" O ¢ e . {_
W #2002

s

e

WITUML: Workshop on Integration and
Transformation of UML models

Malaga, Spain, June 11th, 2002

Organizing Committee

Ja@di fet.unlpt
o Jon Whittle: NASA Ames Research Center, Moffett Field. CA 94035,

Jonathw@ptolemy.arc.nasa.gov
» Ambrosio Toval: Universidad de Murcia, Murcia, Spain,

atoval@dif um.es
s Robert France: Colorado State University, Fort Collins, CO 80523,

france@cs.colostate.edu

ot g s aat

Jodo Aratijo: Universidade Nova de Lisboa, 2829-516 Caparica, Portugal,

Accepted Position Papers

* From UML to Ptolemy II simulation: a model transformation, V.Arnould,
A Kramer, F.Madiot

= Generating test data from OCL specification, M.Benattou, J.-M.Bruel, N.Hameur]ain

* Adapting design types to communication media and middleware environments,
J.Caficte, F.Galan, M.Toro

* Mapping models between different modeling languéges, E.Dominguez, A Rubio,
M.Zapata . . :

* Using temparal logic to represent dynamic behavior of statecharts, M. Enciso, 1.
Guzman, C. Rossi

= Generating and executing test data f or OO systems, M. Jiménez, M. Polo, M. Piattini
* Integration of UML models using B notations, H. Ledang, J. Souquiéres

= OCL as a core UML transformation language, D. Pollet, D. Vojtisek, J.-M. Jézéquel
= A framework for model transformations, 1. Porres |

= Mapping QO applications to relational databases using MOF and XMI, E. Rodrigues,
R. Melo, F. Porto, J. Neto

* The value added invariant: a newtonian approach for generating class diagrams from
a use case model, B. Roussev

= Adding use cases to the building of information systems with Oracle Designer, P.
Salion, V. Ribaud

* A pragmatic approach to rule-based transformations within UML using XMI.difference,
A. Wagner

ke’ a5 ST, VRN, 5y i VU PR

g B RN S R B S o O I 30, 4 i R

N B N A AR R o T DA T i R T e T NI SR e e e g s

Generating and executing test data for objects oriented systems’
Maria del Mar Jiménez, Macario Polo, Mario Piattini
Escuela Superior de Informitica
Universidad de Castilla-La Mancha
Paseo de la Universidad, 4; 13071-Ciudad Real (Spain)

Abstract

This paper presents the first research results of a method for the automatic
generation and execution of test cases for Object Oriented Systems.
The starting-point is the algebraic modelling of the static structure (class

diagrams) of the object-oriented system and, then, the. application of a set of

algedizaic transformation functions to obtain the required test cases.

-1 Introduction.

Software testing involves judging how well a series of test inputs test a piece
of code [7]. Manual generation of such tests can be quite time consuming, and
software testing has became one of the most expensive stages of the software life
cycle [9]. So, great research effort is being devoted to automate its tasks, as test-case
generation and test-case execution [6].

In this paper we present the first results of a method for the automatic
generation and execution of test cases in object-oriented systems. We lave defined an
initial metamodel that, using algebraic notation, allows to represent the class structure
of any object-oriented system. Then, the object-onented system can be translated into
an instance of such metamodel and, from the application of a set of algebraic
functions working on it, 2 wide number of test cases can be obtained.

This very same metamodel is also valid for doing other software engineering
tasks, as code generation [8] or reverse-engineering.

This position paper 1s organized as follows: in Section 2 we briefly present the
structure of the metamodel used, and the way used to convert an object-oriented
system in one instance of the metamodel; in Section 3 we examine the most common
techniques of test case generation and some problems values for these test case.
Finally, in section 4 we describe how executing the test data.

2 Metamodel description.
Our metamodel, in its current point of development, specifies class diagrams
using a formal represemtation based on mathematical descriptions of many of the
elements existing in an object-oriented system.

-->There are many proposals related to the formal specification of object-oriented -

systems, such as TroLL [5], Object-Z [11] or even OCL [4]. Although probably our
ideas could be put into practice in any of these environments, the reality is that these
proposals are too rigorous (‘too formal”) to popularise its use. Qur approach is closer
to the ideas of Manfred Broy [3], for whom Software Engineering, as any other
discipline, needs mathematical descriptions and theories for its modeling aspects,

" This work is partially supported by the DOLMEN project (CICYT, TIC-2000-1673-C06-06).

R L R TR o R

¥

description techniques and development methods. However, he claims that such
mathematical theory must not be too complex, since then it would not be a very
helpful contribution for software engineers. The theory should give semantics to usual
description techniques (as class diagrams, state charts, etc.) and should explain
methods from a mathematical rational, more in the form of a “Formal Description
Technique” than as a “Formal Method”. This involves the formal description of usual
software-engineering techniques through usual mathematics.

