

Using REFSENO to Represent Knowledge in the Software Maintenance
Process

Aurora Vizcaíno, Francisco Ruiz, Mario Piattini, Félix García
Alarcos Research Group, Universidad de Castilla-La Mancha, Ciudad Real (Spain)

{Aurora.Vizcaino, Francisco.RuizG, Mario.Piattini, Felix.Garcia}@uclm.es

Abstract

Many papers describe ontological designs but few

of them explain how the ontology may be implemented.
This paper describes how an ontology to represent
software maintenance knowledge was specified by
using the REFSENO Methodology. The paper also
explains the use of similarity functions to compare
products and requirements in order to reuse previous
solutions and lessons learned.

1. Introduction

Knowledge is a critical resource and an essential

element for any business activity as well as for
supporting an enterprise’s strategy [13]. However, on
many occasions, organizations have plenty of
documents which have not been catalogued and nobody
uses. Most organizations still do not use techniques to
acquire workers’ knowledge and expertise obtained
through their work in the company. This fact has
already been commented on by other authors such as
Szulanski in [24] who found that the number one
barrier to knowledge sharing was "ignorance".
Sometimes the organization itself is not aware of the
location of the pockets of knowledge or expertise [17].
This implies that the companies have to re-invert time
and effort searching for information that has already
been used or researching solutions to problems that
have previously been solved.

A plausible technique to prevent this problem is to
store good solutions to problems or lessons learned to
avoid repeating mistakes and to increase productivity
and the likelihood of further success [22]. Based on
this idea KM-MANTIS, a system in charge of
managing the information generated in the stage that

originates most expenses in the software engineering
(the maintenance process stage) was designed.

The core of KM-MANTIS is an ontology about
software maintenance concepts. This ontology was
developed combining a theoretic and a pragmatic
approach in a very similar manner to the Helix-Spindle
Process Model for Ontological Engineering [14]. The
ontology was developed using the REFSENO
methodology. Therefore, the first step was to define an
ontology that formalized and related the different
concepts that KM-MANTIS had to deal with. The
following step was to implement that ontology. This
paper explains the advantages of using REFSENO to
implement an ontology in a knowledge management
system specialized in software engineering projects
management and also illustrates how it was carried out,
stressing the use of similarity functions to compare
products and requirements. The rest of the paper is
structured as follows: Section two outlines the need of
managing knowledge in the software maintenance
process. Section three explains the methodology and
describes the advantages of using it. After that, section
four explains how our ontology was implemented by
using REFSENO. Finally, in section five the
conclusions are presented.

2. Knowledge in Software Maintenance

Software engineering in general, and software
maintenance in particular, are activities that generate
important amounts of knowledge. This knowledge
comes not only from the expertise of the professionals
involved in the processes, but is also intrinsic to the
product being maintained and, in the case of software
maintenance, to the reasons that motivate maintenance
(new requirements, defects detected, etc.). Moreover,
software maintenance is a constantly changing process

since maintenance results from the necessity of
adapting software systems to an ever changing
environment [19].

Furthermore, software maintenance involves many
activities in which different people intervene. Each
person has partial information that is necessary to other
members of the group but if a software maintainer is
the only person who has this knowledge and there is no
system in charge of transferring the implicit knowledge
(which the employees have) to explicit knowledge
(stored on paper, in files, etc) when this maintainer
leaves the organisation part of the intellectual capital
and of his/her expertise go with him/her. Therefore,
companies lose important intellectual capital which is
difficult to recover.

Another well-known issue that complicates the
maintenance process is the scarce amount of
documentation that usually exists in relation to a
specific software system. And even if detailed
documentation was produced when the original system
was developed, it is seldom updated as the system
evolves. For example, legacy code from other
departments often does not have documentation which
describes the features of the software. For all these
reasons, maintenance organizations frequently have
problems identifying the resources of their knowledge
and as a result they do not reuse it.

Techniques and tools are needed to help software
practitioners apply past knowledge to current projects
[10]. Using a knowledge management system new
knowledge might be produced, thus obtaining the
maximum performance from the current information.
Furthermore, by reusing information and producing
relevant knowledge the high costs of software
maintenance could also be decreased [2].

3. REFSENO: Advantages and Description

The issues explained above motivated us to design a
knowledge management system for acquiring,
managing, and disseminating knowledge in a software
maintenance organisation with the goal of increasing
the workers’ expertise, the organisation's knowledge
and its competitiveness while decreasing the costs of
the maintenance process.

