The European Software
Measurement Conference

FESMA 36

Business impraovement through software measurement

j 20

Editors:

H. Coombes

M. Hooft van Huysduynen
B. Peeters

&

TrcuNoLoGIsCH INsTITULT

ANTWERP, BELGIUM

Proceedings

The Eurecpean Software Measurement Conference

F:

ESMA 95

Business Improvement through Software

Measurement

(A cvontinuation of ESCOM : European Software Control and Measurement Conference)

Antwerpen, May 6-8, 1998

Editors : H. Coombes, UK

M. Hooft van Huysduynen, NL

B. Peeters, B

organiéed by : Technologisch Instituut vzw (Technological
Institute), Section on Software Metrics

Sponsored by : IFPUG, USA

Supported by the European Commission, D& Il - Industry

ISBN 90-76019-03-7
D 1998/0277/02

Copyright© 1998. Technologisch Instituut vzw

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, electronic,
mechanical, magnetic tape, photocopying, recording or otherwise, without the

written permission of the publisher the Technologisch Instituut vzw (Technological
Institute).

e = gt

-

g e s g -

- - g

e g e g e et g e g - g

g g

g .

- vy

KEYNOTES

The business case for software reuse

D.]. Reifer

Improving the accuracy of software sizing and estimating fromfunctional
requirements : back to 1911
C. Symons

The certainty of uncertainty
B. Kitchenham

MANAGEMENT

Quantitative management of software process improvement

C. Ebert

Computer assisted personal software process

H. Yarar and S. Kuru

A CMM/SPICE based approach for the re-engineering of the
IT-department
D. Beeckman

A metric-based quality management system for software development
process

E. Pohn

ASAMETRICS - implement metrics with cost/benefit ratio
A. Morkramer

Metrics based improvements for SMEs - An ESSIE PIE
D. Bofilios and A. Pournaras

Determining the effectiveness of IT investment and benefit identification
in South Africa
S. Lubbe and D. Remenyi

The decision-making in software engineering : an econometric model
to analyze the determining factors

C. Toffolon

17

29

37

45

55

65

73

81

95

Software projects evaluation and control : a decision-oriented 107
generic framework

S. Dakhli and C. Toffolon

Managing incremental change within IS 121
B. Meyerson
A standard measuring procedure for software engineering 129

L. Benedicenti, W. Curry, M. Mintchev, M. Smith and G. Succi

Improvement of the development to increase customer satisfaction 137

M. Rheindt and K. Lebsanft

The benefits of comparative analysis : measurement based software 145
process improvement

D. Locke

Benefits from user-focused measurement based on GOQM 157

W. Lamprecht and C. Weber

Measuring the impact of software process improvement on business 165
objectives - ESI balanced IT scorecard

M. Ibariez and D. Reo
The balanced scorecard applied to IT : mini case examples and 175
implications

W. Van Grembergen

Balanced business scorecard 189
M. Bruyninckx

QUALITY/PROCESS

Measuring legacy database structures 199

H. Sneed and O. Foshag

Financial models of software component reuse 213
F. Bott
Maintainability in object-relational databases 223

M. Piattini, C. Calero, M. Polo and F. Ruiz

A wishful complexity metric 235
P. Kokol, V. Podgorelec and J. Brest

Dangerous complexity thresholds : an experimental definition 247

M. Pighin

55—

Applying metrics to cross-technical evaluations 257

D. Emnst and F. Houdek

Software product quality predicability through measurement of 271
process component efficacy

H. Younessi

Software development model focusing on the quality after service-in 279
K. Ichikawa

What do you mean you can't tell me if my project is in trouble? 287

J. Kasser and V.R. Williams

A case study of software project management in industry - experiences 305
and conclusions

P. Mandl-Striegnitz and H. Lichter

Software process risk analysis experiences with the S:PRIME approach 315
H. Stienen and L. Poulin

Estimating testing effort, using test point analysis (TPA®) 323
B. Broekman

Measuring and evaluating the software test process 339
N. Eickelmann

Independent software measurement’s role in the liability puzzle 347
J.M. Voas
Techniques for third party product evaluation 355
T. Punter
Setting-up software reliability measurement program 359

