IT Jornadas
de Trabajo
DOLMEN

Valencia, 12y 13 de Marzo de 2002

Organizacion:

~ Grupo OOCMDB
(Modelado Conceptual Orientado a Objetos y Bases de Datos)

Colaboradores:

Universidad Politécnica de Valencia

)
DSl

Departamento de Sistemas Informiticos y
Computacién

Indice

Bloque 1: Modelado Orientado a Objeto

Del Diagrama de Secuencias de UML a los Statecharts: Extension de
Notaciones y Formalizacién de Algoritmos de Transformaczon
José Ramon Hoyos, AmMbBrosio Toval ...ttt sssensessicsssetesssarssesaens

Una Revision de Modelos de Ejecucion para Modelos de Objetos
José Sdez, Francisco J. Albacete, Ambrosio Tovalcccveemeeccmiveieenseeseeseinere e ereeenes 13

Object Oriented Design Knowledge
Javier Garzas, Mario Piattin..........ccciiieiiiiineenri s ecresrese e s seesvsssaessasssssssessesssssanes

Bloque 2: Evolucién y Métricas del Software

Comparacion Automdtica de Esquemas Conceptuales Orientados a Objeto:
Algoritmos y Criterios de Comparacion _
Josep Silva, Isidro Ramos, Jos€ Angel Cars1

Un Modelo de Evolucién Aplicado
Juan Jeslis Torres, JOSE PATEts... ..ottt

An Empirical Study to Validate Metrics for Class Diagrams as Early

Maintainability Indicators
Marcela Genero, Mario Piattini, Francisco ROMEIO ... viveeeeeriiieeeiieieeeterreecereeessisessasens

Bloque 3: Arquitectura y Reutilizacién del Software

Una Arquitectura Dindmica y Evolutiva para Agentes Cooperativos:

Gestion de Transacciones ,
Patricia Paderewski, M*José Rodriguez, JOSé Paretsccooevveeviecrecrnneecenenrennneenennenenns

Una Arquitectura Reﬂexzva como Modelo para los Aspectos de

Distribucicn, Composicién y Coordinacién
Jorge Ferrer, M. Angeles Lorenzo, Isidro Ramos, J0s€ A. CariZ.....ccceeeeveerreesrnsressenens 81

Andlisis de Conceptos Formales como soporte para la construccion de

Frameworks de dominio)
Félix Prieto, Yania Crespo, José Manue! Marqués, Miguel Angel Laguna............cc....... 93

Requeriments Modeling for Reuse
Oscar Lopez, Miguel Angel Laguna, Francisco J. Garcia.........cccevevereeeereerencncareecsnsenceses

Bloque 4: Ingenieria de Requisitos

Legal Requirements Reuse: A critical Success Factor for Requirements
Quality and Personal Data Protection '
Amb_rosio Toval, Alfonso Olmos, Mario P1attinlccoccceeeiivieiccneeeinereeeerseesseserssnresssnns 115

Reuse Based Requirements Clustering 7 _
Oscar Lopez, Miguel Angel Laguna, Francisco J. Garcia........ccccoevvevvnvenesesecsenneereenne. 129

Un Metamodelo para Trazabilidad que Integra Requisitos Textuales y
Elementos de Modelado UML ‘
Patricio Letelier, VICIOr ANAYA.......cceioeiiieeieee ettt 139

Definicién de Requisitos de Interaccion :
Maria José Escalona, Manuel Mejias, Jests Torres, Antoma M? Reina........ceceveerneenenne 151
Bloque 5: Interfaces de Usuario

Lenguaje de Modelado de Interfaces de Usuario
Juan M. Cordero, Marianc Gonzélez, JESUS TOITEScoveeiiereeeriineiiiieeeeeecsreereeessersresssanns 163

Adaptacion al Usuario en Sistemas Hipermedia: El Modelo SEM-HP

Nuria Medina, Lina Garcia, M*José Rodriguez, José Paretsc.coovveenrierisincrnreninnns 175
La Navegacion y la Separacion de Conceptos

Antonia M® Reina, Jests Torres, Maria José Escalona, Juan Antonio Ortega 187
Patrones de Interfaz para Entornos de Trabajo en Grupo

Francisco Montero, Marfa Dolores Lozano, Pascual Gonzalez............ceevvvviieeenresvssenne. 197
Anexos

Conferencia 1
“ NET: la nueva plataforma de desarrollo de sistemas distribuidos en la web”

Rafael Corchuelo, Universidad de Sevilla

Conferencia 2
“Servicios de Datos en Entornos Moviles”
Eduardo Mena, Universidad de Zaragoza

Conferencia 3
“Process Management Systems, large scale component based design”
Gustavo Alonso, Swiss Federal Institute of Technology, ETH Ziirich

-Conferencia 4
“On the use of Groupware in Software Engineering”
Marcos Borges, NCE Universidad Federal de Rio de Janeiro

II Jornadas de Trabajo DOLMEN

An Empirical Study to Validate Metrics for Class Diagrams As
Early Maintainability Indicators

Marcela Genero, José Olivas, Mario Piattini, Francisco Romero
Department of Computer Science
University of Castilla-La Mancha
Ronda de Calatrava, 5
13071, Ciudad Real (Spain)
{mgenero, jaolivas, mpiattin, fpromero}@inf-cr.uclm.es

ABSTRACT
One of the principal objectives of software engineering is to improve the quality of software products.

