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Cluster 1 (27 releases)   Cluster 2 (36 releases)  

  

Cluster 3 (15 releases)   Cluster 4 (78 releases) 

   

Figure 8: Correlation plots for the four K-means clusters 

Cluster 2 (see Figure 8) groups 36 releases. Releases of this clusters correspond 
with most of the projects’ releases of P1 and P10. This cluster is probably the most 
interesting one. It shows, how the number of commits and committers is inversely 
related to some of the quality measures such as code smells, complexity, violations, 
duplications, or open issues. Additionally, cluster 2 shows that most of the code quality 
measures are correlated except for bugs. It reports that the more bugs, the fewer bad 
smells, violations, and open issues. A possible explanation for these results lies in the 
fact that the development team might have decided to accomplish direct effort to 
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improve software quality. In this case, most of the commits would be related to 
refactoring and bug fixing tasks instead of adding new functionality. To support this 
idea, we present the evolution of code smells, duplicated lines, and committers during 
the releasing history of project P1 (see Figure 9). The releasing history exhibits how 
upward trends in the number of committers corresponds with downward trends in code 
smells and duplications. 

 

Figure 9: Code smells, duplicated lines, and committers evolution through releasing 
history of project P1 (ant) 

Cluster 3 (see Figure 8) groups 15 releases (the smaller one), and it aggregates 
releases mainly from project P13, and some from project P7. Correlations presented by 
this cluster are slightly similar at those of cluster 2. First, the cluster shows that all the 
code quality measures are correlated. It was already mentioned for general (non-
clustered) results in RQ1. However, correlation values of this cluster differ from general 
ones in the stronger correlation concerning commits and committers. The number of 
committers regarding quality measures presents a strong positive correlation. However, 
the number of commits and committer weight do not present correlations as it happened 
in cluster 2. 

In particular, Figure 10 shows the scatter plot for code smells and committers for 
all project releases aggregated by clusters. While the density of code smells is positively 
correlated with committers for cluster 1, an inverse correlation happens for cluster 2 
and 3. This means code smells are reduced with higher number of developers in project 
releases of those clusters. In contrast, cluster 1 does not presents a significant 
correlation. 
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Finally, Cluster 4 (see Figure 8) groups 78 releases, which means it is the biggest 
one. This clusters consists of some releases for a wide variety of the projects analysed. 
It shows that code complexity is directly related with commits and committers. In 
particular, higher number of commits and committers can reduce the complexity of 
source code. However, the more committers, the more bugs reported. 

 

 

Figure 10: Scatter plot with clustering distinction for code smells and committers 

In order to provide an answer to RQ2, we can conclude that the null hypothesis is 
rejected, so 𝑯𝟏!"$ has to be accepted. This signifies that there are specific trends or 
patterns in the evolution of code quality measures. We have extracted various patterns 
from the identified clusters. 

• Commits. The density of commits generally does not affect code quality 
measures. In some project releases (23%), higher number of commits might 
influence a better-quality level. We guess that development team is worried 
about code quality measures and trigger specific efforts to improve quality 
measures. 

• Committers. This behaves in a similar way to the commit density. It generally 
does not influence quality, although in this case up to 33% of project releases 
are affected by committers in the same way, i.e., the more developers, the 
better quality. The negative counterpart is that around 17% of project releases 
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experimented further code smells with more contributors, and up to 50% of 
releases reported more bugs with more developers. 

• Changes by commit, i.e., the commit size affects the cloning ratio in at least 
17% or project releases. 

• Committer weight. Up to 23% of project releases the quality measures 
become worse when few developers were in charge of most of the commits. It 
makes sense if we imagine that in this context there is a tinny development 
team with not enough developers to undertake compensatory actions against 
other. Thus, bad practices are easy to be quickly adopted by tiny teams. In 
other releases (up to 17%), higher committer weights led to reduced cloning 
ratio. 

 
On the one hand, the obtained results show that some patterns are aligned with 

results of some previous work where a significant difference in code quality regarding 
number of committers cannot be demonstrated [Norick, Krohn et al., 2010, Roehm, 
Veihelmann et al., 2019, Voulgaropoulou, Spanos et al., 2012]. On the other hand, the 
correlation for other clusters was stronger as other work previously suggested [Perez‐
Castillo, Piattini et al., 2018]. Thus, the main insight is that the strategy for software 
development or maintainability that is followed in every moment of the project life 
cycle may affect the relationship between the project effort and software quality. 

6.3 Evaluation of validity 

The multi case study has some threats to the validity that must be discussed to ensure 
results are reliable. We follow the classification of threats to the validity presented in 
[Runeson, Host et al., 2012], i.e., construct validity, internal validity, external validity 
and reliability. 

6.3.1 Construct validity 

The concepts and measures we used in the study were appropriate for finding answers 
for the defined research questions. Nonetheless, other factors might affect those 
measures and need to be discussed. Among these factors we highlight team diversity 
measured by country and its associated time zone, developer skills, among other 
[Vasilescu, Filkov et al., 2015]. Other important factor is the programming languages 
used in each project, since it can affect the way how the developers complete their tasks 
and how they commit their changes. These factors together with other possible ones 
have been purposely placed outside of the scope of this research, in order to focus on 
some specific ones.  