P. Jedrzejowicy

SIZE/OO METRICS

Towards a size measurement framework for object-oriented 379
specifications

G. Poels

Function point analysis for the OO-Jacobson method : a mapping 395
approach

T. Fetcke, A. Abran and T.-H. Nguyen

Life-cycle estimation for object oriented system prediction by analogy 411

B. Catherwood, M. Sood Gupta and F. Armour

Process architecture means to create and sustain a successful process
culture

W. Wijnia

European software development - Performance and practices benchmark

J. De Keyzer

Benchmarking software development and support

S. Goldfarb

Using function point analysis in decision support management

J.R. Blaschek and A.R. Rocha

Function point prognosis

M. Bundschuh

Verifying function point values

E. Rudolph, G. Wittig, G. Finnie and P. Morris

Function point programmes and quality management :
broader approach = broader benefit

D. Wuksch

Who should count the function points number for a project?
A. Billi

Industrial software development using function points

E.M. Péstion and J. Janeczko

Functional metrics : problems and possible solutions

R. Meli

Simulation model development based on the function point metric

A. Drappa and]. Ludewig

On more effective uses of function point analysis
S. Nishiyama

Improving project estimation

B. Londeix

The added value of estimation by analogy - an industrial experiment
E. Stensrud and I. Myrtveit

POSTERS

The “cellular manufacturing process model” : planning a complex
software and systems integration project
B. Chatters, C. Rostron and P. Henderson

419

421

441

457

463

473

479

491

497

503

515

525

533

549

559

How to avoid the premature delivery of software 565
J.W. Greene

How to estimate the resources required to modify software for 571
the millennium

J.W. Greene

Principles, guidelines and metrics : their relationship and application 575

to reduce structural complexity of object oriented design

R. da Silva Andrade and G. Horta Travassos

A proposal of a object oriented development cost model 581
C. Dib Cruz
ESSI project PROMASYS : Introduction of a software project 589

management system an a steel industrial company

C. Piqueras, P. Klett and C. Ortiz

Creating a solid configuration- and test-management infrastructure 595
to improve the team development of critical software systems
E. Verstraeten

A product metrics tool integrated into a software development 603
environment
C. Lewerentz and F. Simon

Facilitating process assessment with tool supported measurement 609
programme

J. Jdrvinen

Complexity metrics for control of monotonic software processes 615

A.lL Cardoso and R.G. Crespo

Software process improvement experiment concerning effective 621
outsourcing mechanisms

C. Zwanzig, U. Kirchhoff and H.-S. Schulz

LATE PAPER

Successful software reuse : metrics or culture? 631

E.]. Cherian

Authors index 639

MAINTAINABILITY IN OBJECT-RELATIONAL DATABASES
Mario Piattini, Coral Calero, Macario Polo, Francisco Ruiz

Grupo ALARCOS
Departamento de Informatica
University of Castilla-La Mancha
Ronda de Calatrava, 5
13071, Ciudad Real (Spain)
e-mail: {mpiattin, fruiz} @inf-cr.uclm.es
{coralc,mpolo}@caos.inf-cr.uclm.es

Keywords: Object-relational databases, software metrics, complexity, maintainability.
ABSTRACT

Databases have been demonstrated a tremendous productivity and an impressive
economical impact. Nowadays “Third-generation” DBMSs are appearing into the market.
This technology could arise some difficulties 1o its users because of the higher complexity
of the database schema, which has been characterised by its simplicity in the classical
relational model. We propose a metric suite for controlling object-relational database
maintainability.

1.- INTRODUCTION

Since the seventies software engineers have been proposing all sorts of metrics for
software products, processes and resources (Fenton, 1991). These metrics were defined in
order to control some internal attributes of software elements (e.g. complexity,
consistency, modularity) which influence external attributes (e.g. maintainability,
testability, portability, understandability) that concern software development centres. It is
well known that maintenance is the most important problem of software development,
ranging between 67 and 90% of life-cycle costs (Frazer, 1992; McClure, 1992)

z Unfortunately, almost all the metrics proposed since McCabe's cyclomatic number
(McCabe, 1976) (by far the most referenced complexity metric) until now, focused on
programme characteristics disregarding databases.

This neglection could be explained as databases have been until recently just "simple
files/tables" which do not contribute too much to the complexity of the overall system.

