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ABSTRACT

Databases have been demonstrated a tremendous productivity and an impressive
economical impact. Nowadays “Third-generation” DBMSs are appearing into the market.
This technology could arise some difficulties 1o its users because of the higher complexity
of the database schema, which has been characterised by its simplicity in the classical
relational model. We propose a metric suite for controlling object-relational database
maintainability.

1.- INTRODUCTION

Since the seventies software engineers have been proposing all sorts of metrics for
software products, processes and resources (Fenton, 1991). These metrics were defined in
order to control some internal attributes of software elements (e.g. complexity,
consistency, modularity) which influence external attributes (e.g. maintainability,
testability, portability, understandability) that concern software development centres. It is
well known that maintenance is the most important problem of software development,
ranging between 67 and 90% of life-cycle costs (Frazer, 1992; McClure, 1992)

z Unfortunately, almost all the metrics proposed since McCabe's cyclomatic number
(McCabe, 1976) (by far the most referenced complexity metric) until now, focused on
programme characteristics disregarding databases.

This neglection could be explained as databases have been until recently just "simple
files/tables" which do not contribute too much to the complexity of the overall system.

But nowadays, with the appearance of the "third database generation", (Cattell, 1991),
databases are becoming more and more complex, incorporating new data types, rules,
, generalisations, complex objects, etc. Last year we have assisted to the presentation of new
: "object-relational" products (Stonebraker, 1996) such as Informix/Tllustra, Oracle 8 and
: DB2/2. And it is very probably that (after some years of delay) the new SQL3 standard
will be published finally by late 1998. Figures about the DBMS market evolution confirm
the prevision of an exponential grown of the object-relational DBMSs (Miranda, 1997).

In our opinion, the information systems developed with these new DBMSs will suffer of
greater maintenance problems caused mainly by the own database schema. Two problems
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related with these new database systems are shortage of methodology and lacking of
metrics considering their new functionalities.

We propose a metric suite which allows to control maintainability of object-relational
database schema. Maintainability is considered to be influenced by understandability,
modifiability and testability (Li and Cheng, 1987), which depend on size, length and
complexity of database schemata.

In Section 2, we resume the main elements of an object-relational database schema.
Then in Section 3 we define the metrics proposed. A formal description of the proposed
metrics is presented in Section 4. Section 5 presents the conclusions and outlines the
future work.

2.- ELEMENTS OF AN OBJECT-RELATIONAL DATABASE SCHEMA.

Object-relational databases combines the traditional database characteristics (data
model, recovery, security, concurrency, high-level language, etc.) with object-oriented
principles (e.g. encapsulation, generalisation, aggregation, polymorphism,...). These
products offer the possibility of defining classes or abstract data types, in addition to
relations, domains and constraints’, as relational databases.

Also, generalisation hierarchies can be defined between classes (super and subclasses)
and between tables (CREATE TABLE subtable UNDER supertable). Then, two types
of associations can be established between tables, as shows figure 1.

Tobis 1

A

-_—— e T T e - = -~

Tabie 2 Toble 3 Todie 4

I T

1| ||

Table 8 Toble 6

— — — > Reforentisl inlegrty

Tebie 7

Figure 1. Example of an database object-relational schema

Object-relational databases support usually multiple inheritance (a subtable can be
defined with more than one supertable).
Table attributes can be defined in a simple domain, e.g. char (25), or in a user-defined

class as complex number or image, see figure 2. These classes can also be part of a
generalisation lattice.

! In this first approximation domains and constraints are not considered for measures purposes.
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Classes

¢t ci [ cn

Table

Figure 2. Example of complex column definition
3.- PROPOSED METRICS
The objective of this research is to propose a suite of metrics which can be obtained
automatically from the database catalogue. This suite must be also sufficient but not
excessive for practical purposes.
We consider, following the definitions of Briand et al. (1996), three types of metrics.