This paper also investigates the configuration of developer efforts, which is based 
on two direct factors (number of commits and committers) plus other derived measures. 
These measures might be not considered as the configuration of developer effort in 
some open-source projects since anyone can contribute to the project. In most of the 
open-source projects there is not a clear role of manager who configure or control the 
number of commits and contributors. This threat can be mitigated in two ways: adding 
further projects coming from the industry, and adding further measures associated with 
the project development effort configuration. 

 



1122    
 

 

Pérez-Castillo R., Piattini M.: Understanding the Impact of ...  

6.3.2 Internal validity 

We consider a multiple case study with 13 systems and 156 subunits of analysis, that 
corresponds with the aggregation of 95,000 commits and 782 analyses. Although there 
are in literature studies with broader populations [Jarczyk, Gruszka et al., 2014], the 
case selection was not trivial because of the difficulty of finding projects that are in 
both repositories with enough releases and quality analyses performed (SonarCloud 
became popular later than GitHub). Even though, we believe the selected cases 
represents a certain population with enough statistical representativeness and some 
specific trend for the proposed measures have been identified in this preliminary case 
study. As a result, we suggest extending this preliminary study with further open-source 
projects and combine the results of these studies through meta-analysis. 

Furthermore, another threat must be mentioned. Since code quality measures have 
been collected from SonarCloud, the correctness of these measures must be supposed. 
Also, the way in which these quality measures are computed depends on that tool, 
which defines different set of rules that are checked to count number of bugs and 
violations. Actually, these rule sets can be parametrized by project managers in 
SonarCloud. For example, some rules could be activated by some projects while remain 
deactivated for others. Also, the number of duplicated lines varies between projects, 
since it has certain sensibility to the programming language. 

Moreover, in order to analyse the evolution together with the variation of the 
measures, they were aggregated for each project release version. Alternatively, these 
variables might be aggregated through, for example, every fixed period of time or other 
kind of temporal series. This may allow to have further insights. 

Other important issue is the fact that the information of most of the projects under 
study is not fully retrieved since it is not available for all releases. Various projects were 
migrated to GitHub and SonarCloud at the mid of its lifecycle. To mitigate this, future 
replications could include (as a selection criterium) the necessity of having all the 
releases available in GitHub and SonarCloud. In this study, it was certainly difficult to 
find projects that fulfil all the defined selection criteria and also met the mentioned 
constraint. 

6.3.3 External validity 

Concerning the result generalisation, the multiple case study could be generalized to 
open-source projects, specifically those available in GitHub and SonarCloud at the 
same time. In order to expand this generalization, we attempt to select projects with 
different characteristics, e.g., different programming languages, sizes, and domains (see 
Table 1) 

Anyway, in order to attain a broader generalisation, it is necessary to analyse 
projects stored in other platforms apart from GitHub and SonarCloud and even business 
projects that are not open source. 

In turn, alongside with the generalisation, it would be important to distinguish 
additional factors during the result analysis. For example, different sectors or domain 
in which the software is used, or the type of software such as end-user software, utility 
back-end components, etc. 
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6.3.4 Reliability 

Reliability attempts to determine if the collected data and the performed analysis are 
dependent, or not, on the researchers. We firmly believe that this study can be 
conducted by other researchers and obtain the same results. To ensure this, we provide 
a web page showing the entire experimental material [Pérez-Castillo, 2020]. This web 
page includes the raw and derived data, the analysis results integrated into the R 
markdown script, as well as the Python scripts for collecting data. Even more, in order 
to replicate the study, the source code and code repository information could be directly 
accessed through GitHub, as well as the quality analysis measures are available in 
SonarCloud. 

7 Conclusions 
The assurance and control of software quality has been extensively investigated in the 
literature. The majority of that research focuses on the study of software product and 
software process quality, while the impact of software development context is quite 
often neglected. This study tries to figure out some correlation relationships between 
the software development effort evolution and code quality measures.  

The presented case study analysed thousands of commits and quality measures 
from 13 open-source projects. The main conclusion is that both, the number of 
committers and commits affect most of the quality measures analysed. However, there 
are a specific trend in some of the project releases where this relationship is inverted 
for the number of commits. A possible explanation is that the development team 
decided to perform particular efforts to improve code quality instead of simply adding 
new functionality, although this has to be demonstrated. 

The main lessons learned of the study is that during project lifecycle the 
relationship between the team efforts (and the way the commit changes) and software 
quality can vary. As a consequence, software developers and project managers should 
be eager to know in which configuration the project is in every moment according to 
the patterns analysed in this study. Having this acknowledgement, software developers 
could commit changes in a different manner, and project managers may make better 
decisions. For example, when software quality is dramatically degraded in a 
development project, the common decision made by many managers is still to add more 
contributors to the development team in order to improve quality. However, the insights 
of this study suggest that might be better to stop (or reduce) adding new functionality 
and focus on improving code quality with no additional contributors could be better. 

Sometimes, the problem of that common practice in the industry not only lie in the 
fact of adding more developers, but also in the matter of most added developers have a 
junior profile in order to keep project costs. Unfortunately, these low-skilled developers 
will probably add more quality bugs and code smells. So, teams with fewer high-skilled 
developers that accumulate most of the commits may lead to software with better 
quality levels. These thoughts have not been covered by this study anyway. 

As a future research, we will analyse in-depth these and other important factors in 
the context of software development projects as we suggested in the validity evaluation 
section. Also, it is necessary to extend this research to proprietary software projects 
developed in private companies. Although this will entail many difficulties due to the 
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opacity of private companies, such projects should be integrated to get broader 
generalisation and avoid this limitation that is common to many similar studies.  
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