
R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 31–40, 2004.
© Springer-Verlag Berlin Heidelberg 2004

On the Measurement of COTS Functional Suitability

Alejandra Cechich1 and Mario Piattini2

1 Departamento de Ciencias de la Computación
Universidad Nacional del Comahue, Buenos Aires 1400

Neuquén, Argentina
acechich@uncoma.edu.ar

2 Grupo Alarcos, Escuela Superior de Informática
Universidad de Castilla-La Mancha, Paseo de la Universidad 4

Ciudad Real, España
Mario.Piattini@uclm.es

Abstract. Within the last years both researchers and practitioners alike have
moved beyond establishing COTS quality as an important field to resolving
CBS quality problems. However, the science of CBS quality has not yet ad-
vanced to the point where there are standard measurement methods, and few
enterprises routinely measure COTS quality. Here, a suite of measures is pre-
sented to address this problem within a COTS-based software measurement ac-
tivity. Our measures are based on a formally defined component-based model,
aiming at expressing and measuring some aspects of component integrations.
Measures are in terms of provided and required services, hence functional suit-
ability might be quantified.

1 Introduction

Software project managers need to make a series of decisions at the beginning of and
during projects. Because software development is such a complex and diverse proc-
ess, predictive models should guide decision making for future projects. This requires
having a metrics program in place, collecting project data with a well-defined goal in
a metrics repository, and then analysing and processing data to generate models. Ac-
cording to the proposal in [11], metrics can guide risk and quality management, help-
ing reduce risks encountered during planning and execution of CBSD.

Metrics let developers identify and quantify quality attributes in such a way that
risks encountered during COTS selection are reduced. For example, the QESTA ap-
proach to evaluate COTS components [8] defines for each desired quality one or
more metrics, either symbols or numbers. Then, the selected candidate components
are each measured against the metrics previously identified. As another example,
based on the ISO/IEC 9126 Standard for software product evaluation [10], the pro-
posal in [5] restricts the set of features applicable on COTS components and defines
two classes of measurable features: run-time measured features and life cycle meas-
ured features.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

32 A. Cechich and M. Piattini

All CBS projects require a cost estimate before actual developments can proceed.
Usually, the qualities of the desired COTS components are not directly measurable
but are instead vague statements about like “acceptable performance”, “small size”,
and “high reliability”. Thus, most cost estimates for CBS developments are based on
rules of thumb involving some size measure, like adapted lines of code, number of
function points added/updated, or more recently, functional density [1, 7, 9]. In prac-
tical terms, rules such as functional density imply that there must be a way of compar-
ing one CBS design to another in terms of their functionality, there must be possible
to split functionality delivered via COTS from that delivered from scratch, and there
must be a way to clearly identify different COTS functionalities [1].

On the other hand, the model introduced in [2] explores the evaluation of compo-
nents using a specification-based testing strategy, and proposes a semantics distance
measure that might be used as the basis for selecting a component from a set of can-
didates. In our proposal, we are adapting this model as a basis for quality measure-
ment. It allows to express the semantics distance in terms of a functional suitability
measure, which provides a better identification of the different COTS functionalities.

In section 2 of the paper, we introduce the component-based model for measure-
ment (from [2]) (called here “component mapping diagram”) along with a motivating
example. Then, section 3 presents a compact suite of measures – including functional
suitability measures. Finally, section 4 addresses conclusions and topics for further
research.

2 A Component-Based Model for Measurement

Component architectures divide software components into requiring and providing:
some software components can register the services they provide, while other compo-
nents can subscribe to and consume these services. Components are plugged into a
software architecture that connects participating components and enforces interaction
rules. The model in [2] supposes that there is an architectural definition of a system,
whose behaviour has been depicted by scenarios or using an architecture description
language (ADL).

The system can be extended or instantiated through the use of some component
type. Due several instantiations might occur, an assumption is made about what char-
acteristics the actual components must possess from the architecture’s perspective.
Thus, the specification of the architecture A (SA) defines a specification SC for the
abstract component type C (i.e. SA SC). Any component Ki, that is a concrete in-
stance of C, must conform to the interface and behaviour specified by SC, as shown in
Figure 1 (from [2]).

