

£,

7L95-17%k - X

=
=
o
]
L]

Table of Contents

(et

Foreword from the General Chailr. viii
Foreword from the Program CRhair.............. e ix
Sponsoring and Supporting Organizations ... x
Symposium Committees... xi

Program COMIMILE@E ... e es s et rasan e

ADAIUONAI REVIBWEES ...t ee et e e st res st av st e s s e et e et eese st sesmasonsntenret

Keynote Address

Beyond Software, Beyond Engineering.ccocoveriviceiincrineirosi et imsiissasase s sssmsss st aressss s s si s sasssasa
L. A. Belady

Session 1: Experimental Methods

Replicating Software Engineering Experiments: Addressing the Tacit
Knowledge Problem ..

F. Shull, V. Basd:,.l Car:\.fer J. C Maldonado, G H Travassos)

M. Mendonga, and S. Fabbri

Conducting Realistic Experiments in Software ENgineering ..o e
D. I K. Sjoberg, B. Anda, E. Arisholm, T. Dybd, M. J¢rgensen
A. Karahasanovic, E. F, Koren, and M. Vokdc

=17

Is Prior Knowledge of a Programming Language Important for

SOTIWATE QUAITTEY? .ottt e s ve s s e r st st sa s s e e bbb e bt ene b e n oo b e

C. Wohlin

Session 2A: Software Quality

Verification and Validation in Industry—A Qualitative Survey on the State
of Practice... .
C. Andersson and P Runeson

An Approach to Expcrimental Evaluation of Software Understandabilityc.oooveniiiinennnnne. :

K. Shima, Y. Takemura, and K. Matsumoto

The Appropriateness of Gutman’s Means-End Chain Model in Software

Evaluationcooeeevveieeeeeeinvecreciennnesees et eeat e eeeetenennibasesieeesomeeieeeeiestiesanensrieietetesabrasestntasnrnrernraresoncann

B. Wong

Session 2B: Estimation

Estimating Mixed Software Reiiability Models Based on the EM Algorithm..........cooccvvviroeens

H. Okamura, Y. Watanabe, and T. Dohi

Further Investigation into the Use of CBR and Stepwise Regression to Predict

Development Effort for Web Hypermedia Applicationscoccovevivniiniiincc e evesssssseanis

E. Mendes and N. Mosley

An Approach for Estimation of Software Aging in @ Web Server........ocoocvevrevniveecnvvreerereeseeeneas

L. Li, K. Vaidvanathan, and K. S. Trivedi

Session 3: Process Improvement

ProMisE: A Framework for Process Models Customization to

the OPErative COMLEXL..........cveueeeeueeeeeersse et aseesrmstsssessesessessessaseseeseseessesasaneass ettt iteatae s rn—arees

M. T. Baldassarre, D. Caivano, C. A. Visaggio, and G. Visaggio

An Industrial Experience in Process Improvement: An Early Assessment
at the Australian Center for Unisys Software ..

D. Damian, D. Zowghi, L. Vazdyanarhasamy, and Y Pal

Session 4: Inspections

How Much Information Is Needed for Usage-Based Reading? A Series
of Experiments

T. Thelin, P. Runeson, C. Wohlin, T. Olsson, and C. Andersson

A Multiple-View Analysis Model of Debuggmg Processes ..
S. Uchida, A. Monden, H. lida, K. Matsumoto, and H. Kua'o

vi

............................. 27

103

-.111

127

...139

An Experimental Comparison of Checklist-Based Reading and Perspective-Based
Reading for UML Design Document INSPECHIONccovuviiririiiciiiniiniine it sessnsss s sentasassne e s ssssses shscss e 148
G. Sabaliquskaite, F. Matsukawa, S. Kusumoto, and K. Inoue

Session 5: Testing

A Survey on Testing Technique Empirical Studies: How Limited Is
OUE KDOWIBAZEt e e e s b e e e b eSS S bbb e 161
N. Juristo, A. M. Moreno, and S. Vegas

The Detection of Faculty Code Violating Implicit Coding Rules......cooovviiiirciiivric i et 173
T. Matsumura, A. Monden, and K. Matsumoto

Elimination of Crucial Faults by a New Selective Testing Method........coooii e 183
M. Hirayama, T. Yamamoto, J. Okayasu, O. Mizuno, and T. Kikuno

Session 6: Architecture and Design

Empirical Validation of Class Diagram Metrics ...t s 185
M. Genero, M. Piaitini, and C. Calero

“Bad Practice” or “Bad Methods”—Are Software Engineering and Ethnographic
Discourses INCOMPALBIETcooiriri et ee e ver s srar e e se e res e e s e e e e e eme e ara s ebe s sm s ccme s e st ame s cueaeen 204
K. Ronkko, O. Lindeberg, and Y. Dittrich