Quality assurance must be guaranteed from the early stages of the software development life cycle,
focusing on high-level design artifacts like class diagrams. Indeed, class diagrams constitute the
backbone of object-oriented information systems (QOOIS) so, their quality has a great impact on the
quality of the product which is finally implemented. To assess class diagram quality, it is useful to have
quantitative and objective measurement instruments. After having thoroughly reviewed -existing OO
measures applicable to class diagrams at'a high-level design stage, we presented in a previous work
(Genero et al., 2000) a set of UML class diagram structural complexity metrics, a class diagram internal
quality attribute, with the idea that it is related to the external quality of such diagrams. In order to gather
empirical evidence that the proposed metrics could be early quality indicators of class diagrams, we
carried out a controlled experiment. The aim of which was to investigate the relation between the
structural complexity of class diagrams and their maintainability. The main goal of this paper is to show
each of the steps of the experimental process, and how we have built a prediction model for class
diagram maintainability based upon the data collected in the experiment using a novel process, the
Fuzzy Prototypical Knowledge Discovery process.

Keywords. Software quality, structural complexity metrics, class diagram maintainability, empirical
validation, prediction model, fuzzy deformable prototypes

i. INTRODUCTION

Nowadays, one of the principal objectives of software engineering is to improve the quality of software
products. There is a common agreement that the quality assurance must be guaranteed from the early
stages of the software development life cycle (Brito e Abreu et al., 1999, 2000, 2001; Briand et al.,
1999a), focusing on high-level design artifacts like class diagrams. In the development of OOIS the class
diagram is a key early artifact that lays the foundation of all later design and implementation work.
Hence, class diagram quality is a crucial issue that must be evaluated (and improved if necessary) in
order to obtain quality OOIS, which is the main concern of present day software development
organisations.

The early focus on class diagram quality may help IS designers build better OOIS, without unnecessary
rework at later stages of the development when changes are more expensive and more difficult to
perform, It is in this arena where software measurement plays an important role, because the early
availability of metrics contributes to class diagram quality evaluation in an objective way avoiding bias
in the quality evaluation process. Moreover, metrics provide a valuable and objective insight into
specific ways of enhancing each of the software quality characteristics.

55

Il Jornadas de Trabajo DOLMEN

Given that maintenance was (and will continue to be) the major resource consumer of the whole
software life cycle, maintainability has become one of the software product quality characteristics (ISO,
1999) that software development organisations are more concerned about. Maintainability is not
restricted to code, it is an attribute of the different software products we hope to maintain (Fenton and
Pfleeger, 1997), like, for example, class diagrams. However, we are aware that maintainability is an
external quality attribute that can only be measured late in the QOIS life cycle. Therefore, it is necessary
to have early indicators of such qualities based, for example, on the structural properties of class
diagrams (Briand et al., 1999).

Most of the existing literature on OO measures (Henderson-Sellers, 1996; Melton, 1996; Zuse, 1998;
Fenton and Pfleeger, 1997) is related to measures, which can only be applied once a software product is
completed or nearly complete. These provide information too late to lead us in building quality OOIS.
So after a thorough review of some of the existing OO measures, applicable to class diagrams at high-
level design stage (Brito e Abreu and Carapuga, 1994; Lorenz and Kidd, 1994; Chidamber and Kemerer,
1994; Marchesi, 1998) we have proposed a set of UML class diagram structural complexity measures
brought on by the use of UML relationships, such as associations, generalisations, aggregations and
dependencies (Genero et al., 2000; Genero, 2002). However, the proposal of metrics is of no value if
their practical use is not demonstrated empirically, either by means of case studies taken from real
projects or by controlled experiments. Empirical validation is crucial for the success of any software
measurement project (Schneidewind, 1992; Kitchenham et al., 1995; Fenton and Pfleeger, 1997; Basili
et al., 1999). Therefore, our main motivation is to investigate, throu gh experimentation, if the metrics we
proposed in Genero et al. (2000) and for UML class diagram structural complexity (internal quality
attribute) are related to class diagram maintainability (external quality attribute). If such a relationship
exists and is confirmed by empirical studies, we will have really obtained early indicators of class
diagram maintainability. These indicators will allow OOIS designers to take better decisions early in the
OOIS development life cycle, thus contributing to the development of better quality OOIS. ‘
We performed a previous controlied experiment (Genero et al., 2001), pursuing a similar objective. In it,
as in this one, the independent variable is the UML class diagram structural complexity. In the previous
experiment the dependent variables are three maintainability sub-characteristics (understandability,
analysability and modifiability) (ISO, 1999) measured by means of user ratings on a scale composed of
seven linguistic labels. Even though the results obtained in the previous experiment reflect that the
metrics we proposed are highly related to class diagram maintainability, we are aware that the way we
choose to measure the dependent variable is subjective and relies solely on judgement of the users,
which may have biased the results. Therefore, we decided to carry out another experiment measuring the
dependent variable in a more objective way. In the experiment we present in this paper, the dependent
variable is the maintainability of the class diagrams measured by the time spent in modification tasks,
called maintenance time. Maintenance time is the time taken to comprehend the class dnagram, analyse
the required changes and to implement them.