The process of composing a component K with A is an act of interface and seman-
tic mapping. In this work, only the semantic mapping will be addressed. We focus on
incompatibilities derived from behavioural differences between the specification of a
component Ki (SKi) and the specification SC. Another necessary condition for using K
(or a combination of Ki) to satisfy SC is that the input and output domains of K in-

On the Measurement of COTS Functional Suitability 33

clude some of those specified by SC. An additional necessary condition is that K
provides at least the functional mapping between the domains as specified by SC.

A typical situation for inconsistency in the functional mappings between SK and SC

is illustrated by [2] in Figure 2, where the dashed lines indicate mappings with respect
to SC , and the solid lines are mappings with respect to SK. Note that the input and
output domains of SK and SC are not equal. Also, the domain of SC is not included in
the domain of SK, and vice versa for the ranges.

Fig. 1. Instantiation of an abstract component specification

2.1 A Motivating Example: E-payment Components

Authorisation and Capture are the two main stages in the processing of a card
payment over the Internet. Authorisation is the process of checking the customer’s
credit card. If the request is accepted the customer’s card limit is reduced temporarily
by the amount of the transaction. Capture is when the card is actually debited. This
may take place simultaneously with the authorisation request if the retailer can guar-
antee a specific delivery time. Otherwise the capture will happen when the goods are
shipped.

We suppose the existence of some scenarios describing the two main stages, which
represent here a credit card (CCard) payment system. The scenarios will provide
an abstract specification of the input and output domains of SC that might be com-
posed of:

34 A. Cechich and M. Piattini

Fig. 2. Functional mappings of SC and SK

- Input domain: (AID) Auth_IData{#Card, Cardholder_Name, Exp_Date,
Bank_Acc, Amount}; (CID) Capture_IData {Bank_Acc, Amount}.

- Output domain: (AOD) Auth_OData{ok_Auth}; (COD) Cap-
ture_OData{ok_Capture, DB_Update}.

- Mapping: {AID → AOD; CID → COD}.

Suppose we pre-select two components to be evaluated, namely K1 and K2 respec-
tively. The specification mapping, shown in Figure 3, reveals some inconsistencies
that should be analysed. Firstly, the input domain of the component K1 does not in-
clude all the values that the specification SC requires, i.e. the capture functionality is
not provided. Secondly, the input domain of the component K2 includes more values
than the required by SC, however the mapping satisfies the required functionality. We
should note that there is another functionality provided by K2, which might inject
harmful effects to the final composition. Thus a deeper analysis based on previously
defined scenarios should be carried out.

3 A Measurement Suite for Functional Suitability

For the measure definitions, we assume a conceptual model with universe of scenar-
ios Σ, an abstract specification of a component Χ, a set of components Κ relevant to
Χ and called candidate solution ΣΟ, a set of pre-selected components from ΣΟ, called

solution ΣΝ, and a mapping component diagram ΜΧ∆. In this diagram, SC(i) repre-

sents the map associated to the input value i defined in the domain of SC. This map

should provide a valid value on the output domain of SC, i.e. there is no empty maps

or invalid associations. A similar assumption is made on the mappings of SK.

Let’s briefly clarify the concepts associated to ΣΟ and ΣΝ. Candidate components,

selected from different sources for evaluation, constitute the members of the set ΣΟ.

It could be the case that one of these members does not offer any functionality re-

On the Measurement of COTS Functional Suitability 35

quired by Χ. Hence, an evaluator should not spend more time and effort evaluating

other properties or requirements on that component, i.e. the component should be

withdrawn from analysis. Then, the solution in which all components potentially con-

tribute with some functionality to get the requirements of Χ is called here ΣΝ.

In the following definitions, we use the symbol “#” for the cardinality of a set. To

simplify the analysis, we also assume input/output data as data flows, i.e. data that

may aggregate some elemental data. For the credit card example, input/output data are

represented by {AID, CID}, {AOD, COD} respectively.