Four Metaphors of Architecture in Software Organizations: Finding Out
the Meaning of ATChItECIUTE I PIACHICE oooveri et et s s es e vae e e et ee e rares s s e g e emme s et ersnappaneens 211
K. Smolander

AULNOT IIAEX ...t eee e et eeee e e s s e e st et s abasarsesesemeasresserssessenssnnsans et araeaes 223

vii

Empirical Validation of Class Diagram Metrics
Marcela Genero, Mario Piattini and Coral Calero
Alarcos Research Group
Department of Computer Science, University of Castilla-La Mancha.
Paseo de la Universidad, 4, 13071, Ciudad Real (Spain)
{Marcela.Genero, Mario.Piattini, Coral.Calero) @ uclm.es

Abstract

As a key early artefact in the development of 0O
software, the quality of class diagrams is crucial for all
later design work and could be a major determinant for
the quality of the software product that is finally
delivered. Quantitative measurement instruments are
useful 1o assess class diagram quality in an objective way,
thus avoiding bias in the quality evaluation process. This
paper presents a set of metrics -based on UML
relationships- which measure UML class diagram
structural complexity following the idea that it is related
to the maintainability of such diagrams. Also
summarized are two controlled experiments carried out
in order to gather empirical evidence in this sense.

As a result of all the experimental work, we can conclude
that most of the metrics we proposed (NAssoc, NAgg,
NaggHl, MaxHAgg, NGen, NgenH and MaxDIT) are
good indicators of class diagram maintainability. We
_cannot, however, draw such firm conclusions regarding
the NDep metric.

Keywords. OO high-level metrics, structural complexity,
class diagrams, maintainability, UML, empirica)
validation

1. Introduction

In the development of QO software, the class diagram
is a key early artefact that lays the foundation of ail later
design and implementation work. The early focus on class
diagram quality may help software designers build better
OO0 software, without unnecessary revisions at later
development stages when changes are more expensive
and more difficult to perform. It is in this arena where
software measurement plays an important role, because
the early availability of metrics contributes to class
diagram quality evaluation in an objective way avoiding
bias in the quality evaluation process. Moreover, metrics
provide a valuable and objective insight into specific
ways of enhancing each of the software quality
characteristics,

Given that maintenance is (and will continue to be) the
© major resource consumer of the whole software life cycle,

maintainability has become one of the software product
quality characteristics that software development
organisations are more concerned about. However, we are
aware that maintainability is an external quality attribute
that can only be measured when the OO software product
is (nearly) finished. Therefore, it is necessary to have
early indicators of such qualities based, for example, on
the structural properties of class diagrams [1].
As most of the existing OO measures [2],[3].{4], [5] are
relaied to measures applied to code or to detailed design,
they provide information too late to lead us in building
maintainable OO software. So, after a thorough review of
some of the existing OO measures, applicable to class
diagrams at high-level design stage [6],[7].[8]1[9] we have
proposed [10],{11] a set of UML class diagram structural
complexity measures based on the use of UML
relationships (associations, generalizations, aggregations
and dependencies), see table 1, where also, traditional
metrics such as Number of Classes, Number of Methods
and Number of Attributes are included. These metrics
presented have been developed in a methodological way
which consists of three main steps: metric definition, and
theoretical and empirical validation [12]. Even though the
three steps are relevant, in this paper we shall only deal
with the empirical validation. More details on the
definition and theoretical validation can be found in [11].
As the proposal of metrics is of no value if their
practical use is not demonstrated empirically
{131,[21,[141,{15L116] either by means of case studies
taken from real projects or by controlled experiments, our
main motivation is 1o investigate, through
experimentation, if the metrics we proposed for UML
class diagram structural complexity (internal quality

attribute) are related to some class diagram
maintainability (external quality - attribute) sub-
characteristics: understandability, analyzability and

modifiability [17]'. If such a relationship exists and is
confirmed by empirical studies, we will have really

' Even though understandability has not been considered as a

maintainability sub-characteristic by the ISO 6126 [17] we include it
because several works related to software measurement consider
understandability to be a factor that influences maintainability
[2].[18],[19].

0-7695-1796-X/02 $17.00 © 2002 IEEE 195

obtained early indicators of class diagram maintainability.
These indicators will allow OO software designers to take
better decisions early in the OO software development

life cycle, thus contributing to the development of better
quality OO software.

Table 1. Metrics for UML class diagram structural complexity

Metric name

Meitric definition

NUMBER OF ASSOCIATIONS (N Assoc)

The total number of associations.

NUMBER OF AGGREGATION (NAgg)

The total number of aggregation relationships within a class
diagram (each whole-part pair in an aggregation relationship).

NUMBER OF DEPENDENCIES (NDep)

The total number of dependency relationships.

NUMBER OF GENERALISATIONS (NGen)

The total number of generalisation relationships within a class
diagram (each parent-child pair in a generalisation
relationship).)