The data collected in the present experiment was analysed using an extension of the original Knowledge
Discovery in Databases (KDD) (Fayyad et al.,1996): the Fuzzy Prototypical Knowledge Discovery
(Olivas, 2000; Olivas and Romero, 2000) that consists in the search for fuzzy prototypes (Zadeh, 1982)
that characterise the maintainability of a class diagram. These prototypes lay the foundation of the
prediction model that will lead us to predict class diagram maintainability.

This paper is organised as follows: In section 2 we will present a set of metrics for measuring UML class
diagram structural complexity. In section 3 we describe a controlled experiment we have carried out in
order to evaluate if there is empirical evidence that UML class diagram structural complexity metrics are
correlated with maintenance time. In section 4 we use the data collected in the experiment to build

56

I Jornadas de Trabajo DOLMEN

prototypes, that characterises UML class diagram maintainability. In section 5, we show how we use
these prototypes to predict UML class diagram maintainability early in the OOIS development life cycle.
Finally in section 6, we present some concluding remarks and future trends in metrics for OO models.

2. METRICS FOR UML CLASS DIAGRAM STRUCTURAL COMPLEXITY

We have only defined here those metrics, presented in Genero et al. (2000), which can be applied at
class diagram level as a whole (see table 1). Also we consider traditional some ones like, the number of
classes, the number of attributes and the number of methods.

Metric name Metric definition

NUMBER OF CLASSES (NC) The total number of classes.

NUMBER OF ATTRIBUTES (NA) The total number of attributes.

NUMBER OF METHODS (NM) The total number of methods .

NUMBER OF ASSOCIATIONS (NAssoc) The total number of associations.

NUMBER OF AGGREGATION (NAgg) The total number of aggregation relationships within a class
diagram (each whole-part pair in an aggregation relationship).

NUMBER OF DEPENDENCIES (NDep) The total number of dependency relationships.

NUMBER OF GENERALISATIONS (NGen) The total number of generalisation relationships within a class
) |diagram (each parent-child pair in a generalisation

relationship).

NUMBER OF AGGREGATIONS HIERARCHIES | The total number of aggregation hierarchies (whole-part

(NAggH) structures) within a class diagram.

NUMBER OF GENERALISATIONS HIERARCHIES | The total number of generalisation hierarchies within a class
(NGenH) diagram.

MAXIMUM DIT It is the maximum of the DIT (Depth of Inheritance Tree)

values obtained for each class of the class diagram. The DIT
value for a class within a generalisation hierarchy is the
longest path from the class to the root of the hierarchy.
MaxiMUM HAGG : It is the maximum of the HAgg values obtained for each class
of the class diagram. The HAgg value for a class within an
aggregation hierarchy is the longest path from the class to the
leaves.

Table 1. Metrics for UML class diagram structural complexity
These class diagram structural complexity measures allow OO designers:

1. aquantitative comparison of design alternatives, and therefore, an objective selection among several
class diagram alternatives with equivalent semantic content.

2. the prediction of external quality characteristics, like maintainability in the initial stages of the IS life
cycle and a better resource allocation based on these predictions.

3. EMPIRICAL VALIDATION OF THE PROPOSED METRICS THROUGH A CONTROLLED
EXPERIMENT '

In this section we describe an experiment we have carried out to empirically validate the proposed
measures as early maintainability indicators. We have followed some suggestions provided by Wholin et
al. (2000), Perry et al. (2000) and Briand et al. (1999;2001) on how to perform controlled experiments
and have used (with only minor changes) the format proposed by Wholin et al. (2000) to describe it.

57

1l Jornadas de Trabajo DOLMEN

3.1. Definition
Using the GQM temp]ate (Basili and Weiss, 1984; Basili and Rombach, 1988) for goal deﬂmtlon the

experiment goal is defined as follows:

Analyse UML class diagram structural complexity metrics

For the purpose of Evaluating

With respect to their capability of being used as class diagram mamtalnablllty mdlcators
From the point of view of Information systems designers

In the context of Undergraduate Computer Science students and professors of the area of

Software Engineering at the Department of Computer Science in the
University of Castilla-La Mancha.

3.2 Planning

Context selection. The context of the experiment is a group of undergraduate students and

professors, and hence the experiment is run off-line (not in an industrial software development

environment). The subjects were ten professors and twenty students enrolled in the final-year of

Computer Science at the Department of Computer Science in the University of Castilla-La Mancha

in Spain. All of the professors belong to the Software Engineering area.

The experiment is specific since it focuses on UML class diagram structural complexity metrics.

The ability to generalise from this specific context is further elaborated below when we discuss

threats to the external validity of the experiment. The experiment addresses a real problem, i.e.,

which indicators can be used to assess the maintainability of class diagrams? To this end it

investigates the correlation between metrics and maintainability.

Selection of subjects. The subjects were chosen for convenience, i.e., the subjects are undergraduate

students and professors that have experience in the design of OOIS using UML.

Variables selection. The independent variable is the UML class diagram structural complexity. The

dependent variable is UML class diagram maintainability.