Before constructing the system, modelling,
structuring and generalising the information that is
generated during the software maintenance process was
vitally important. In order to attain this goal we decided
to construct a common conceptualisation of the
domain, where objects, concepts, entities and their
relationships were explicitly represented. Since
ontologies enable explicit specification of a
conceptualisation [8] and they represent a certain view

of an application domain in which the concepts that
live in this domain are defined in an unambiguous and
explicit way [3], this technique was chosen. Moreover,
as is explained in [15] ontologies facilitate enterprise
knowledge management, knowledge sharing [16], and
knowledge integration [4]. All of these were very
important requirements for KM-MANTIS.

To design and implement an ontology it is advisable
to follow a methodology which is suitable for this aim.
Different methodologies and representations have been
proposed. For instance, [11] uses a representation
based on first-order predicate logic. Other authors
prefer frame-based approaches, such as those that are
used in Ontolingua [5], one of the most frequently used
ontologic languages. And other authors are using F-
Logic and Description Logics.

We chose an improved adaptation of Methontology
called REFSENO (Representation Formalism for
Software Engineering Ontologies) [25] for the
following reasons:

As the name of the own methodology indicates it
was specifically designed to develop software
engineering ontologies.

REFSENO uses different representations to model
knowledge (such as tables and tree structures) which
are more intuitive and easy of understand for
stakeholders involved in software projects than other
approaches used in previous works such as [5], [7],
[11], [23], based on first-order predicate logic or
similar. This point was very relevant for us, as in the
development team there were people who worked in
software maintenance companies but who did not know
of formal representation approaches.

REFSENO distinguishes different levels of
knowledge: conceptual and context-specific
knowledge. On the contrary, the above approaches
represent a high level of abstraction. Consequently,
they represent a lesser level of granularity than
REFSENO does.

The methodology proposes different techniques to
check the consistency of the ontology and, what is
more, has methods of controlling the consistency of the
instances to an implementation level, a feature that
other methodologies do not consider.

Because KM-MANTIS should detect problems that
have already been solved in order to reuse the same
solution and avoid effort, the system needed intelligent
artificial techniques. Case-Based Reasoning (CBR) is
often used to find the best solution for problems
dealing with selecting a solution from many existing
ones [18]. Thus, it was one of the techniques chosen.
Fortunately, REFSENO provides constructs that

facilitate the use of CBR as will be illustrated in section
4.

 REFSENO provides epistemic primitives to describe
concepts where each concept represents a class of
experience items. Besides concepts, its properties
(called terminal attributes) and relationships
(nonterminal attributes) are also represented.

Moreover, REFSENO incorporates integrity rules
such as: cardinalities and value ranges for attributes,
assertions, and preconditions that the instance must
fulfil. REFSENO extends the formalism of [20] by
additional integrity rules, and by clearly separating the
schema definition and characterisation.

In REFSENO, the detailed information of the
ontology is represented by means of a collection of
tables: concepts glossary, table of attributes, of
relationship classes, etc.
Terminal concept attributes are described by a 9-tuple
formed from the following items:
• Name: The name is used for reference purposes.
• Description: A narrative text which defines the

meaning of the attribute.
• Cardinality: A range specifying the minimum and

maximum number of values the attribute may
have.

• Type: Each terminal concept attribute is given a
type, and the types are viewed as an epistemistic
primitive. REFSENO has some predefined types
such as Boolean, Integer, Real, Text, Identifier or
Date. New types can be described by users.

• Default value: This is related to the insertion of
new instances. If the user entering a new instance
does not specify a value for this attribute, the
default value is used.

• Mandatory: This is also related to new instances. It
indicates whether an attribute value of an instance
has to be specified.

• Value inference: This component defines how to
calculate the attribute value automatically (if
possible) based on the values of other attributes.

• Inferred attributes: This component lists all the
attributes whose value is inferred using a value of
this attribute. There is a mutual dependence
between value inferences and inferred attributes,
thus inferred attributes can automatically be
derived from the value inferences.

• Standard weight: This weight may be used by the
similarity functions (explained later) of the concept
this attribute belongs to. A weight of 0 denotes an
attribute whose value will not be used for
querying.

REFSENO distinguishes three layers to which
attributes may belong. These are artifact, interface and

context. The attributes of the artifact layer characterise
the instances themselves. Attributes of the interface
layer characterise how a particular instance can be
integrated into the system. Attributes of the context
layer characterise the environment in which the
instance has been applied and the quality of the
instance in the specified environment.

One relevant feature of REFSENO is that it enables
us to describe similarity functions, which are used for
similarity-based retrieval. In this way the methodology
facilitates the implementation of retrieval components.