But nowadays, with the appearance of the "third database generation", (Cattell, 1991),
databases are becoming more and more complex, incorporating new data types, rules,
, generalisations, complex objects, etc. Last year we have assisted to the presentation of new
: "object-relational" products (Stonebraker, 1996) such as Informix/Tllustra, Oracle 8 and
: DB2/2. And it is very probably that (after some years of delay) the new SQL3 standard
will be published finally by late 1998. Figures about the DBMS market evolution confirm
the prevision of an exponential grown of the object-relational DBMSs (Miranda, 1997).

In our opinion, the information systems developed with these new DBMSs will suffer of
greater maintenance problems caused mainly by the own database schema. Two problems

i 223

related with these new database systems are shortage of methodology and lacking of
metrics considering their new functionalities.

We propose a metric suite which allows to control maintainability of object-relational
database schema. Maintainability is considered to be influenced by understandability,
modifiability and testability (Li and Cheng, 1987), which depend on size, length and
complexity of database schemata.

In Section 2, we resume the main elements of an object-relational database schema.
Then in Section 3 we define the metrics proposed. A formal description of the proposed
metrics is presented in Section 4. Section 5 presents the conclusions and outlines the
future work.

2.- ELEMENTS OF AN OBJECT-RELATIONAL DATABASE SCHEMA.

Object-relational databases combines the traditional database characteristics (data
model, recovery, security, concurrency, high-level language, etc.) with object-oriented
principles (e.g. encapsulation, generalisation, aggregation, polymorphism,...). These
products offer the possibility of defining classes or abstract data types, in addition to
relations, domains and constraints’, as relational databases.

Also, generalisation hierarchies can be defined between classes (super and subclasses)
and between tables (CREATE TABLE subtable UNDER supertable). Then, two types
of associations can be established between tables, as shows figure 1.

Tobis 1

A

-_—— e T T e - = -~

Tabie 2 Toble 3 Todie 4

I T

1| ||

Table 8 Toble 6

— — — > Reforentisl inlegrty

Tebie 7

Figure 1. Example of an database object-relational schema

Object-relational databases support usually multiple inheritance (a subtable can be
defined with more than one supertable).
Table attributes can be defined in a simple domain, e.g. char (25), or in a user-defined

class as complex number or image, see figure 2. These classes can also be part of a
generalisation lattice.

! In this first approximation domains and constraints are not considered for measures purposes.

224

Classes

¢t ci [cn

Table

Figure 2. Example of complex column definition
3.- PROPOSED METRICS
The objective of this research is to propose a suite of metrics which can be obtained
automatically from the database catalogue. This suite must be also sufficient but not
excessive for practical purposes.
We consider, following the definitions of Briand et al. (1996), three types of metrics.

3.1.- Size metrics

Scheme size (SS). The scheme size (SS) is defined as the sum of the size of each table
(TS) of the scheme.

NT
Ss =Zm
i=1

Being NT the number of tables of the scheme.

Table size (TS). The table size (TS) is the sum of the size of its simple columns (SCS)
which are considered with a size equal to one (so SCS will be the same to the number of
simple columns) plus the size of its complex columns (CCS). The TS metric is
characterised by the following expression:

NCC
75 = SCS + chs
i=1

Being NCC the number of complex columns in the table.

225

Complex Column Size (CCS)._Complex columns of a table are defined on a class. For
instance, the figure 2 shows that one column of a table may be defined on a class (which
can belong to a class lattice), it shows too, that more than one column may be defined
on the same class. So, we define the complex column size like the class size over it. The
class size (CS) is defined recursively as:

NCF

CS=CSp+) CSi
i=1

Where NCF is the number of parents classes of the class.

Proper Class Size (CSp). To obtain the expression for the proper class size (CSp), we
can consider the attributes and the methods included in the class. It’s important to
remember that attributes have less size than methods, so it’s necessary to work with
weighted values. CSp can be defined by adding its weighted attributes (ACS) plus its
weighted methods (MCS):

CSp = (ACS +MCS)

We define ACS considering that the attributes have a size equal to one. So, ACS will be
the same than the number of attributes per class (NOAC)

ACS = NOAC

Methods Class Size (MCS). MCS is defined using the version of the ciclomatic
complexity of McCabe designed by Li and Henry (1993):

MCS= z Vif(G)

i=1
Being nm the number of methods per class.