Instrumentation. The objects were UML class diagrams. The independent variable was measured

by the metrics (NC, NA, NM, NAssoc, NAgg, NDep, NGen, NAggH, NGenH, MaxHAgg,

MaxDIT). The dependent variable was measured by the time the subjects spent carrying out the tasks

required in the experiment. We called this time “maintenance time”. Maintenance time comprise the

time to comprehend the class diagram, to analyse the required changes and to implement them. Our
assumption here is that, for the same modification task, the faster a class diagram can be modified,
the easier it is to maintain.

Hypothesis formulation. We wish to test the following hypotheses:

* Null hypothesis, Hp: There is no significant correlation between structural complexity metrics
(NC, NA, NM, NAssoc, NAgg, NDep, NGen, NAggH, NGenH, MaxHAgg, MaxDIT) and
maintenance time,

* Alternative hypothesis, H; : There is significant correlation between structural complexity
metrics (NC, NA, NM, NAssoc, NAgg, NDep, NGen, NAggH, NGenH, MaxHAgg, MaxDIT)
and maintenance time. -

Experiment design. We selected a within-subject design experiment, i.e., all the tests (experimental

tasks) had to be solved by each of the subjects. The subjects were given the tests in different order.

58

II Jornadas de Trabajo DOLMEN

3.3. Operation

— Preparation. At the time the experlments were carried out, the subjects had taken two courses of
Software Engineering. In these courses they learnt how to design OOIS using UML. All the selected
professors had enough experience in the design and development of OOIS. Moreover, the subjects
were given an intensive training session before the experiment took place. However, the subjects
were not aware of what aspects we intended to study. Neither were they informed of the hypothesis
stated.

The material we gave to the subjects, consisted of a guide explaining UML notation and nine UML
class diagrams of different application domains, that were easy enough to be understood by each of
the subjects. The diagrams have different structural complexity, covering a broad range of metric
values (see table 2).

NC| NA | NM | NAssoc { NAgg | NDep | NGen | NAggH | NGenH | MaxDIT MaxHAgg
D1 7 11 22 1 0 0 5 0 1 2 0
D2 8 12 31 1 6 0 1 1 1 1 2
D3 3 17 24 2 0! 0 0 0 0 0 0
D4] 10 12 21 15 3 0 0 2 0 0 1
D5 9 19 . 29 3 3 0 3 3 1 21 1
D6 7 16 7 6 0 0 0 0 0 0 0
D7) 23] 33 66 4 5 2 16 2 3 3 3
D8] 20| 30 65 6 5 0 14 4 3 3 2
D9 17] 45 78 16 1 0 2 1 2 1 1

Table 2. Metric values for each class diagram

Each diagram had an enclosed test that included a brief description of what the diagram represented
and two new requirements for the class diagram. Each subject had to modify the class diagrams
according to the new requirements and to specify the start and end time. The difference between the
two is what we call maintenance time (expressed in minutes and seconds). The modifications to
each class diagram were similar, including adding attributes, methods, classes, etc. In Appendix A
we present, one of the class diagrams used in the experiment (D5). All the experimental material is
available at the site http://alarcos.inf-cr.uclm.es.

— Execution. The subjects were given all the materials described in the previous paragraph. We
explained how to do the tests. We allowed one week to carry out the experiment, i.e., each subject
had to do the test alone, and could use unlimited time to solve it.

We collected all the data including the modified class diagrams with the maintenance time obtained
from the responses of the tests and the metrics values automatically calculated by means of a metric
tool we designed.

— Data Validation. Once the data was collected, we controlled if the tests were complete and if the
modifications had been done correctly. We discarded the tests of seven subjects, which included a
required modification that was done incorrectly. Therefore, we took into account the responses of 23
subjects.

3.4. Analysis and Interpretation

We used the data collected in order to test the hypotheses formulated in section 3.2.

We applied the Kolmogrov-Smirnov test to ascertain if the distribution of the data collected was normaI
As the data were non-normal we decided to use a non-parametric test like Spearman’s correlation

59

A A —

Il Jornadas de Trabajo DOLMEN

coefficient, with a level of significance ¢ = 0.05, which means the level of confidence is 95% (i.e. the
probability that we reject Ho when Hp is false is at least 95%, which is statistically acceptable).
Using Spearman’s correlation coefficient, each of the metrics was correlated separately with

maintenance time (see table 3).

NC | NA| NM | NAssoc | NAgg | NDep INGen| NAggH | NGenH | Max Hagg | Max DIT

Maintenance |0.895(0.753] 0.828 0.557) 0.547] 0411|0.575 0.675; 0.696 0.555 0.719
Time | : .]
Table 3. Spearman’s correlation coefficients between metrics and maintenance time

Analysing the Spearman’s correlation coefficients shown in table 6.3., we can conclude that there is a
high correlation (rejecting hypothesis Hp) between most of the UML class diagram structural complexity
metrics and maintenance time. We can deduce this from the fact that almost all the metrics have a
correlation greater than 0.5, which is a common threshold to evaluate correlation values. NDep is the
only one that has a lesser correlation, but this could be explained by the fact that in most of the selected
diagrams NDep took the value 0 (see table 2). So in future experiments we have to select diagrams with
more representative NDep metric values.

Even though the results obtained in this experiment are encouraging, we can not consider them as
conclusive results. We are aware that it is necessary to replicate the experiment and to carry out new -
ones in order to confirm our results. Also, it is necessary to apply these measures to data obtained from

“real projects”.