NUMBER OF AGGREGATIONS | The total number of aggregation hierarchies (whole-part

HIERARCHIES (NAggH) structures) within a class diagram.

NUMBER OF GENERALISATIONS | The total number of generalisation hierarchies within a class

HIERARCHIES (NGenH) diagram.

MaxmuM DIT (MaxDIT) It is the maximum of the DIT (Depth of Inheritance Tree)
values obtained for each class of the class diagram. The DIT
value for a class within-a generalisation hierarchy is the

- longest path from the class to the root of the hierarchy.

MaxmuMm HAGG (MaxHAgg) It is the maximum of the HAgg values obtained for each class

of the class diagram. The HAgg value for a class within an
aggregation hierarchy is the longest path from the class to the

leaves.

NUMBER OF CLASSES (NC)

The total number of classes.

NUMBER OF ATTRIBUTES (NA)

The total number of attributes.

NUMBER OF METHODS (NM)

The total number of methods

This paper is organized as follows: In sections 2 and 3
we summarize how we carried out the two controlled
experiments for empirically validating the metrics, The
comparison of the results obtained in both experiments
comes in section 4; and finally and in section 5 some
conclusions are presented together with future work.

2. First Experiment

In this section we describe the first experiment we
have carried out to empirically validate the proposed
measures as early maintainability indicators. We have
followed some suggestions provided by Wohlin et al.
[20], Perry et al. [21] and Briand et al. [1] on how to
perform controlied experiments. To describe the
experiment we use (with only minor changes) the format
proposed by Wohlin et al. [20] comprising the folowing
main tasks: definition, planning, operation, analysis and
interpretation, validity evaluation and presentation and
package.

2.1 Definition

196

Using the GQM template [22] for goal definition, the
goal of the experiment is defined as follows:
Analyse UML class diagram structural complexity
metrics
For the purpose of Evaluating
With respect to the capability to be used as class diagram
maintainability indicators
From the point of view of OO Software designers
In the context of Undergraduate Computer Science
students and professors of the Software Engineering area
at the Department of Computer Science at the University
of Castilla-La Mancha

2.2.Planning

2.2.1. Context selection, The context of the experiment is
a group of undergraduate students and professors of the
Software Engineering area, and hence the experiment is
run off-line (not in an industrial software development
environment). The subjects were seven professors and ten
students enrolled in the final-year of Computer Science at
the Department of Computer Science at the University of
Castilla-La Mancha in Spain. All of the professors belong
to the Software Engineering area.

The experiment is specific since it is focused on UML
class diagram structural complexity metrics. The ability
to generalise from this specific context is further
elaborated below when discussing threats to the
experiment. The experiment addresses a real problem,
i.e., what indicators can be used for the maintainability of
class diagrams? With this end in view it investigates the
correlation between class diagram structural complexity
metrics and maintainability sub-characteristics.

2.2.2. Selection of subjects. The subjects are chosen for
convenience, i.e., the subjects are undergraduate students
and professors who have experience in the design and
development of QOIS using UML.

2.2.3. Variable selection. The independent variable is the
class diagram structural complexity. The dependent
variables are three maintainability sub-characteristics:
understandability, analyzability and modifiability.

2.2.4. Instrumentation. The objects were UML class
diagrams. The independent variable was measured
through the metrics we proposed. The dependent
variables were measured according to the subject’s
ratings.

2.2.5, Hypothesis formulation. We wish to test the
following hypotheses: :
Null hypothesis, Hy: There is no significant
correlation between the structural complexity metrics
{(NC, NA, NM, NAssoc, NAgg, NDep, NGen,
NAggH, NGenH, MaxHAgg, MaxDIT) and the
subject’s rating of three maintainability sub-

characteristics, such as understandability,
analyzability and modifiability.

Alternative hypothesis, H;: There is a significant
correlation between the structural complexity metrics
(NC, NA, NM, NAssoc, NAgg, NDep, NGen,
NAggH, NGenH, MaxHAgg, MaxDIT) and the
subject’s rating of three maintainability sub-
characteristics, such as understandability,

analyzability and modifiability.

2.2.6. Experiment design, We selected a within-subject
design experiment, i.c., all the tests (experimental tasks)
had to be solved by each of the subjects. The tests were
put in a different order for each subject.

2.3 Operation

2.3.1. Preparation. By the time the experiment was done
all of the students had taken two courses in Software
Engineering, in which they leamnt in depth how to design
OO software using UML. All the selected professors had
more than four years of experience in the design and
development of OO software using UML. Moreover,
subjects were given an intensive training session before
the experiment took place. However, the subjects were
not aware of what aspects we intended to study. Neither
were they aware of the actual hypothests stated.

We prepared the material we handed to the subjects,
consisting of twenty eight UML class diagrams of the
same universe of discourse, related to Bank Information
Systems. The structural complexity of each diagram is
different, because as table 2 shows, the values of the
metrics are different for each diagram.