3.2.- Length metrics

The figure 1 shows that the tables may be related in two different ways. On one hand
the generalisation relation (simple or muitiple), on the other hand, the referential
integrity (foreign key). For these characteristics we consider two length metrics.

The first one is the DIT metric of Chidamber and Kemerer (1994), it’s named TDIT
(Tables Depth Inheritance Tree) and it’s defined:

TDIT = Depth maximumin the inheritance tree

The second one it’s based as well on Chidamber and Kemerer’s metric but using the
another kind of possible relation that can appear in a object-oriented scheme. It’s named
TDRT (Tables Depth Referential Tree) and it’s defined like:

TDRT = Maximum number of levels of referential integrity among tables

226

For instance, in the figure 1, we have the next values for the TDIT and TDRT metrics:
TDIT=3 and TDRT=2.

3.3.- Complexity metrics

We can define the referentiability degree (RD) of a scheme as the number of foreign
keys (NFK) of all the tables in the schema (NT).

NT
RD=ZNFK

i=1
In the example of the figure 1 we would have that: RD=3

4. FORMAL DESCRIPTION OF THE PROPOSED METRICS.

In this section we use the properties proposed by Briand et al. (1996) in order to
characterise the metrics defined in the previous section.

4.1.- SS Metric

From a formal point of view, we consider that a relational scheme is composed by a set

of elements which correspond to the set of the columns of the tables of the schema.

Tables are considered to be the “modules” of the system.

A size metric is characterised by the following properties (Briand et al, 1996):

1. Nonnegativity. The size of a system is nonnegative.

2. Null value. The size of a system is null if it has no elements.

3. Module additivity. The size of a system is equal to the sum of the sizes of two of its
modules such that any element of the system is an element of either a module or the
other.

Proving these properties for the SS metric is easy:

1. Seeing the different expressions that compose the SS metric, it is impossible to
obtain a negative value.

2. If we have no attributes then SCS=0 and CCS=0, so TS=0 and SS=0.

3. For module additivity, three possibilities must be study:

Case 1. In the two modules there is a simple attribute.

Case 2. In the two modules there is a complex attribute (of any type).

Case 3. In one of the module there is a simple attribute and in the other there is a
complex attribute (of any type).

It’s indifferent to study if there is only an attribute or several, so we study the
simpler case.

227

In the first case, TS=SCS for the two modules, so TS will be the sum of both. In the
second case, TS=CCS for the two modules, so TS will be the sum of both. In the last
case, the first module gives a value for TS=SCS and the second gives a value for

nnnnn O M L s ihn mren AafhAth

4.2.- TDIT and TDRT Metrics

For these metrics, we consider that a relational scheme is composed by a set of tables
(elements) with their relations.

These relations may be of two types: inheritance when TDIT metric is analysed or
referential integrity when TDRT metric is analysed.

For length metrics, the properties given by Briand et al. (1996) are:

1. Nonnegativity. The length of a system is nonnegative.

2. Null value. The size of a system is null if has no elements.

3. Nonincreasing monotonicity for connected components. Let S be a system and m be
a module of S such that m is represented by a connected component of the graph
representing S. Adding relationships between elements of S does not increase the
length of S.

4. Nondecreasing monotonicity for nonconnected components. Let S be a system and
ml and m2 be two modules of S such that m1 and m2 are represented by two
separate connected components of the graph representing S. Adding relationships
from elements of m1 to elements of m2 does not decrease the length of S.

5. Disjoint modules. The length of a system made of two disjoint modules m1, m2 is
equal to the maximum of the lengths of m1 and m2.

The demonstration of these properties for the TDIT and TDRT metrics is the following:

1. The depth of a tree never can be negative.

2. If we have no attributes (E=0), we have no tree, we have no depth and
TDIT=TDRT=0.

3. If we add relationships between elements of a tree (tables) the depth does not vary.
This will be only possible by adding elements to the tree.

4. If we add relationships between elements of two trees we cannot decrease the depth
of the resulting tree because the depth of the first tree stays equal and we add a
relation which has a depth 1 as minimum (if it’s a leaf tree).

5. The depth of a tree is given by the component which has more levels from the root
to the leaves.

So, we can conclude that TDIT and TDRT are length metrics.
4.4 - RD Metric

To demonstrate that RD is a complexity metrics, we prove that verifies the properties
given by Briand et al. (1996) for this kind of metrics:

228

Nonnegativity. The complexity of a system is nonnegative.