3.5. Validity evaluation
We will discuss the various issues that threaten the validity of the empirical study and how we attempted

. to alleviate them:

— Threats to conclusion validity. The conclusion validity defines the extent to which conclusions are
statistically valid. The only issue that could affect the statistical wvalidity of this study is the size of
the sample data (243 values, 9 diagrams and 23 subjects), that perhaps are not enough for both
parametric and non-parametric statistic test (Briand et al., 1995). We are aware of this, so we will
consider the results of the experiment as preliminary findings.

— Threats to Construct Validity. The construct validity is the degree to which the independent and
the dependent variables are accurately measured by the measurement instruments used in the study.
The dependent variable we used is maintenance time, i.e., the time each subject spent performing the
tasks related to the modifications arising from the new requirements, so we consider this variable
constructively valid. The construct validity of the measures used for the independent variables is
guaranteed by Poels and Dedene’s framework (1999, 2000a) used for their theoretical validation
(Genero et al., 2002). .

— Threats to Internal Validity. The interna! validity defines the degree of confidence in a cause-
effect relationship between factors of interest and the observed results. The following issues have
been dealt with:

* Differences among subjects. Using a within-subjects design, error variance due to differences
among subjects is reduced. As Briand et al. (1999) remarks that, in software engineering
experiments when dealing with small samples, variations in participant skills are a major concern
that is difficult to fully address by randomisation or blocking. In this experiment, the students are
in their final year of Computer science, so we believe all them had the same level of experience as
professors in building UML class diagrams. This fact can be demonstrated through the analysis of

60

II Jomadas de Trabajo DOLMEN

the descriptive statistics based on the total maintenance time for each subject (see table 4). As the
Kurtosis values are greater than zero, we can conclude that there were no extreme differences
between the mean time that the subjects spent performing the tasks required in the experiment.

Min. Max. Mean Std. Skewness | Kurtosis
Deviation
Total maintenance time 37 49 40.8695 29124 1.3261 2.1087
(minutes)

Table 4. Descriptive statistics for the total maintenance time

* Knowledge of the universe of discourse among class diagrams. The class diagrams were from
different universes of discourse but they were common enough to be easily understood by
each of the subjects, and a brief specification was also added to each diagram in order to ease
their comprehension. This way, knowledge of the domain does not affect internal validity.

* Precision in the time values. The subjects were responsible for recording the start and end
times of each test. We believe this method is more effective than having a supervisor who
records the time of each subject. However, we are aware that the subjects could introduce
some imprecision. “

* Leaming effects. The subjects were given the tests in different order and were required to
solve each test in the same order in which they appeared to cancel out learning effects. .
However, we could not control if they really followed the order because they did the tests
alone. '

* Fatigue effects. On average each subject took Iess than one hour to solve the experiment tests,
so fatigue was not very relevant. Also, the different order of the tests helped to cancel out
these effects.

* Persistence effects. In order to avoid persistence effects, the experiment was carried out by
subjects who had never done a similar experiment.

* Subject motivation. All the professors participated voluntarily in the experiment, in order to
help us in our research. We motivated students to participate in the experiments, by explaining
to them that similar tasks could be done in exams or practice.

* Other factors. Plagiarism and influence between students could not be controlled. Students
were told that talking to each other was forbidden, but as they did the experiments alone,
without any control, we had to trust them as far as that was concerned.

‘— Threats to External Validity. External validity is the degree to which the research results can be
generalised to the population under study (UML diagrams used as design artifacts for developing
OOIS) and to other research settings. The greater the external validity, the more the results of an
empirical study can be generalised to actual software engineering practice. Two threats to validity
have been identified which limit the ability to apply any such generalisation:

* Materials and tasks used. In the experiment we tried to use class diagrams and tasks
representative of real cases, but more empirical studies, using “real cases” from software
companies must be done.

* Subjects. To solve the difficulty of obtaining professional subjects, we used professors and
students from advanced software engineering courses. We are aware that more experiments with
professionals must be carried out in order to be able to generalise these results. However, in this
case, the tasks to be performed do not require high levels of industrial experience, so, experiments
with students could be appropriate Basili et al. (1999).

61

Il Jornadas de Trabajo DOLMEN

3.6. Presentation and package
As the diffusion of the experimental data is important to external replication (Brooks et al., 1996) of the
experiments we have put all of the material of this experiment at the web site http \\alarcos.inf-

cr.uclm.es.

4. BUILDING A PREDICTION MODEL FOR UML CLASS DIAGRAM MAINTAINABILITY
In the previous section, we have found, by analysing the empirical data, that the metrics we proposed for
measuring the structural complexity of UML class diagram seems to be correlated with the class
diagram maintainability (expressed as the maintenance time). This fact leaded us to think about building
a prediction model for class diagram maintainability based on metric values. Seeing the encouraging
results obtained of the application of the FPKD process for building prediction models applied to
different domains (Olivas and Romero, 2000; Olivas, 2000) we decided to use it for our purpose. For the
sake of brevity we do not explain here the steps of the FPKD process. Further details of the FPKD
process can be found in (Olivas, 2000).