Table 2. Metric values for each class diagram

NC |[NA | NM [NAssoc | NAgg | Ndep | NGen | NAggH | NGenH | MaxHAgg | MaxDIT
Do| 2 |4 8 1 0 0 0 0 0 0 0
D1 3 |6] 12 1 1 0 0 1 0 1 0
D2 4 19| 15 1 2 0 0 1 0 2 0
D3| 3 | 7| 12 3 0 0 0 0 0 0 0
D4 5 (14| 21 1 3 0 0 2 0 2 0
Ds| 3 16| 12 2 0 0 a 0 0 0 0
D6 | 4 | 8| 12 3 0 1 0 0 0 0 0
D7| 6 |10} 14 2 2 0 2 1 1 2 1
D8| 3 | 9] 12 1 0 i 0 0 0 0 0
D9 7 |14] 20 2 3 0 2 1 1 2 1
Doy 9 |18 26 2 3 0 4 1 2 3 1
bil| 7 [18} 37 3 3 0 2 1 1 3 1
Di2| 8 |22 35 3 2 1 2 1 1 2 1
D13} 5 | 9| 26 0 0 0 4 0 1 0 2
Di4| 8 |12 30 0 0 0 10 0 1 0 3
D15| 11 |17 | 38 0 0 0 18 0 1 0 4
197

Di6| 20 |42 | 76 10 6 2 10 2 3 2 2
D17| 23 |41 | 38 10 6 2 16 2 3 4 3
DI8| 21 | 45| 94 6 6 1 20 2 2 4 4
D19| 26 | 56| 98 12 7 3 24 3 4 4 4
D20 9 |28 | 47 1 5 0 2 2 1 4 1
D21| 18 | 30] 65 3 5 0 19 1 2 3 4
D22 26 |44 | 79 11 6 0 21 2 5 4 3
D23 17 | 32| 69 1 5 0 19 1 1 2 5
D24| 23 50| 73 9 7 2 11 3 4 4 1
D25y 22 (42| 84 14 4 4 16 2 3 2 3
D26) 14 [34| 77 4 9 0 7 2 2 3 4
D27 17 | 34| 47 6 6 0 11 3 2 2 2

Each diagram had a test enclosed which includes the
description of three maintainability sub-characteristics:

understandability, analyzability and modifiability. Each
subject had to rate each sub-characteristic using a scale
consisting of seven linguistic labels. For example for

Table 3. Linguistic labels for understandability

understandability we proposed the following linguistic
labels shown in table 3.

Extremely Very A bit Neither Quite easy | Veryeasy | Extremely
difficult to | difficultto | difficultto [difficult nor to to easy to
understand | understand } understand easy to understand | understand | understand
understand
We chose seven linguistic labels because we 2.3.3. Data validation. We collected all the tests,

considered they are enough to cover all the possible
categories of our variable, the understandability. The
selection of and odd number of labels has been done
based on some suggestions provided in [23],[24] where
they justify that and odd number contribute to obtain
better resuits due to they are balanced.

We also prepared a debriefing questionnaire. This
questicnnaire included (i} personal details and experience,
(ii) opinions on the influence of different components of
UML class diagrams, such as: classes, attributes,
associations, generalisations, etc. on their maintainability.

2.3.2, Execution. The subjects were given all the
materials described in the previous paragraph. We
explained to them how to carry out the tests. We allowed
one week to do the experiment, i.e., each subject had to
carry out the test alone, and could use unlimited time to
solve it,

We collected all the data, including subjects’ rating
obtained from the responses of the experiment and the
metric values automatically calculated by means of a
metric tool we had designed.

198

checking if they were complete. As all of them were
complete and the subjects had at least medium experience
in building class diagrams (this fact was corroborated
analysing the responses of the debriefing questionnaire)
we consider their subjective evaluation reliable.

2.4. Analysis and interpretation

First we summarised the data collecied. We had the
metric values calculated for each class diagram, and we
calculated the median of the subjects’ rating for each
maintainability sub-characteristic. So this is the data we
want to analyse to test the hypotheses stated above.

‘We applied the Kolmogrov-Smirmov test to ascertain if
the distribution of the data collected was normal or not.
As the data were non-normal we decided to use a non-
parametric test like Spearman’s correlation coefficient,
with a level of significance o = 0.05, which means the
level of confidence is 95%.

Using Spearman’s comelation coefficient, each of the
metrics was correlated separately to the median of the
subject's rating of understandability, analyzability and .
modifiability (see table 4).