In order to calculate the similarity functions between
two instances i and i’ the different layers should be
taken into account, since there is a similarity function
for each layer. For a concept c these are simartif(c),
simI/F(c) and simctxt(c) and this is based on the local
similarity functions of the concept’s attributes. The
values of similarity functions for a concept c between
two instances i and i’ are combined to a single
similarity value as follows:

Sim(c)(i,i’)=Wartif*simartif(c)(i,i’)+WI/F*simI/F(c)(i,i’)+
Wctxt*simctxt(c) (i, i’),

where Wartif, WI/F, Wctxt are weights with which

the similarity functions can be adjusted to the needs of
the users. The sum of the weights is always 1. A
similarity value equal to 0 means total dissimilarity
between i and i’, and a value equal to 1 indicates total
similarity (equivalence). The concept’s similarity
functions are of a global nature because they are based
on the local similarity functions of the concept’s
attributes. An example of how a similarity function is
calculated in KM-MANTIS is described in the next
section. Besides similarity functions, attributes tables
may also have assertions which are conditions
expressed as a formula, and that all instances must
fulfil and preconditions which must be fulfilled before
instances are inserted or changed.

The nonterminal attributes, those that represent how
a particular entity is related to other entities, can be
represented in the same concept attribute table used for
the terminal concept attributes. REFSENO allows other
possible representations for nonterminal attributes. For
example graphically, by using a tree structure.
However, in this paper only the first representation
(tables) is used.

4. Specifying the Ontology with REFSENO

The Software Maintenance Projects ontology is
made up of a set of three ontologies (see Figure 1),
which represent static and dynamic aspects. In order to
represent the static aspects, we defined an ontology

called Maintenance, which is formed of four
subontologies. They describe the concepts related to
maintenance and consist of a subontology for products,
another for activities, a third for the process
organization and the fourth for describing the different
agents involved in the software maintenance process.
The number of static ontologies coincides with those
proposed by [12]. Nevertheless, we have extended and
formalised them.

The dynamic part is represented by an ontology
called a Workflow Ontology, where three relevant parts
of maintenance are defined:
• Decomposition of activities.
• Temporal constraint between activities (this being

the order in which the activities must be
performed).

• Control of the execution of activities and projects
during the process enactment.

A third ontology called the Measure Ontology
represents both static and dynamic aspects. An example
of a dynamic aspect is the measurement actions [6].

Figure 1: Structure of the software maintenance projects
ontology

The ontology and subontologies are described in
[21] in detail. This paper focuses on how they are
implemented in KM-MANTIS by using REFSENO. In
order to illustrate this the products subontology is
briefly explained.

This subontology defines the software products that
are maintained, their internal structure, composition

and the existing versions of each product. Figure 2
shows the ontologic diagram by using a UML class
diagram, where the product is stressed since it is the
most important.

As Figure 2 shows, one software product can have
different versions, which are formed from a set of
artifacts. For instance, for a product called “Sales”,
different versions of this product may exist, and each
version is made up of several artifacts. The concept
version has its own attributes, such as: number, date,
etc. To simplify, they are not represented in the
diagram. The previous diagram only shows a
summarized view of the referred ontology.

Version

Artifact

quality
type
age
deliverable

1..*

1..*

1..*

1..*

includes
0..*

0..*

+formed of

0..*

contains

+component

0..*

Product

maturity
size
composition
quality
age
application type

1..*

1

1..*

1

generates
<<is-origin-of>>

1..*1 1..*1 is-composed-of

Figure 2. Products subontology diagram

The first step to implement the ontology by using

REFSENO is to define the concept glossary which
provides a general description and the purpose of the
concepts previously represented in the subontology
diagram. Each row of the table corresponds to one
concept. There is one concept glossary per ontology
and subontology represented in figure 1. Here only the
product concept glossary is represented.

The second step is to construct a terminal attribute
table for each concept defined in the glossary table. In
this paper they are omitted by limitations of space, for
more detail see [21].

Table 1 Products subontology: Concept Glossary. NOTE: The super-concept “Concept” is the root

Concept Super-
Concept Description Purpose

Artifact Element

This is a software product, part of which is created or modified by
the activities. It can be a document (text or graphic), or a code
module. Examples: requirement specification documents, quality
plan, class module, routine, test report, user manual. Synonymous:
software element, work product, product item.

To define the internal
structure and
software
composition.

Product Concept Software application, which is being maintained. It is a
conglomerate of different artifacts. Synonymous with: Software. Maintenance.

Concept Super-
Concept Description Purpose

Version Concept This is a change in the base line of a product. It could be an
upgrade, release or actualisation.

To implant the
configuration
management process.