First the FPKD process is followed to find fuzzy prototypes that characterise class diagram
maintainability. These prototypes form the foundation of the prediction model that allows us to predict
class diagram maintainability. This approach is more representative than standard approaches, because
the use of an isolated algorithm or method over- simplifies the complexity of the problem. Statistical
methods or decision trees (ID3, C4.5, CART) are only classification processes, and it is very important
to include a clustering model for finding some kinds of patterns in the initial data-set. The use of fuzzy
schemas allows us to achieve better and more understandable results, concerning patterns and prediction
results. Next, we will explain each of the steps we have followed in the FPKD process, an we will also
show how to predict class diagram maintainability.

— Selection of the target data. We have taken, as a starting set, a relational database that contains 207
records (with 12 fields, 11 represent metrics values, 1 represents the maintenance time) obtained
from the calculation of the metric values (for each class diagram) and the time spent by each subject
doing the experiment, called maintenance time.

— Transformation. This step is carried out in order to transform the database in knowledge-useful
data. We followed these two steps:

* Summarising subject responses. We built a umque table with 9 records (one record for each class
diagram) and 12 fields (11 metrics and 1 field for the maintenance time). The metric values were
calculated measuring each diagram, and the values for the maintenance time were obtained
aggregating maintenance time using the mean of time.

* Clustering by Repertory Grids. In order to detect the relationships between the class diagrams, to
obtain those, which show low, medium or high consumption of maintenance tasks (based on
maintenance time), we have carried out a hierarchical clustering process by Repertory Grids. The
set of elements is constituted by the 9 class diagrams and the clustering data are the mean of the
maintenance time to accomplish an analysis of clusters on elements, we have built a proximity
matrix that represents the different similarities of the elements, a matrix of 9 x 9 elements (the
diagrams) that above the diagonal represents the distances between the different diagrams.
Converting these values to percentages, a new table is created and the application of Repertory
Grids Analysis Algorithm returns a graphic as a final result (see figure 1).

62

II Jornadas de Trabajo DOLMEN

—+40% |
/\ ' “Similatity

E ’M/ \ D 60547 /

Diagram

<
7 = ~ 0

4 7 8 5 1 2 3 6 9

Figure 1. Clustering results (E: Low time-consuming to maintain, M: Medium time- consuming to
maintain, D: High time-consuming to maintain) ‘

H-80%

* DATA MINING. The selected algorithm for data mining process was summarise functions
(calculating factors such as medium, minimum and maximum time spent for modifying each
diagram, and finding for each one the average values). Table 5 shows the parametric
definition of the prototypes. These parameters will be modified taking into account the degree
of affinity of a new class diagram with the prototypes. With the new modified prototype we
will be able to predict the maintainability of a new class diagram.

l Maintenance Time
High time-consuming to
maintain

Average 7 minutes 10 seconds
Maximum : 18 minutes
Minimum 2 minutes
Medium time-consuming to

maintain
Average 4 minutes 20 seconds
Maximum 9 minutes 40 seconds
Minimum 1 minute 40 seconds
Low time-consuming to

maintain
Average 3 minutes
Maximum 7 minutes
Minimum 1 minute

Table 5. Prototypes: Low time-consuming to maintain, Medium time-consuming to maintain,
High time-consuming to maintain

63

II Jornadas de Trabajo DOLMEN

—~ Formal Representation of conceptual prototypes. The prototypes have been represented as fuziy

numbers, which are going to allow us to obtain a degree of membership in the concept. For the sake
of simplicity in the model, they have been represented by triangular fuzzy numbers. Therefore, in:
order to construct the prototypes (triangular fuzzy numbers) we only need to know their centrepoints
(“centre of the prototype™), which are obtained by normalising and aggregating the metric values
corresponding to the class diagrams of each of the prototypes (see figure 2).

Fuzzy Numbers

0 S

oW e 8t BB (oo Maix 0173 |
‘ B MecumM.. 0500 0240 0750 |
| B MuchMart 0740 0430 1000 |

Medium time consuming
maintain

High time-consuming’
maintain

5. AN EXAMPLE OF PREDICTION
Given a new class diagram, if you want to predict its maintainability there are two possibilities:

D

2)

Evaluate which prototype has more affinity with, the new class diagram and, give as a result the
maintenance time of a new class diagram the values taken from table 2. This is very trivial, and there
is lose of information. :

Using Fuzzy Deformable Prototypes (Olivas, 2000) we can deform the most similar prototype to a
new class diagram, and define the factors for a new situation, using a linear combination with the
degrees of membership as coefficients. This solution is better than the previous because it adapts the
prototype instead of basing it on fixed values. It also takes into account the degree of membership
with other prototypes, without loosing valuable information.

We will show an example of how to deform the fuzzy prototypes found in section 4. Given the metric
values corresponding to a new class diagram shown in table 6 and their normalised values shown in
table 7, the final average is 0.79. The affinity with the prototypes is shown in figure 3.

