

EIGHTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS

Proceedings

Information Systems Analysis and Specification

PAPHOS, CYPRUS · MAY 23-27, 2006

ORGANIZED BY

CO-ORGANIZED BY

University of Cyprus Aristotle University of Thessaloniki Athens University of Economics and Business Cyprus Computer Society

ICEIS 2006

Proceedings of the Eighth International Conference on Enterprise Information Systems

Information Systems Analysis and Specification

Paphos, Cyprus

May 23 – 27, 2006

Organized by INSTICC – Institute for Systems and Technologies of Information, Control and Communication

Sponsored by Cyprus Computer Society

Co-organized by University of Cyprus Aristotle University of Thessaloniki Athens University of Economics and Business Cyprus Computer Society

Copyright © INSTICC – Institute for Systems and Technologies of Information, Control and Communication All rights reserved

Edited by Yannis Manolopoulos, Joaquim Filipe, Panos Constantopoulos and José Cordeiro

Printed in Portugal ISBN: 972-8865-43-0 ISBN (13 digits): 978-972-8865-43-6 Depósito Legal: 240668/06

> http://www.iceis.org secretariat@iceis.org

BRIEF CONTENTS

BRIEF CONTENTS	III
KEYNOTE LECTURES	IV
TUTORIAL	IV
ORGANIZING AND STEERING COMMITTEES	V
SENIOR PROGRAM COMMITTEE	VII
REGULAR PROGRAM COMMITTEE	VIII
AUXILIARY REVIEWERS	XII
SELECTED PAPERS BOOK	XIII
Foreword	XV
CONTENTS	XVII

This volume contains the proceedings of the Eighth International Conference on Enterprise Information Systems (ICEIS 2006), organized by the Institute for Systems and Technologies of Information, Control and Communication (*INSTICC*) in collaboration with the University of Cyprus, Aristotle University of Thessaloniki, Athens University of Economics and Business and Cyprus Computer Science.

ICEIS has become a major point of contact between research scientists, engineers and practitioners in the area of business applications of information systems. This year, five simultaneous tracks were held, covering different aspects related to enterprise computing, including: "Databases and Information Systems Integration", "Artificial Intelligence and Decision Support Systems", "Information Systems Analysis and Specification", "Software Agents and Internet Computing" and "Human-Computer Interaction". All tracks focus on real world applications and highlight the benefits of Information Systems and Technology for industry and services, thus making a bridge between the Academia and the Enterprise worlds.

Following the success of 2005, ICEIS 2006 also has a number of satellite workshops, related to the field of the conference. This year we collaborated in the organization of the following ten international workshops: 6th International Workshop on Pattern Recognition in Information Systems; 5th International Workshop on Wireless Information Systems; 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems; 3rd International Workshop on Ubiquitous Computing; 4th International Workshop on Security In Information Systems; 3rd International Workshop on Computer Supported Activity Coordination, the 4th International Workshop on Web Services and Grid Computing, the 2nd International Workshop on Technologies for Collaborative Business Processes.

ICEIS 2006 received 429 paper submissions from more than 40 countries in all continents. 65 papers were published and presented as full papers, i. e. completed work (8 pages in proceedings / 30' oral presentations), 105 papers, reflecting work-in-progress or position papers, were accepted for short presentation and another 85 for poster presentation.

These numbers, leading to a "full-paper" acceptance ratio below 16%, and a total acceptance ratio below 60%, show the intention of preserving a high quality forum for the next editions of this conference. Additionally, as usual in the ICEIS conference series, a number of invited talks, including keynote lectures and technical tutorials were also held. These special sessions, presented by internationally recognized specialists in different areas have definitely contributed to increase the overall quality of the Conference and to provide a deeper understanding of the Enterprise Information Systems field.

A short list of papers will be selected for a book, entitled "*Enterprise Information Systems VIIP*", to be published by Springer. It will be the eighth book in the series of ICEIS selected-papers books.

The program for this conference required the dedicated effort of many people. Firstly, we must thank the authors, whose research and development efforts are recorded here. Secondly, we thank the members of the program committee and the additional reviewers for their diligence and expert reviewing. Thirdly, we thank the invited speakers for their invaluable contribution and for taking the time to synthesise and prepare their talks. Fourthly, we thank the workshop chairs whose collaboration with ICEIS was much appreciated. Finally, special thanks to all the members of the local organising committee, especially Panicos Masouras, whose collaboration was fundamental for the success of this conference.