Null value. The complexity of a system is null if it has no relations.

Symmetry. The complexity of a system does not depend on the convention chosen

to represent the relationships between its elements.

4. Module Monotonicity. The complexity of a system is no less than the sum of the
complexities of any two of its modules with no relationships in common.

5. Disjoint Module Additivity. The complexity of a system composed of two disjoints

modules is equal to the sum of the complexities of the two modules

w—

RD metric verifies these properties because:

1. Seecing the expression that composes the RD metric, it is impossible to obtain a
negative value.

2. Ifthere is no relations there can be referential integrity, so RD = 0.

The definition of RD is the same disregarding the direction of the reference.

4. If the modules are no disjoint, this means that between elements of both modules
there is a relation of referential integrity, so RD never decrease.

5. Every module will have a value for NFK. When modules are disjoint neither
foreign key nor a table will be common to both modules, so the result of RD of the
system will be the sum of the NFK of the two modules, and so RD will be the sum
of the RD of the modules.

w

S.- CONCLUSIONS AND FUTURE WORK

We have presented a first approximation for measuring object-relational databases. Five
different metrics are defined and described using a formal framework.

However, the framework used is not the only one (see for example Weyuker 1988) or
Fenton (1991)) and it is not generaily accepted (Kitchenham and Stell, 1997). So we
must validate these metrics using other axioms definition.

Also empirical validation is being carried out, not only to prove metrics validity, but
also to give some limits which can be useful for database designers.

Adaptation of these metrics to SQL3 is also a current work, since it can improve the
metric suite, (Churcher y Shepperd, 1995) .

Finally, an automatic tool is being developed in order to automate the metric gathering
for ORACLE 8 DBMS.

ACKNOWLEDGEMENTS
This research is part of the MANTICA project (a proposal to CICYT-FEDER) and is
partially supported by the MANTEMA project carried out by ATOS ODS, S.A.

(ATYCA Direccion General de Tecnologia y Seguridad Industrial del Ministerio de
Industria y Energia).

229

Measuremen . 1eoeas svvmeeeo .

January, 1996.

Cattell, R.G.G. "What are next-generation database systems?". CACM, Vol. 34, N°
10, 1991, pp. 31-33.

Chidamber, S. and Kemerer, C. “A metrics suite for object-oriented design”, JEEE
Trans. Software Eng., vol. 20,n0. 6, June, 1994, pp. 476-493.

Churcher, N.J. y Shepperd, M.J. "Comments on "A Metrics Suite for Object-
Oriented Design". EN: IEEE Trans. on Software Engineering Vol. 21, N° 3, 1995,
Pp. 263-265.

Fenton, N. "Software Metrics: A Rigorous Approach". London, Chapman & Hall.
1991.

Frazer, A. "Reverse engineering-hype, hope or here?". In: P.A V. Hall, Software
Resue and Reverse Engineering in Practice. Chapman & Hall. 1992.
Henderson-Sellers, B. “Object-Oriented Metrics”. The object-oriented Series.
Prentice Hall. 1996

Li, HF. and Chen, W.K. "An empirical study of software metrics". IEEE Trans. on
Software Engineering SE-13 (6), 1987, 679-708.

Li, W. and Henry, S. “Object-Oriented metrics that predicts maintainability”.
J.Sys.Software, 23, 1993, pp. 111-122.

McCabe, T.J. " A complexity measure". IEEE Trans. Software Engineering Vol 2,
N° 5, 1976, pp. 308-320.

McClure, C. "The Three R's of Software Automation: Re-engineeirng, Repository,
Reusability". Englewood Cliffs: Prentice-Hall, 1992.

Miranda, S "Obect Relational Data Models of the Future®. En: Proc. of the Third
Basque International Workshop on Information Technology. BIWIT'97". July 2-4,
1997, Biarritz, Francia, IEEE Computer Society.

Stonebraker, M. "Object-Relational Databases. The next-Wave". Morgan-
Kauffmann, 1996..

Weyuker, E.J. "Evaluating software complexity measures". IEEE Transactions on
Software Engineering Vol. 14, N° 9, pp. 1357-1365, Sept.1988.

230