4.1 Uses of Similarity Functions in KM-MANTIS

KM-MANTIS mainly uses similarity functions to
compare software products, and maintenance requests.
One goal of comparing products is to predict new
clients’ demands since what a company has done
before tends to predict what it can do in the future [9].
Therefore, products with similar features often demand
the same modifications. As [1] claim, if changes can be
anticipated they can be built in by some form of
parameterisation and in this way costs and efforts are
decreased. Moreover, studies show that the
incorporation of new requirements is the core problem
for software evolution and maintenance and supposes,
along with adaptive maintenance, around 75 % of the
maintenance effort.

The finality of comparing maintenance requests is to
reuse previous solutions to similar problems and also
avoid the repetition of mistakes. Storing and reusing
solutions that have worked correctly in previous
maintenance situations helps to avoid that companies
being forced to reinvent new practices due to the
limited transfer of knowledge, resulting in costly
duplication of effort. Frequently, the best practices
linger in companies for years unrecognised and
unshared.

We are going to illustrate how KM-MANTIS
calculates the similarity function when it needs to
compare two instances of product, for example, i and q.
First of all, the similarity functions for each layer,
artefact and I/F (the context layer is omitted because in
this case there are no attributes of this layer) should be
calculated. They are stressed in the formula below.

Sim (product) (i, q)=Wartif*simartif(product)(i, q)+
WI/F*simI/F(product) (i, q)

The local similarity functions are calculated by
computing the sum of the similarity function of each
type of attribute belonging to this layer. Finally, each
local similarity function is normalized resulting in a
value in the range [0,1]. Thus, in the case of the artifact
layer of the concept product, it is necessary to know the
similarity function of its types. They are:
“TypeMaturity”, “MeasureSize”, “TypeComposition”,
“TypeApplication”, “MeasureQ” and “Integer” in order
to obtain their sum.

REFSENO provides several predefined types and
their similarity functions. For instance, the “Integer”
type has the following similarity function to compare
two instances i and q:

()valuevalue
qi

qiSim
minmax

1),(
−
−

−=

where minvalue and maxvalue are respectively the
lower and upper bound of the value range.

In the case of using own types, such as
“TypeMaturity”, their similarity types should also be
described. For instance, type maturity is a taxonomy
formed of four labels: initial, evolution, service and
retired and its similarity function is the following:
Sim(i,q): 1 if i=q
0.5 if i= initial and q=evolution or vice versa
0.25 if i= initial and q=service or vice versa
0 if i= initial and q= retired or vice versa
0.5 if i= evolution and q= service or vice versa
0 if i= evolution and q= retired or vice versa

After calculating the local similarity functions
simartif(product)(i, q) and simI/F(product) (i, q) the
global similarity function should be calculated by
assigning values to Wartif, and WI/F, depending on
what the user’s needs are. For instance, if the system
wants to compare the similarity between two products
according to their own features, the value of Wartif
should be maximised and WI/F decreased since the
sum of the weights is always 1. Therefore, the system
adapts the weights according to the convenience of
giving more priority to one layer or to another.

5. Conclusions

Software maintenance generates huge amounts of
knowledge that should be processed and managed in
order to decrease costs and effort. However, before
managing it, the different types of information and their
relationship should be specified. Ontologies are the
best way to carry out this specification. Many papers
describe ontological designs but few of them explain
how to implement them. In this paper we have
explained why REFSENO methodology was chosen to
implement our software maintenance ontology, and
how the implementation was performed. Moreover, the

use of the functions of similarity that REFSENO
provides in KM-MANTIS has also been described.

Acknowledgements
This work is partially supported by the TAMANSI
project (grant number PBC-02-001) financed by the
Consejería de Ciencia y Tecnología of the Junta de
Comunidades de Castilla-La Mancha, SPAIN.

References
[1] K. H. Bennett and V. T. Rajlich, "Software Maintenance

and Evolution: a Roadmap," In proceedings of the The
Future of Software Engineering, ICSE 2000, Limerick,
Ireland, pp. 75-87, 2000.

[2] L. A. de Loof, Information Systems Outsourcing Decision
Making: a Managerial Approach, 1990.

[3] D. Deridder, "A Concept-Oriented Approach to Support
Software Maintenance and Reuse activities," In
proceedings of the Workshop on Knowledge-Based
Object-Oriented Software Engineering at 16th European
Conference on Object-Oriented Programming (ECOOP
2002), Málaga (Spain), 2002.

[4] R. A. Falbo, C. S. Menezes, and A. R. Rocha, "Using
Knowledge Serves to Promote Knowledge Integration in
Software Engineering Environments," In proceedings of
the 11th International Conference on Software
Engineering and Knowledge Engineering (SEKE'99),
Kaiserslautern (Germany), pp 170-175, 1999.