With this consideration, a possible textual description of the static structure
(class model) of an object-oriented system would say that a class model is a set of
classes and relations between them: associations, aggregations, dependence and
inheritance relationships. From this, a formal description of a class model is a
“system” as defined by [7]: it is composed of classes and relationships among them:

S=(C, R), where C is the set of classes and interfaces and R is the set of
existing relationships among elements in C: RgCxC.
' A class'ic is an element of C; this is: ceC=(Name, Fields, Constructors,
Methods, Parents), where Fields is the set-of the class fields; Constructors is the set
of operations that allow to build instances of ¢; Methods is the set of its methods;
Parents is the set of parent classes (Parentsc(C).

Each one of these elements can be described in more depth, giving details on
the definition of fields, constructors and methods:

a feFields= (Name, Class, Visibility), where Name, Type and Visibility
respectively are the name, class, and visibility (public, etc.) of the field.

o teConstructors= (Name, Visibility, Arguments), where Name is the same
name of the class and Arguments is the set of the arguments of this
constructor, being aeArguments=(Name, Class), where Class is the type of
the argument.

0 me&Methods= (Name, Class, Visibility, Arguments, isStatic), where Class is
the type of the result retumed by the method, and isStaticeftrue, false}
denotes whether the method is or not a class method.

With these descriptions, the set of classes and relationships in an object-oriented
system remains as follows:
S={CR}=
{(Name,, Fields;, Constructors;, Methods;, Parents;),
(Name;, Fields;, Constructors; Methods;, Parents;),

(Name,, Fields,, Constructors, Methods,, Parents,),
R}', RZ, "'!Rﬂ}

Therefore, any object-oriented system, written in any programming or
modelling language, could be described using this single algebra. It is possible to
define trarisformiation functions on these sets to performr many software engineering
tasks. Test-case generation and execution are two of them.

3 Test case generation.
There are a number of techniques for automatically generate md execute test-

cases, such as:
0 Random Test Data Generation, that gencrates random values to be used as

inputs of the program under test.

W

T R AR T T A g g 2 e o e L

Q Symbolic Execution, that makes an static analysis of the source code to
generate test cases and simulates the actual execution of the program [6).
Symbolic execution is difficult to use in real environments, due to its
drawbacks to deal with pointers, arrays, complex data types, etc.

0 Dynamic Test Data Generation, that tracks the result of the program

- execution to progressively generate test-inputs that help to reach higher
values of coverage [7]. '

3.1 Algorithm

The test of a class consists of the construction of an instance of the class
(via the invocation of one of its constructors) and the execution, on that
instance, of a sequence of some of its methods. The selected constructor
and methods can take parameters, that can be of any type. Supposing a
constructor or a method that takes an integér as parameter, it could be .
invoked using random values, boundary values (close to zero), very big
‘and very small values, etc. as test-data. If another operation takes a String
as parameter, it could be invoked using the empty String, the null string, a
string of special characters, a string of letters and numbers, etc. as test-
data. If there is another operation that takes an integer and a String as
parameters, it could be invoked with all the combinations of all the afore-
mentioned values. When the parameter is not a single data-type (its type is
a complex class, as ‘“Person”, “Car”, etc), it is possible to generate
instances-for-test combining the test values of its fields.

Our algorithm is based on the previous idea: it starts generating test cases
based on the types of the fields of the class. For example, given a class ¢ with two
fields, one integer and one String, we can generate so many test data as combinations
of predefined values for these types. Supposing we have predefined {1, 0, +1} and
{new String(), null, “Hello!"} as basic values for testing integer and string variables,
we would have the following combinations for constructing instances- for-testing of ¢:

e (-1, new String()) o (-1, null) o (+1, “Hello!”)
e (0, new String()) ¢ (0, null) o (0, “Hello!)
e (1, new String()) e (1, null) o (+1, “Hello!”)

This is, we define a set of predefined test-data for basic types, and then we use
the cross product of the fields in the class to generate test-data in classes with more
complexity. These test-data are used as values for invoking constructors and methods
of the class-under-test. More formally, being 7D the test-data for a class:

TD (Primitive Type) = {Predefined Values}

TD (teConstructors) = { I TD (a.Class)}
VacArgumentsTD (meMethods) = { I] TD (a.Class)}
VaeArguments
Finally, we obtain a test case for a class invoking a constructor of this class
and a collection of methods, and passing as parameters some pre-generated values:

TC (ceClasses) = (ieConstructors, m cc.Methods)

3.2 Example
Let us consider the following three classes: Person, Employee and Student, as in
Figure 1.

Person
HName ; String
NI : String

erson{}
erson{}

T Empiovee Student
hme——————
ﬁsalary Integer) @Studies : §tring
mployea() "
Esoid sat Salary() E¥student()

Figure 1. Example Class Diagram.