Fig. 3. Functional mappings of SC and SK1/SK2

3.1 Domain Compatibility Measures

The importance of defining domain compatibility measures comes from the impor-

tance of simplifying the COTS selection process. When analysing components, it

might be the case that the data required by a concrete component Κ does not semanti-

cally match with the data required by its abstract specification Χ. Then, after deter-

mining the input/output compatibility, the analysis of the component Κ might stop

(depending on the incompatibility detected), avoiding higher selection effort invest-

ments.

Table 1 lists the proposed measures for detecting input domain incompatibilities.
The measures have been grouped into two main groups: component-level measures
and solution-level measures. The first group of metrics aims at detecting incompati-
bilities on a particular component Κ, which is a candidate to be analysed. However, it
could be the case that we need to incorporate more than one component to satisfy the
functionality required by the abstract specification Χ. In this case, the second group
of metrics evaluates the domain compatibility of all components that constitutes the

candidate solution ΣΟ, as we previously defined.

• AID

• CID
dom SC

• Taxes dom SK1

dom SK2

• AOD

• COD

ran SC

• Statistics

ran SK1

ran SK2

SKi(i)SC(i)

SK2(i)

36 A. Cechich and M. Piattini

Table 1. Description of the ID-Compatibility measures

The input domain measure definitions are shown in Table 2. Similarly, a compati-

bility analysis of the output domain should be done, considering the data provided by

the component Κ and using a similar suite of measures.

To clarify the reading, we should note that the expression CIDC(K,C) ≥ 1 has been

included to reduce the candidates for evaluation. This expression limits the analysis of

missed and added inputs to those components that have already showed having at least

a compatible input data. We should also remark the importance of determining seman-

tics incompatibilities through the use of scenario specifications, even thought the sce-

nario Σ is not explicitly included into our measure definitions. This is due to the fact

that we consider the definition of metrics as a process included into a broader meas-

urement process, which defines some activities for setting the measurement context –

such as defining scenario specifications or identifying stakeholders [6].

Now, let’s calculate the input domain compatibility measures for our credit card
example. The input domain of the abstract specification SC is {AID, CID}, and the
input domains for Κ1 and Κ2 are {AID} and {AID, CID} respectively.

The following values of the measures:

CIDC(Κ1) = 1; MIDC(Κ1) = 1; AIDC(Κ1) = 0; and CCID(Κ1) = 0.5

CIDC(Κ2) = 2; MIDC(Κ2) = 0; AIDC(Κ2) = 1; and CCID(Κ2) = 1

show that the component Κ1 is a candidate to be discharged due to the existence of

another component, Κ2, that is completely input compatible (CCID(Κ2) = 1). Hence,

solution-level metrics are not calculated since our candidate solution has only one

On the Measurement of COTS Functional Suitability 37

component. Then, our functional suitability measurement will continue only consider-

ing Κ2 for analysis.

Table 2. ID-Compatibility measures

3.2 Functional Suitability Measures

The domain compatibility measures show that there are some candidate components

able to provide some functionality. However, we cannot be certain of the amount of

functionality that is actually provided. For example, the component Κ2 is full domain

compatible, but some of the domain values might produce different functionalities

from the required by the abstract specification of Χ, i.e. the input AID might produc-

COD or any other output value. Therefore, even a component might be full domain

compatible, there is still another set of measures to be applied in order to determine

the functional suitability. Table 3 lists our suite of functional suitability measures,

which are again classified into two groups: component-level measures and solution-

level measures. A more formal definition of the measures is shown in Table 41.

1 Comparison between output domain values has been simplified by considering equality. A

more complex treatment of output values might be similarly specified, for example, by de-
fining a set of data flows related by set inclusion.

38 A. Cechich and M. Piattini

Table 3. Description of the Functional Suitability measures

Now, let’s calculate the functional suitability measures for our credit card example.

The functional mapping of the abstract specification SC is {AID → AOD; CID →
COD}, and the functional mapping for Κ2 is {AID → AOD; CID → COD; Taxes →

Statistics}. Then, the component-level measure results show the following values:

CFC(Κ2) = 2; MFC(Κ2) = 0; AFC(Κ2) = 1; and CCF (Κ2) = 1.