We wish you all an exciting conference and an unforgettable stay in the lovely city of Paphos. We hope to meet you again next year for the 9th ICEIS, to be held in Portugal, details of which are available at http://www.iceis.org.

Yannis Manolopoulos, Aristotle University of Thessaloniki, Greece

Joaquim Filipe INSTICC/I.P.Setúbal, Portugal

Panos Constantopoulos, Athens University of Economics and Business, Greece

José Cordeiro INSTICC/I.P.Setúbal, Portugal

CONTENTS

INVITED SPEAKERS

KEYNOTE LECTURES

HUMAN ACTIVITY RECOGNITION - A GRAND CHALLENGE Jake K. Aggarwal	IS-6
P2P SEMANTIC MEDIATION OF WEB SOURCES Georges Gardarin, Florin Dragan and Laurent Yeh	IS-7
BIOMETRIC RECOGNITION: HOW DO I KNOW WHO YOU ARE? Anil K. Jain	IS-17
REFLEXIVE COMMUNITY INFORMATION SYSTEMS Matthias Jarke	IS-19
DATA MANAGEMENT IN P2P SYSTEMS: CHALLENGES AND RESEARCH ISSUES Hermann Maurer	IS-21
ON UTILIZING ATTRIBUTE CARDINALITY MAPS TO ENHANCE QUERY OPTIMIZATION IN THE ORACLE DATABASE SYSTEM John Oommen and Jing Chen	IS-23
TUTORIAL	
NEURAL NETWORKS AND BUSINESS APPLICATIONS: BUSINESS INTELLIGENCE Pedro Henrique Gouvéa Coelho and Luiz Biondi Neto	IS-39

INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

FULL PAPERS

BUSINESS PROCESSES: BEHAVIOR PREDICTION AND CAPTURING REASONS FOR	
Sharmila Subramaniam, V ana Kalogeraki and Dimitrios Gunopulos	3
SYSTEM ANALYSIS AND DESIGN IN A LARGE-SCALE SOFTWARE PROJECT: THE CASE OF TRANSITION TO AGILE DEVELOPMENT Yael Dubinsky, Orit Hazzan, David Talby and Arie Keren	11
A PRODUCT ORIENTED MODELLING CONCEPT - HOLONS FOR SYSTEMS SYNCHRONISATION AND INTEROPERABILITY Salah Baïna, Hervé Panetto and Khalid Benali	19
A GENERATOR FRAMEWORK FOR DOMAIN-SPECIFIC MODEL TRANSFORMATION LANGUAGES Thomas Reiter, Elisabeth Kapsammer, Werner Retschitzegger, Wieland Schwinger and Markus Stumptner	27
A NEW FRAMEWORK FOR THE SUPPORT OF SOFTWARE DEVELOPMENT COOPERATIVE ACTIVITIES Arnaud Lewandowski and Grégory Bourguin	36
EB3TG: A TOOL SYNTHESIZING RELATIONAL DATABASE TRANSACTIONS FROM EB3 ATTRIBUTE DEFINITIONS Frédéric Gervais, Panawé Batanado, Marc Frappier and Régine Laleau	44
BRIDGING THE LANGUAGE-ACTION PERSPECTIVE AND ORGANIZATIONAL SEMIOTICS IN SDBC Boris Shishkor, Jan L. G. Dietz and Kecheng Liu	52
REFINEMENT OF SDBC BUSINESS PROCESS MODELS USING ISDL Boris Shishkov and Dick Quartel	61
INCREASING THE VALUE OF PROCESS MODELLING John Krogstie, Vibeke Dalberg and Siri Moe Jensen	70
TOWARDS A CONTEXTUAL MODEL-DRIVEN DEVELOPMENT APPROACH FOR WEB SERVICES Zakaria Maamar, Karim Baïna, Djamal Benslimane, Nanjangud C. Narendra and Mehdi Chelbabi	78
ONTOLOGY CONSTRUCTION IN AN ENTERPRISE CONTEXT: COMPARING AND EVALUATING TWO APPROACHES Eva Blomqvist, Annika Öhgren and Kurt Sandkuhl	86
METHODOLOGY TO SUPPORT SEMANTIC RESOURCES INTEGRATION IN THE CONSTRUCTION SECTOR Simona Barresi, Yacine Rezgui, Farid Meziane and Celson Lima	94
KEY-PROBLEM AND GOAL DRIVEN REQUIREMENTS ENGINEERING - WHICH COMPLEMENTARITIES FOR MANUFACTURING INFORMATION SYSTEMS? Virginie Goepp and François Kiefer	102
SUPPORTING METHODS OF GENERATING ALTERNATIVE SCENARIOS FROM A NORMAL SCENARIO <i>Atsushi Ohnishi</i>	110