3.1.- Size metrics

Scheme size (SS). The scheme size (SS) is defined as the sum of the size of each table
(TS) of the scheme.

NT
Ss =Zm
i=1

Being NT the number of tables of the scheme.

Table size (TS). The table size (TS) is the sum of the size of its simple columns (SCS)
which are considered with a size equal to one (so SCS will be the same to the number of
simple columns) plus the size of its complex columns (CCS). The TS metric is
characterised by the following expression:

NCC
75 = SCS + chs
i=1

Being NCC the number of complex columns in the table.
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Complex Column Size (CCS)._Complex columns of a table are defined on a class. For
instance, the figure 2 shows that one column of a table may be defined on a class (which
can belong to a class lattice), it shows too, that more than one column may be defined
on the same class. So, we define the complex column size like the class size over it. The
class size (CS) is defined recursively as:

NCF

CS=CSp+ ) CSi
i=1

Where NCF is the number of parents classes of the class.

Proper Class Size (CSp). To obtain the expression for the proper class size (CSp), we
can consider the attributes and the methods included in the class. It’s important to
remember that attributes have less size than methods, so it’s necessary to work with
weighted values. CSp can be defined by adding its weighted attributes (ACS) plus its
weighted methods (MCS):

CSp = (ACS +MCS)

We define ACS considering that the attributes have a size equal to one. So, ACS will be
the same than the number of attributes per class (NOAC)

ACS = NOAC

Methods Class Size (MCS). MCS is defined using the version of the ciclomatic
complexity of McCabe designed by Li and Henry (1993):

MCS= z Vif(G)

i=1
Being nm the number of methods per class.

3.2.- Length metrics

The figure 1 shows that the tables may be related in two different ways. On one hand
the generalisation relation (simple or muitiple), on the other hand, the referential
integrity (foreign key). For these characteristics we consider two length metrics.

The first one is the DIT metric of Chidamber and Kemerer (1994), it’s named TDIT
(Tables Depth Inheritance Tree) and it’s defined:

TDIT = Depth maximumin the inheritance tree

The second one it’s based as well on Chidamber and Kemerer’s metric but using the
another kind of possible relation that can appear in a object-oriented scheme. It’s named
TDRT (Tables Depth Referential Tree) and it’s defined like:

TDRT = Maximum number of levels of referential integrity among tables
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For instance, in the figure 1, we have the next values for the TDIT and TDRT metrics:
TDIT=3 and TDRT=2.

3.3.- Complexity metrics

We can define the referentiability degree (RD) of a scheme as the number of foreign
keys (NFK) of all the tables in the schema (NT).

NT
RD=ZNFK

i=1
In the example of the figure 1 we would have that: RD=3

4. FORMAL DESCRIPTION OF THE PROPOSED METRICS.

In this section we use the properties proposed by Briand et al. (1996) in order to
characterise the metrics defined in the previous section.

4.1.- SS Metric

From a formal point of view, we consider that a relational scheme is composed by a set

of elements which correspond to the set of the columns of the tables of the schema.

Tables are considered to be the “modules” of the system.

A size metric is characterised by the following properties (Briand et al, 1996):

1. Nonnegativity. The size of a system is nonnegative.

2. Null value. The size of a system is null if it has no elements.

3. Module additivity. The size of a system is equal to the sum of the sizes of two of its
modules such that any element of the system is an element of either a module or the
other.

Proving these properties for the SS metric is easy:

1. Seeing the different expressions that compose the SS metric, it is impossible to
obtain a negative value.

2. If we have no attributes then SCS=0 and CCS=0, so TS=0 and SS=0.

3. For module additivity, three possibilities must be study:

Case 1. In the two modules there is a simple attribute.

Case 2. In the two modules there is a complex attribute (of any type).

Case 3. In one of the module there is a simple attribute and in the other there is a
complex attribute (of any type).