Table 4. Spearman's correlation between the metrics and understandability, analysability and modifiability

NC | NA | NM |NAssoc| NAgz | NDep |NGen|NAggH | NGenH |MaxHAgg| MaxDIT
Understandability | 0.912 |0.892|0.859] 0.775 | 0.789 | 0.554 |0.833| 0.683 | 0.857 0.718 0.677
p=0 | p=0 | p=0 p=0 p=0 |p=0.002| p=0 p=0 p=0 p=0 p=0
Analysability (.926 |0.896|0.883 | 0.724 | 0.812 | 0.529 [0.848] 0.693 | 0.863 0.684 0.759
p=0 | p=0 | p=0 | p=0 | p=0 |p=004]p=0] p=0 | p=0 p=0 p=0
Modifiability 0.943 10.907 | 0.909| 0.730 | 0.788 | 0.525 |0.881} 0.676 | 0.891 0.673 0.805
p=O | p=0 | p=0| p=0 | p=0 [p=004]p=0] p=0 | p=0 p=0 p=0

For a sample size of 28 (median values for each
diagram) and o = 0.05, the Spearman cutoff for accepting
Hy is 0.48 [25],[26]. Because the computed Spearman's
correlation coefficients (see table 4) are above the cutoff,
and the p-value < 0,01, the nall hypothesis Hy, is rejected.
Hence, we can conclude that there is a significant
correlation between the UML class diagram structural
complexity metrics and subject’s rating of
understandability, analysability and modifiability.

2.5, Validity evaluation

We will discuss the empirical study’s various threats to
validity and the way we attemnpted to alleviate them:

2.5.1. Threats to conclusion validity, The conclusion
validity defines the extent to which conclusions are
statistically valid. The only issue that could affect the
statistical validity of this study is the size of the sample
data (476 values, 28 diagrams and 17 subjects), which is
perhaps not enough for both parametric and non-
parametric statistic tests [26]. We are aware of this, so we
will consider the results of the experiment only as
preliminary findings.

2.5.2. Threats to construct validity. The construct
validity is the degree to which the independent and the
dependent variables are accurately measured by the

measurement instruments used in the study. The
dependent variables are three maintainability sub-
characteristics: understandability, analysability and

medifiability. We proposed subjective metrics for them
(using linguistic variables), based on the judgement of the
subjects. As the subjects involved in this experiment
have medium experience in QOIS design using UML we
think their ratings could be considered significant. The
construct validity of the metrics used for the independent
variables is guaranteed by Poels and Dedene’s
framework® [27] used to define and validate them.

2.5.3. Threats to Internal Validity. The internal validity
is the degree to which conclusions can be drawn about

2 This framework is based on Measurement Theory [28) and not also
- assure that the metrics measure the artribute they purpose to measure byt
also that the metrics are characterised in the rafio scale.

199

cause - effect of independent variables on the dependent

variables. The following issues have been dealt with:

— Differences among subjects. Using a within-subjects
design, error variance due to differences among
subjects is reduced. As Briand et al. [18] remarks
when dealing with small samples in sofiware

- engineering experiments, variations in participant
skills are a major concern that is difficult to fully
address by randomisation or blocking. In this

experiment, professors and students had
approximately the same degree of experience in
modelling with UML?.

— Knowledge of the universe of discourse among class
diagrams. Class diagrams were from the same
universe of discourse, the only variant being the
number of attributes, classes or associations, i.e.,
their constituent parts. Consequently, knowledge of
the domain does not affect the internal validity.

— Accuracy of subject responses. Subjects assumed the
responsibility for rating each maintainability sub-
characteristic. As they have medium experience in
OO0 software design and implementation, we think
their responses could be considered valid. However,
we are aware that not all of them have exactly the
same degree of experience, and if the subjects have
more experience minor inaccuracies could be
introduced by subjects.

— Learning effects. The subjects were given the test in
a different order, to cancel out learning effects.
Subjects were required to answer in the order in

. which the tests appeared.

-~ Fatigue effects. On average the experiment lasted for
less than one hour (this fact was corroborated
summing the total time for each subject), so fatigue
was not very relevant. Also, the different order in the
tests helped to cancel out these effects.

— Persistence effects. In order to avoid persistence
effects, the experiment was run with subjects who
had never done a similar experiment.

— Subject motivation. All the professors who were
involved in this experiment have participated

* We argue this because the students are Ph.D. students and students of
the final-year, and professors are young professors, who has been
graduated one or two years ago.

voluntarily, in order to help us in our rescarch. We
motivated students to participate in the experiment,
explaining to them that similar tasks to the
experimental ones could be done in exams or
practice.

~ Other factors. Plagiarism and influence among
students could not really be controlled. Students were
told that talking with each other was forbidden, but
they did the experiment alone without any
supervision, so we had to trust them as far as that was
concerned. We are conscious that this aspect at some
extent could can threat to the validity of the
experiment, but in that moment it was impossible to
join all the subjects together. We are planning to
replicate this experiment in a more controlled
environment.