NC | NA | NM | NAssoc | NAgg | NDep |NGen|NAggH| NGenH | MaxDIT |[MaxHAgg
2] .3 70 10 3 1 3 2
Table 6. Metric values for a new class diagram
NC | NA_|NM | NAssoc [NAgg | NDep |NGen | NaggH [NGenH| MaxDIT | Max HAgg
09 035 03 0.47 1 0.5 1 | 0.67] 1 1
Table 7. Normalised metric values

10

64

II Jornadas de Trabajo DOLMEN

il MeGumM.. 0500 0240 0760 |

B Bl NochMeg 0740 0480 1000 SRS
Degree of : -
membership of | § - \ I
the most =1 . Most similar prototype

similar
prototype

~ Figure 3. Affinity of the real prototypes
The most similar prototype for this new class diagram is “High time-consuming to maintain”, with a

degree of membership of 0.81. The predicted values for the maintenance time related to the new class
diagram is shown in table 8 is:

Maintenance Time
Average 8 minutes 25 seconds
Minimum 2 minutes 20 seconds
Maximum | 18 minutes 25 seconds

Table 8. Predicted values for a new class diagram

6. CONCLUSIONS AND FUTURE WORK

Due to the growing demand of quality OOIS, continuous attention to and assessment of class diagrams is
necessary to produce quality information systems. As in the OOIS development field it is generally
accepted that the quality of the IS is highly dependent on decisions made early in the development, it is
necessary to have measurement support for class diagrams early in the development life cycle in order to -
contribute to the quality of the OOIS which is finally delivered.

In this paper we have presented a set of metrics for assessing the structural complexity of UML class
diagrams, obtained at early phases of the QOIS life cycle (Genero et al., 2000; Genero, 2002).

We have also carried out a- controlled experiment, corroborating by means of it that there seems to be
high correlation between the proposed metrics and the maintenance time. We have also shown how to
predict UML class diagram maintainability based on the metrics values and the time spent on
maintenance tasks. The prediction model was built using an extension of the traditional KDD called
FPKD process. :
Nevertheless, despite the encouraging results obtained we are aware that we need to do more metric
validation in order to assess if the presented metrics could be really used as early quality indicators.
Also, data of “real projects” on UML class diagram maintainability efforts would be useful, as well as
time spent on maintenance tasks in order to predict data that can be highly fruitful to software designers
and developers. However the scarcity of such data contiriues to be a great problem we must fin other
ways to tackle validating metrics. Brito e Abreu et al. (1999, 2000, 2001) suggested the necessity of a
public repository of measurement experiences, which we think would be a good step towards the success
of all the work done on software measurement. It will possible to do that when more “real data” on

65

I Jornadas de Trabajo DOLMEN

systems developed using UML is avai]able, which is the challenge of most of the researchers in this
area.

In future work, we will focus our research on measuring other quality factors like those proposed in the
ISO 9126 (ISO, 1999), which not only tackles class diagrams, but also evaluates other UML diagrams,
such as use-case diagrams, state diagrams, etc. To our knowledge, little work has been done towards
measuring dynamic and functional aspects of OO models (Poels and Dedene, 2000b; Poels, 2000). As is
quoted in Brito ¢ Abreu et al. (1999) this is an area, which lacks in depth investigation.

APPENDIX A
As an example we present in this appendlx one of the tests handed out to the subjects who participated in
the experiment.

Diagram specification

In the following class diagram (diagram D5 of table 2) a system of students at a university was
modelled. By using the system, students have access to the information of available courses, and they
can also register in the system. The system is managed by a special user who is allowed to modify the
required courses in the catalogue.

Tasks
1) Write down the startmg time:
2) Perform the modifications according to these two new requirements:

— Allow the administrator to modify the prerequisites and other information on the courses.
Information on the professors giving the courses is required. A professor may give various
courses. A course is given by only professor.

— For each professor store the first name, last name and SSN.

3) Write down the end time:

ACKNOWLEDGEMENTS ,
This research is part of the DOLMEN project supported by CICYT (TIC 2000-1673-C06-06) and the
CIPRESES project supported by CICYT (TIC 2000-1362-C02-02).

REFERENCES

1. Basili V. and Rombach H. The TAME project: towards improvement-oriented software environments, [EEE
Transactions on Software Engineering, 14(6), (1988), 728-738.

2. Basili V. and Weiss D. A Methodology for Collecting Valid Software Engineering Data IEEE Transactions on
Software Engineering, 10, (1984), 728-738.

3. Basili V., Shull F. and Lanubile F. Building Knowledge through Families of Experiments. /EEE Transactions on
Software Engmeermg, 25(4), (1 999), 435-437.

4. Briand ‘L., El Emam K., Morasca S. (1995). Theoretical and empirical validation of software product measures.
Technical Report ISERN-95-03, International Software Engineering Research Network.

5. Briand L., Arisholm S., Counsell F., Houdek F. and Thévenod-Fosse P. Empirical Studies of Object-Oriented Artifacts,
Methods, and Processes: State of the Art and Future Directions. Empirical Software Engineering, 4(4), (1999), 387-404.

6. Briand L., Bunse C. and Daly J. A Controlled Experiment for evaluating Quality Guidelines on the Maintainability of
Object-Oriented Designs. [EEE Transactions on Software Engineering, 27(6), (2001), 513-530.

7. Britoe Abreu, F. and Carapuga, R. Object-Oriented Software Engineering: Measuring and controlling the development
process. 4 Int Conference on Software Quality, Mc Lean, Va, USA, (1994).

8. Brito e Abreu F., Zuse H., Sahraoui H. and Melo W. Quantitative Approaches in Object-Oriented Software Engineering.
Object-Oriented technology: ECOOP 99 Workshop Reader, Lecture Notes in Computer Science, 1743, Springer-
Verlag, (1999) 326-337.