It’s indifferent to study if there is only an attribute or several, so we study the
simpler case.
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In the first case, TS=SCS for the two modules, so TS will be the sum of both. In the
second case, TS=CCS for the two modules, so TS will be the sum of both. In the last
case, the first module gives a value for TS=SCS and the second gives a value for

nnnnn O M L s ihn mren AafhAth

4.2.- TDIT and TDRT Metrics

For these metrics, we consider that a relational scheme is composed by a set of tables
(elements) with their relations.

These relations may be of two types: inheritance when TDIT metric is analysed or
referential integrity when TDRT metric is analysed.

For length metrics, the properties given by Briand et al. (1996) are:

1. Nonnegativity. The length of a system is nonnegative.

2. Null value. The size of a system is null if has no elements.

3. Nonincreasing monotonicity for connected components. Let S be a system and m be
a module of S such that m is represented by a connected component of the graph
representing S. Adding relationships between elements of S does not increase the
length of S.

4. Nondecreasing monotonicity for nonconnected components. Let S be a system and
ml and m2 be two modules of S such that m1 and m2 are represented by two
separate connected components of the graph representing S. Adding relationships
from elements of m1 to elements of m2 does not decrease the length of S.

5. Disjoint modules. The length of a system made of two disjoint modules m1, m2 is
equal to the maximum of the lengths of m1 and m2.

The demonstration of these properties for the TDIT and TDRT metrics is the following:

1. The depth of a tree never can be negative.

2. If we have no attributes (E=0), we have no tree, we have no depth and
TDIT=TDRT=0.

3. If we add relationships between elements of a tree (tables) the depth does not vary.
This will be only possible by adding elements to the tree.

4. If we add relationships between elements of two trees we cannot decrease the depth
of the resulting tree because the depth of the first tree stays equal and we add a
relation which has a depth 1 as minimum (if it’s a leaf tree).

5. The depth of a tree is given by the component which has more levels from the root
to the leaves.

So, we can conclude that TDIT and TDRT are length metrics.
4.4 - RD Metric

To demonstrate that RD is a complexity metrics, we prove that verifies the properties
given by Briand et al. (1996) for this kind of metrics:
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Nonnegativity. The complexity of a system is nonnegative.

Null value. The complexity of a system is null if it has no relations.

Symmetry. The complexity of a system does not depend on the convention chosen

to represent the relationships between its elements.

4. Module Monotonicity. The complexity of a system is no less than the sum of the
complexities of any two of its modules with no relationships in common.

5. Disjoint Module Additivity. The complexity of a system composed of two disjoints

modules is equal to the sum of the complexities of the two modules

w—

RD metric verifies these properties because:

1. Seecing the expression that composes the RD metric, it is impossible to obtain a
negative value.

2. Ifthere is no relations there can be referential integrity, so RD = 0.

The definition of RD is the same disregarding the direction of the reference.

4. If the modules are no disjoint, this means that between elements of both modules
there is a relation of referential integrity, so RD never decrease.

5. Every module will have a value for NFK. When modules are disjoint neither
foreign key nor a table will be common to both modules, so the result of RD of the
system will be the sum of the NFK of the two modules, and so RD will be the sum
of the RD of the modules.

w

S.- CONCLUSIONS AND FUTURE WORK

We have presented a first approximation for measuring object-relational databases. Five
different metrics are defined and described using a formal framework.

However, the framework used is not the only one (see for example Weyuker 1988) or
Fenton (1991)) and it is not generaily accepted (Kitchenham and Stell, 1997). So we
must validate these metrics using other axioms definition.

Also empirical validation is being carried out, not only to prove metrics validity, but
also to give some limits which can be useful for database designers.

Adaptation of these metrics to SQL3 is also a current work, since it can improve the
metric suite, (Churcher y Shepperd, 1995) .

Finally, an automatic tool is being developed in order to automate the metric gathering
for ORACLE 8 DBMS.
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