2.5.3. Threats to external validity. The external validity
is the degree to which the results of the research can be
generalised to the population under study and other
research settings. The greater the external validity, the
more the results of an empirical study can be generalised
to actual software engineering practice. Two threats of
validity have been identified which limit the possibility of
applying any such generalisation:

— Materials and tasks used. In the experiment we tried
to use class diagrams which can be representative of
real cases. Related to the tasks, the judgement of the
subjects is to some extent subjective, and does not
represent a real task. So more empirical studies
taking “real cases” from software companies must be
done.

— Subjects. To solve the difficulty of obtaining
professional subjects, we used professors and
advanced students from software engineering
courses. We are aware that more experiments with
practitioners and professionals must be carried out in
order to be able 10 generalise these results. However,
in this case, the tasks to be performed do not require
high levels of industrial experience, so, experiments
with students could be appropriate [13].

2.6. Presentation and package

As the diffusion of the experimental data is important
to external replication [29] of the experiments we have
put all the material of this experiment on our web site
http:\\alarcos.inf-cr.uclm.es.

3. Second experiment

As the majority of the steps are identical to those of
the first experiment we will only point out those issues
which are different. The subjects were ten professors and
twenty students enrolled in the firal-year of Computer
Science at the Department of Computer Science at the
University of Castilla-La Mancha in Spain. All of the
professors belong to the Software Engineering area.

The dependent variable was measured by the time the
subjects spent carrying out the tasks required in the
experiment. We called this time “maintenance time”,
Maintenance time comprises the time to comprehend the
class diagram, to analyse the required changes and to
implement them. Our assumption here is that, for the
same modification task, the faster a class diagram can be
modified, the easier it is to maintain.

We wish to test the following hypotheses:

= Null hypothesis, HO: There is no significant
correlation between structural complexity metrics
(NC, NA, NM, NAssoc, NAgg, NDep, NGen,
NAggH, NGenH, MaxHAgg, MaxDIT) and
maintenance time.

= Alternative hypothesis, H1 : There is a significant
correlation between structural complexity metrics
(NC, NA, NM, NAssoc, NAgg, NDep, NGen,
NAggH, NGenH, MaxHAgg, MaxDIT) and
maintenance time.

The material we gave to the subjects consisted of a guide

explaining UML notation and nine UML class diagrams

of different application domains, that were easy enocugh

to be understood by each of the subjects. The diagrams

have different structural complexity, covering a broad

range of metric values (see table 5).

" Table 5, Metric values for each class diagram.

NC | NA | NM |NAssoc| NAgg | NDep | NGen | NAggH | NGenH | MaxDIT | MaxHAgg
D1 7 11 | 22 1 0 0 5 0 1 2 0
D2 8 12 31 1 6 0 i 1 1 | 2
D3 | 3 17 | 24 2 0 0 0 0 0 0 0
D4 | 10|12 | 21 15 3 0 0 2 0 0 1
D5 9 19 | 29 3 3 0 3 3 1 2 1
D6 7 16 7 6 0 0 0 0 0 0 0
D7 | 23| 33} 66 4 5 2 16 2 3 3 3

200

D8 | 206 | 30 | 65 6) 0

14 4 3 3 2

D9 | 23 | 65 | 80 20 3 2

3 3 1 2 3

Each diagram had an enclosed test that included a brief

description of what the diagram represented and two new
requirements for the class diagram. Each subject had to
modify the class diagrams according to the new
requirements and to specify the start and end time. The
difference between the two is what we call maintenance
time (expressed in minutes and seconds). The
modifications to each class diagram were similar,
including adding attributes, methods, classes, etc.
We collected all the data including the modified class
diagrams with the maintenance time obtained from the
responses of the tests and . the metrics values
automatically calculated by means of a metric tool we
designed.

Once the data was collected, we controlled if the tests
were complete and if the modifications had been done

correctly. We discarded the tests of seven subjects, which
included a required modification that was done
incorrectly. Therefore, we took into account the responses
of 23 subjects.

We had the metric values calculated for each class
diagram (see table 5), and we calculated the mean of the
maintenance time. So this is the data we want to analyse
to test the hypotheses stated above. We applied the
Kolmogrov-Smirnov test to ascertain if the distribution of
the data collected was normal. As the data were non-
normal we decided to use a non-parametric test like
Spearman’s correlation coefficient, with a level of
significance a = 0.05, correlating each of the metrics
separately with maintenance time (see table 6).

Table 6. Spearman’s correlation coefficients between metrics and maintenance time

NC NA NM NAssoc | NAgg NDep |[NGen | NAggH |NGenH| Max HAgg Max DIT
Maintenance| 0.941 0.803 0.795 0.67t 0.667 041! 107281 0759 | 0719 0.840 0.669
Time p=0 p=0.009 | p=0.0! | p=0.006 | p=0.049 | p=0.272 |p=0.04| p=0.018 029| p=0.005 p=0.04

For a sample size of 9 (mean values for each diagram)
and o0 = (.03, the Spearman cutoff for accepting H, is
0.66 [25][26]. Because the computed Spearman’s
correlation coefficients (see table 6) for all the metrics,
except for NDep, are above the cutoff, and the p-value <
0,05, the null hypothesis Hy, is rejected . Hence, we can
conclude that there is a significant correlation between
all the metrics (except Ndep) and the maintenance time.