According to section 2, the algebraic representation of these system is:
S={c;, Cy C3. 1y, r;}
ci=(Person, If}, £}, {t1. 12})
J1=(DNI, String, Private)
fo=(Name, String, Private)
t;=(Person, Public, {a,, a;}, True)
a;=(DNI, String)
ay=(Name, String)
2=(Person, Public, {p;}. True)
a;=(DNI String)
c=(Employee, 5. t;, my, Person)}
Ji1=(Salary, Integer, Private)
t;=(Employee, Public, {a; a;}, True)
a;=(P, Person)
a;={Salary, Integer)
my=(setSalary, void, Public, a, True)
c3=(Student, [}, t;, Person}
Si={Studies, String, Private)
ti=(Student, Public, {a,; a3}, True)
a;=(P, Person)
a;=(Studies, String)
Once we have a formal descroption of the classes, we can generate the data
test. Let us suppose we already have the following set of predefined values for

primitive data types (such as zero, empty string, random values, etc.): : - -

TD(Integer) = {-1820, -7, -1, 0, 1, 52, 2090} // 7 values
ID(String) = {7, NULL, “a”, “1", "#", “8”, “Ann", “ececeechhhh’} // 8 values

In order to test, for example, the class Person, we need first to define a set of
test sequences, composed by a constructor and some methods. The first constructor,
for example, that takes two strings as parameters, what would produce 8*8=64

combinations of values for testing this constructor. If the class would have methods, a
similar mechanism would be used to generate test-data for invoking the methods.

When a test-sequence is executed, it produces an object that can be saved for

doing later regression testing. In a real environment, this is got via Serialization.

4 Conclusions and future work.

This paper has presented the first results of a method for the automatic generation

of test-cases in object-oriented systems. The main idea is to use a metamodel for
representing any object-oriented system and, then, the application of algebraic
functions working on such metamodel to generate the desired test cases.

We are cumrently working on the refinement of the metamodel to support the

characteristics of most of the object-oriented programming languages, and in the
development of tools to tramslate object-oriented programs and class diagrams
depicted with commercial CASE tools into a common notation that represents
+vinstances of the metamodel. This common notation is physically represented as XML

files

An important fiture line of work is the development of notation and algorithms

for representing and executing testing sequences from the generated test cases.

[t

5 References.
Biggerstaff, TJ, Mitbander, BG. and Webster, DE. (1994). Program

. Understanding and the Concept Assigment Problem. Communications of the

(2]

(3]
[4]

[3]

[6]

(7]

[8]

(9]

(10]

[11]

ACM, 37(5), 72-83.

Briand, L. C., Morasca, S. and Basili, V.R. (1996). Property-Based Software
Engineering Measurement. [EEE Transactions on Software Engineering, 22(1),
68-86.

Broy, M. (2001). Toward a Mathematical Foundation of Software Engineering
Methods. /EEE Transactions on Software Engineering, 27(1), 42-57.

Heinrich H., Frank F., Ralf W. Using Previous Property Values in OCL
Postconditions - An Implementation Perspective. UML 2.0 - The Future of the
UML Constraint Language OCL, October 2, 2000, York, UK.

Jungclaus R., Saake G., Hartmann T., and Semadas C. (1991). Object-Oriented
Specification of Information Systems: The TROLL Language. Informatik-
Bericht 91(04).

Meudec C. ATGen: automatic test data generation using constraint logic
programming and symbolic execution. Journal of Software Testing, Verification
and Reliability 2001; 11(2):81-96.

Michael, CC., McGraw, G., Schatz MA. (2001). Generating Software Test Data
by Evolution. /EEE Transactions on Software Engineering, 27(12), 1085-1109.
Polo M, Mayoral A, Gémez JA and Piattini M. (2001). Automatic generation of
fully-executable code from the Domain tier of object-oriented systems. Proc. of
the First workshop -on. Transformations of the Unified Modelling language
(WTUML). Genove, Italy. '

Pressman RS. Software Engineering: a practitioner’s approach. McGraw-Hill,
1997.

Reinder J,, Loe M. G Feijs, André Glas, René L. Krikhaar, Thijs Winter (2000).
Maintaining a legacy: towards support at the architectural level. Jowrnal of
Software Maintenance, 12(3): 143-170.

Smith G. The Object-Z Specification Language. Kluwer Academic Publishers,
2000.

B N A IPE 1. oS R I R D AT s b B o v 3

FER—— e