These values indicate that the component Κ2 is a candidate to be accepted for more

evaluation, i.e. the component is functionally suitable but there is one added function-

ality that could inject harmful side effects into the final composition. Besides, there

are another types of analysis the component should be exposed before being eligible

as a solution – such as analysis of non-functional properties [5], analysis of vendor

viability [3], and so forth. Our set of measures are only providing a way of identifying

suitable components from a functional point of view. Measuring the other aspects is

still a remaining issue. Another interesting discussion will be on analysing the repre-

sentation of the input/output domain, trying to close the gap between the information

provided by component vendors and the information required for evaluation, as the

work in [4] remarks.

On the Measurement of COTS Functional Suitability 39

Table 4. Functional Suitability measures

Finally, our measures on functional suitability could provide a more precise indicator
when calculating the maintenance equilibrium value as introduced in [1]. The number
of components in the solution (SNF) should be minimised and the contribution of
functionality (SCF) should be maximised to satisfy the CBS Functional Density Rule
of Thumb: “Maximise the amount of functionality in your system provided by COTS
components but using as few COTS components as possible” [1].

4 Conclusions and Future Work

We have presented a preliminary suite of measures for determining the functional

suitability of a component-based solution. However, our measures are based on func-

tional direct mappings, i.e. there is no semantic adaptation between the outputs pro-

vided by a component Κ and the required functionality in Χ. Therefore, we are ex-

tending the suite presented here to quantify the semantic adaptation providing an inte-

gral suite of measures.

40 A. Cechich and M. Piattini

Finally, all the measures need to be empirically validated, so much research must
still be done to demonstrate the applicability of our proposal.

Acknowledgments. This work is partially supported by the CyTED (Ciencia y Tec-

nología para el Desarrollo) project VII-J-RITOS2, by the UNComa project 04/E048,

and by the MAS project supported by the Dirección General de Investigación of the

Ministerio de Ciencia y Tecnología (TIC 2003-02737-C02-02).

References

1. C. Abts. COTS-Based Systems (CBS) Functional density - A Heuristic for Better CBS

Design. In Proceedings of the First International Conference on COTS-Based Software

Systems, Springer Verlag LNCS 2255, pages 1–9, 2002.

2. R. Alexander and M. Blackburn. Component Assessment Using Specification-Based

Analysis and Testing. Technical Report SPC-98095-CMC, Software Productivity Consor-

tium, 1999.

3. K. Ballurio, B. Scalzo, and L. Rose. Risk Reduction in COTS Software Selection with

BASIS. In Proceedings of the First International Conference on COTS-Based Software

Systems, Springer Verlag LNCS 2255, pages 31–43, 2002.

4. B. Bertoa, J. Troya, and A. Vallecillo. A Survey on the Quality Information Provided by

Software Component Vendors. In Proceedings of the ECOOP QAOOSE Workshop, 2003.

5. B. Bertoa and A. Vallecillo. Quality Attributes for COTS Components. In Proceedings of

the ECOOP QAOOSE Workshop, 2002.

6. A. Cechich and M. Piattini. Defining Stability for Component Integration Assessment. In

Proceedings of the Fifth International Conference on Enterprise Information Systems,

pages 251–256, 2003.

7. J. Dolado. A Validation of the Component-Based Method for Software Size Estimation.

IEEE Transactions on Software Engineering, 26(10):1006–1021, 2000.

8. W. Hansen. A Generic Process and Terminology for Evaluating COTS Software –The

QESTA Process. http://www.sei.cmu.edu/staff/wjh/Qesta.html.

9. L. Holmes. Evaluating COTS Using Function Fit Analysis. Q/P Management Group, INC

- http://www.qpmg.com.

10. ISO International Standard ISO/IEC 9126. ISO/IEC 9126 - Information technology -

Software product evaluation - Quality characteristics and guidelines for their use, 2001.

11. S. Sedigh-Ali, A. Ghafoor, and R. Paul. Software Engineering Metrics for COTS-Based

Systems. IEEE Computer Magazine, pages 44–50, May 2001.

	1 Introduction
	2 A Component-Based Model for Measurement
	2.1 A Motivating Example: E-payment Components

	3 A Measurement Suite for Functional Suitability
	3.1 Domain Compatibility Measures
	3.2 Functional Suitability Measures

	4 Conclusions and Future Work