So, NDep is the only one that has a no correlation, but
this could be explained by the fact that in most of the
selected diagrams NDep took the value 0 (see table 5). So
in future experiments we have to select diagrams with
more representative NDep metric values.

4. Comparison of results

An overall analysis of the obtained results (see tables 4
and 6) leads us to conclude that the metrics NC, NA, NM,
NAssoc, NAgg, NGen, NAggH, NGenH, MaxHAgg,
MaxDIT are to some extent correlated with the three
maintainability sub-characteristics we considered. NDep
seems to be the only non-correlated metric, although this
preliminary result may be caused by the design of the
experiment as in the second experiment the majority of
the diagrams did not have dependencies. We believe it is
too early to consider these results as definitive. As
previously stated, further empirical validation is needed,
including internal -and external replication of these

201

experiments, and also new experiments must be carried
out, with practitioners who work in software development
organisations. As Basili et al. [13] remark, after
performing a family of experiments you can build the
cumulative knowledge to extract useful measurement
conclusions to be applied in real measurement projects.

Moreover, data related to *real projects” is also needed
for gathering real evidence that these metrics can be used
as early class diagram maintainability indicators.

5. Conclusions and future work

It is widely recognized that the quality of OO software
must be assessed from the early phases of its development
life cycle. This fact lead us to define a set of metrics for
assessing the structural complexity of UML class
diagrams, with the idea that they are correlated with the
maintainability of such diagrams.

These early metrics could allow QO software designers a
quantitative comparison of design alternatives, and
therefore, an objective selection among several class
diagram alternatives with equivalent semantic content,
and the prediction of external quality characteristics, like
maintainability in the initial stages of the IS life cycle and
a better resource allocation based on these predictions. In
this sense we have built prediction models (based on the
metrics values) using two advanced techniques borrowed

from artificial intelligence [30],[31]. Although the

accuracy of prediction of those models is pending on

further investigation,

Performing empirical validation with the metrics is

fundamentali in order to demonstrate their practical utility.

In this line we have summarized two controlled

experiments with the aim of corroborating if there is a

significant correlation between the proposed metrics and

the maintainability sub-characteristics: analysability,
understandability and modifiability. The results obtained
in both experiment shows that most of the metrics we
proposed (NAssoc, NAgg, NaggH, MaxHAgg, NGen,

NgenH and MaxDIT) are good indicators of class

diagram maintainability sub-characteristics. We cannot,

however, draw such firm conclusions regarding the NDep
metric.

Some changes that could be made to improve the

experiment presented are:

— Increase the size of the class diagrams. By increasing
the size of the class diagrams we can have examples
that are closer to reality. Also, as the examples are
more realistic, and if we are working with
professionals, we can make better use of their
potential capability and conclude that the results are

. more general. :

— Increase the difference between the values of the
metrics. This option could lead to more conclusive
results about the metrics and their relationship with
the factor we are trying to control.

- Carry out the experiment in a more controlled
environment.

— Work with real data. Another way to enhance the
validity of the results is by working with real data
obtained from industrial environments. However, the
scarcity of such data continues to be a great problem
so we must find other ways to tackle validating
metrics.

Acknowledgements

This research is part of the DOLMEN project supported
by CICYT (TIC 2000-1673-C06-06).

References

[1] L. Briand , S. Arsholm, F. Counsell, F. Houdek and P.
Thévenod-Fosse, “Empirical Studies of Object-Oriented
Anrtefacts, Methods, and Processes: State of the Art and
Future Directions”, Empirical Software Engineering, 4(4),
1999, pp. 387-404,

{2] Fenton, N., and S. Pfleeger, Software Metrics: A
Rigorous Approach, 2nd. Edition, Chapman & Hall,
London, 1997.

202

[3] Henderson-Sellers, B., Object-Oriented Metrics - Measures
of complexity, Prentice-Hall, Upper Saddle River, New
Jersey, 1996.

[4] Melton, A. (ed.), Software Measurement, International
Thomson Computer Press, London, 1996.

[5] Zuse, H., A Framework of Saftware Measurement, Walter de
Gruyter, Berlin, 1598.

[6] F. Brito ¢ Abreu, and R. Carapuga, “Object-Orented
Software Engineering: Measuring and controlling the
development process”, 4th Int Conference on Software
Quality, Mc Lean, Va, USA, 1994, ‘

[7]1 S. Chidamber, and C. Kemerer, “A Metrics Suite for Object
Oriented Design”, [EEE Transactions on Software
Engineering, 20¢(6), 1994, pp. 476-493.