[5] A. Farquhar, R. Fikes, and J. Rice, "The Ontolingua
Server: A Tool for Collaborative Ontology Construction,"
International Journal of Human-Computer Studies, vol.
46, pp. 707-728, 1997.

[6] M. Genero, F. Ruiz, M. Piattini, and C. Calero, "Towards
and Ontology for Software Measurement," In proceedings
of the International Conference on Software Engineering
and Knowledge Engineering (SEKE'2003), San
Francisco, (USA), 2003.

[7] A. Gómez-Pérez, "Knowledge Sharing and Reuse," in The
Handbook of Applied Expert Systems, J. Liebowitz, Ed.:
CRC Press, 1998.

[8] T. Gruber, "Towards Principles for the Design of
Ontologies Used for Knowledge Sharing," International
Journal of Human-Computer Studies, vol. 43(5/6), pp.
907-28, 1995.

[9] A. Gupta and V. Govindarajan, "Knowledge Flows within
Multinational Corporations," Strategic Management
Journal, vol. 21(4), pp. 473-449, 2000.

[10] S. Henninger, "Tool Support for Experience-Based
Software Development Methodologies," To appear in
Advances in Computer, vol. 59, pp. 29-82, 2003.

[11] T. Hikita and M. J. Matsumoto, "Business Process
Modelling Based on the Ontology and First-Order Logic,"
In proceedings of the Third International Conference on
Enterprise Information Systems (ICEIS'2001), Setubal
(Portugal), pp. 717-723,2001.

[12] M. Kajko-Mattsson, "Towards a Business Maintenance
Model," In proceedings of the IEEE International
Conference on Software Maintenance (ICSM), Florence
(Italy), pp. 500-9, 2001.

[13] L. Kerschberg, "Knowledge Management in
Heterogeneous Data Warehouse Environments," In
proceedings of the DAWAK, 2001, pp 1-10.

[14] R. Kishore, H. Zhang, and R. Ramesh, "A Helix-Spindle
Model for Ontological Engineering," Communications of
the ACM, vol. 47, Nº 2, pp. 69-75, 2004.

[15] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R.
Volz, "Ontologies for Enterprise Knowledge
Management," IEEE Intelligent Systems, pp. 26-33, 2003.

[16] J. Mylopoulos, "Information Modelling in the Time of the
Revolution," Information Systems, vol. 23 (3-4), pp. 127-
155, 1998.

[17] J. Nebus, "Framing the Knowledge Search Problem:
Whom Do We Contact, and Why Do We Contact
Them?," In proceedings of the Academy of Management
Best Papers Proceedings, pp. h1-h7, 2001.

[18] A. A. Niknafs, M. E. Shiri, and M. M. Javidi, "A Case-
Based Reasoning Approach in E-Tourism: Tour Itinery
Planning," In proceedings of the 4th International
Workshop on Theory and Applications of Knowledge
Management. During DEXA'03, Prague, Czech Republic,
pp. 818-822, 2003.

[19] K. M. Oliveira, N. Anquetil, D. M.G, M. Ramal, and R.
Meneses, "Knowledge for Software Maintenance." In
proceedings of the Fifteenth International Conference on
Software Engineering and Knowledge Engineering
(SEKE'03), San Francisco, pp. 61-68, 2003.

[20] E. Ostertag, J. Hendler, R. Prieto-Díaz, and C. Braun,
"Computing Similarity in a Reuse Library System: An AI-
based Approach," ACM Transactions on Software
Engineering and Methodology, vol. 1 (3), pp. 205-228,
1992.

[21] F. Ruiz, A. Vizcaíno, M. Piattini, and F. García, "An
Ontology for the Management of Software Maintenance
Projects," Journal on Software Engineering and
Knowledge Engineering, pp. Accepted for publication,
2004.

[22] I. Rus and M. Lindvall, "Knowledge Management in
Software Engineering," IEEE Software, vol. May/June,
pp. 26-38, 2002.

[23] S. Staab, H.-P. Schnurr, and Y. Sure, "Knowledge
Processes and Ontologies," IEEE Intelligent Systems, vol.
16, Nº1, pp. 26-34, 2001.

[24] G. Szulanski, "Intra-Firm Transfer of Best Practices
Project," In proceedings of the American Productivity and
Quality Centre,, Houston, Texas, pp. 2-19, 1994.

[25] C. Tautz and C. G. Von Wangenheim, "REFSENO: A
Representation Formalism for Software Engineering
Ontologies. Fraunhofer IESE-Report Nº 015.98/E, version
1.1 October 20," 1998.