12

66

10.

I1.

12.

13.

14.
15.

16.

17.

18.

19.
20.

21.

22,

23.
24,

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

II Jornadas de Trabajo DOLMEN

Brito e Abreu F., Poels G., Sahraoui H: and Zuse H. Quantitative Approaches in Object-Oriented Software Engineering.
Object-Oriented technology: ECOOP'00 Workshop Reader, Lecture Notes in Computer Science, 1964, Springer-
Verlag, (2000}, 326-337.

Brito e Abreu F., Henderson-Sellers B., Piattini M., Poels G. and Sahraoui H. Quantitative Approaches in Object.
Oriented Software Engineering. Object-Oriented technology: ECOOP 01 Workshop Reader, Lecture Notes in Computer
Science, Springer-Verlag, (2001) (to appear).

Brooks A., Daly J.,, Miller J., Roper M., Wood M. Replication of experimental results in software engineering.
Technical report ISERN-96-10, International Software Engineering Research Network. (1996)

Chidamber S. and Kemerer C. A Metrics Suite for Object Oriented Design. JEEE Transactions on Software
Engineering. 20(6), (1994) 476-493.

Fayyad U., Piatetsky-Shapiro G. and Smyth P. The KDD Process for Extracting Useful Knowledge from Volumes of
Data. Commumeatzons of the ACM, 39(11), (1996) 27 — 34.

Fenton ' N. and Pfleeger S. Software Metrics: A Rigorous Approach. 2 . edition. London, Chapman & Hall, (1997).
Genero, M., Piattini, M. and Calero, C. Early Measures For UML class diagrams. L'Objet. 6(4), Hermes Science
Publications, (2000), 489-515.

Genero M., Olivas J., Piattini M. and Romero F. Using metrics to predict OO mformatlon systems maintainability.
CAISE 2001 Interlaken Switzerlarnd, Lecture Notes in Computer Science, 2068, (2001), 3838-401.

Genero M., Defining and Validating Metrics for Conceptual Models. Ph.D. Dissertation, Dept. of Computer Science,
University of Castilla-La Mancha. Ciudad Real (2002).

Henderson-Sellers B. Object-Oriented Metrics - Measures of complexity. Prentice-Hall, Upper Saddle River, New
Jersey, (1996).

ISO/IEC 9126-1.2. Information technology- Software product quality — Part 1: Quality model, (1999).

Kitchenham, B., Pflegger, S. and Fenton, N. Towards a Framework for Software Measurement Validation. JEEE
Transactions of Sofrware Engineering, 21(12), (1995), 92%-943.

Lorenz M. and Kidd J. Object-Oriented Software Metrics: A Practical Guide. Prentice Hall, Englewood Cliffs, New
Jersey, (1994).

Marchesi M. OOA Metrics for the Unified Modeling Language. Proceedings of the 2" Euromicro Conference on
Software Maintenance and Reengineering, (1998) 67-73,

Melton A. (ed.) Software Measurement. International Thomson Computer Press, London, 1996.

Olivas J. A. and Romero F. P. FPKD. Fuzzy Prototypical Knowledge Discovery. Application to Forest Fire Prediction.
Proceedings of the SEKE'2000, Knowledge Systems Institute, Chicago, Ill. USA, (2000) 47 — 54.

Olivas J. A. Contribution to the Experimental Study of the Prediction based on Fuzzy Deformable Categories, PhD
Thesis, University of Castilla-La Mancha, Spain, (2000).

Perry, D., Porte, A. and Votta, L. (2000). Empirical Studies os Software Engineering: A Roadmap. Future of Software
Engineering. Ed: Anthony Finkelstein, ACM, 345-355.

Poels G. and Dedene G. (1999). DISTANCE: A Framework for Software Measure Construction, research report
DTEW9937, Dept. Applied Economics, Katholieke Universiteit Leuven, Belgium, 46 f {submitted for publication).
Poels G. On the Measurement of Event-Based Object-Oriented Conceptual Models. 4 International ECOOP Workshop
on Quantitative Approaches in Object-Oriented Software Engineering, June 13, Cannes, France, (2000). '
Poels G. and Dedene G. Distance-based software measurement: necessary and sufficient properties for software
measures, Information and Software Technology, 42(1), (2000a),35-46.

Poels, G. and Dedene, G.. Measures for Assessing Dynamic Complexity Aspects of Object-Oriented Conceptual
Schemes. [/9th Internatiohal Conference on Conceptual Modeling (ER 2000), Salt Lake City, Lecture Notes in
Computer Science, 1920, Springer-Verlag, (2000b), 499-512.

Schneidewind, N. Methodology For Validating Software Metrics. JEEE Transactions gf Software Engineering, 18(5),
(1992) 410-422.

Wholin C., Runeson P., Hist M., Ohlson M., Regnell B. and Wesslén A. Experimentation in Software Engineering: An
Introduction, Kluwer Academic Publishers. (2000).

Zadeh, L. A note on prototype set theory and fuzzy sets. Cognition 12, (1982), 291- 297.

Zuse H..4 Framework of Software Measurement. Berlin, Walter de Gruyter, (1998).

67