[8] Lorenz, M., and J. Kidd, Object-Oriented Software Metrics:
A Practical Guide, Prentice Hall, Englewood Cliffs, New
Jersey, 1954,

[9] M. Marchesi, “O0A Metrics for the Unified Modeling
Language”, Proceedings of the 2nd Euromicro Conference
on Software Maintenance and Reengineering, 1998, pp.
67-73.

[16] M. Genero, M. Piattini, and C. Calero, “Early Measures For
UML class diagrams”, L°Objet, 6(4), Hermes Science
Publications, 2000, pp. 489-515.

[11] M. Genero, “Defining and Validating Metrics for
Conceptual Models”, Ph.D. thesis, University of Castilla-
La Mancha, 2002.

[12] C. Calero, M. Piattini, and M. Genero, “Empirical
validation of referential integrity metrics”, Information and
Software Technology, 43, 2001, pp. 949-957.

[13] V. Basili, F. Shuli, and F. Lanubile, “Building Knowledge
through Families of Experiments”, [EEE Transactions on
Software Engineering, 25(4), 1999, pp. 435-437.

[14] B, Kitchenham, S. Pflecger, and N. Fenton, “Towards a
Framework for Software Measurement Validation”, IEEE
Transactions of Software Engineering, 21(12), 1995, 929-
943,

[15] N. Schneidewind, “Methodology For Validating Software
Metrics”, IEEE Transactions of Software Engineering,
18(5), (1992), 410-422.

[16] G. Cantone, and P. Donzelli, “Production and maintenance
of software measurement models”, Journal of Software
Engineering and Knowledge Engineering, 5, 2000, pp.
605-626.

[17] ISO/AEC 9126-1.2, “Information technology- Software
product quality — Part 1: Quality model”, 1999.

[18] L. Briand, C. Bunse, and J. Daly, “A Controlted

"~ Experiment for evaluating Quality Guidelines on the
Maintainability of Object-Oriented Designs”, IEEE
Transactions on Software Engineering, 27{6), 2001, pp.
513-530.

f19] R. Harrison, S. Counsell, and R. Nithi, “Experimental
Assessment of the Effect of Inheritance on the Maintainability
of Object-Oriented Systems”, The Journal of Systems and
Software, 52, 2000, pp. 173-179.

{20] Wohlin, C., P. Runeson, M. Hést, M. Ohlson, B. Regnell,
and A. Wesslén, Experimentation in Software Engineering:
An Introduction, Kluwer Academic Publishers, 2000,

{21] D. Perry, A. Porter, and L. Votta, “Empirical Studies of
Software Engineering: A Roadmap”, Future of Software

bR -

Engineering, ACM, Ed. Anthony Finkelstein, 2000, pp.
345-355.

[22] V. Basili, and H. Rombach, *“The TAME project: towards
improvement-oriented software environments”, IEEE
Transactions on Software Engineering, 14(6), 1988, pp.
728-738.

[23] L. Godo, R. Lépez de Mintaras, C. Sierra, and A
Verdaguer, “MILORD: the architecture and management
of linguistically expressed uncertainty”, International
Journal of Intelligent Systems, 4, 1989, pp. 471-501.

[24] P. Bonissone, “A Fuzzy Sets Based Linguistic Approach:
Theory and Applications”, Approximate Reasoning in
Decision Analysis, M. M. Gupta and E. Sanchez (eds.),
North-Holland Publishing Company, 1982, pp. 329-339.

{25]
bitp://department.obg.cuhk.edu hk/ResearchSupport/Minim
um_correlation.asp

[26] L. Briand, K. E! Emam, and §. Morasca, “Theoretical and
empirical validation of software product measures”,
Technical Report ISERN-95-03, International Software
Engineering Research Network, 1995.

[27] G. Poels, and G. Dedene, “Distance-based software
measurement: necessary and sufficient properties for
software measures”, Information and Software Technology,
42(1), 2000, pp. 35-46.

[28] Roberts, F., Measurement theory with applications to
decision: making, utility, and the social sciences, Addison-
Wesley,.Reading, MA, USA, 1979.

[29] A. Brocks, 1. Daly, J. Miller, M. Roper, and M. Wood,
“Replication of experimental results in software
engineerng”’, Technical report ISERN-96-10, International
Software Engineering Research Network, 1996.

[301 M. Genero, J. Olivas, M. Piattini, and F. Romero, “Using
metrics. to predict OO information systems
maintainability”, CAISE 2001, Lecture Notes in Computer
Science; 2068, Interlaken, Switzerland, 2001, pp. 388-401.

{31] M. Genero, L. Jiménez, and M. Piattini, “Empirical
Validation of Class Diagram Complexity Metrics”, SCCC
2001, IEEE Computer Society Press, Chile, 2001.

203