A FEATURE COMPUTATION TREE MODEL TO SPECIFY REQUIREMENTS AND REUSE Ella E. Roubtsova and Serguei A. Roubtsov	118
THE CONCEPT OF ETHICS IN ELECTRONIC QUALITATIVE RESEARCH Nouhad J. Rizk and Elias M. Choueiri	126
CONFIGURING REFERENCE MODELS - AN INTEGRATED APPROACH FOR TRANSACTION PROCESSING AND DECISION SUPPORT Ralf Knackstedt, Christian Janiesch and Tobias Rieke	135
DOMAIN MODELING WITH OBJECT-PROCESS METHODOLOGY Arnon Sturm, Dov Dori and Onn Shehory	144
INTEROPERABLITY REQUIREMENTS ELICITATION, VALIDATION AND SOLUTIONS MODELLING Sobah Abbas Petersen, Frank Lillehagen and Maria Anastasion	152
MEDIS – A WEB BASED HEALTH INFORMATION SYSTEM - IMPLEMENTING INTEGRATED SECURE ELECTRONIC HEALTH RECORD Snezana Sucurovic	160
FLEXIBLE REALIZATION OF BUSINESS PROCESSES USING EXISTING SERVICES Jelena Zdravkovic and Martin Henkel	165
FLEXIBLE COMPLETION OF WORKFLOW ACTIVITIES Georg Peters and Roger Tagg	173
SUPPORTING AUTHENTICATION REQUIREMENTS IN WORKFLOWS Ricardo Martinho, Dulce Domingos and António Rito-Silva	181
SHORT PAPERS	
SHORT PAPERS SEMANTIC ALIGNMENT OF BUSINESS PROCESSES Saartje Brockmans, Marc Ehrig, Agnes Koschmider, Andreas Oberweis and Rudi Studer	191
SHORT PAPERS SEMANTIC ALIGNMENT OF BUSINESS PROCESSES Saartje Brockmans, Marc Ehrig, Agnes Koschmider, Andreas Oberweis and Rudi Studer BUSINESS PROCESS DESIGN BASED ON COMMUNICATION AND INTERACTION Joseph Barjis and Isaac Barjis	191 197
SHORT PAPERS SEMANTIC ALIGNMENT OF BUSINESS PROCESSES Saartje Brockmans, Marc Ehrig, Agnes Koschmider, Andreas Oberweis and Rudi Studer BUSINESS PROCESS DESIGN BASED ON COMMUNICATION AND INTERACTION Joseph Barjis and Isaac Barjis BUSINESS PROCESS VISUALIZATION - USE CASES, CHALLENGES, SOLUTIONS Stefanie Rinderle, Ralph Bobrik, Manfred Reichert and Thomas Bauer	191 197 204
 SHORT PAPERS SEMANTIC ALIGNMENT OF BUSINESS PROCESSES Saartje Brockmans, Marc Ehrig, Agnes Koschmider, Andreas Oberweis and Rudi Studer BUSINESS PROCESS DESIGN BASED ON COMMUNICATION AND INTERACTION Joseph Barjis and Isaac Barjis BUSINESS PROCESS VISUALIZATION - USE CASES, CHALLENGES, SOLUTIONS Stefanie Rinderle, Ralph Bobrik, Manfred Reichert and Thomas Bauer A PRACTICAL EXPERIENCE WITH NDT - THE SYSTEM TO MEASURE THE GRADE OF HANDICAP Maria L Escalona, Dario Villadiano, Lavier L Cutiérrer, Jesus Torres and Manuel Meifas 	191 197 204 212
SHORT PAPERS SEMANTIC ALIGNMENT OF BUSINESS PROCESSES Saartje Brockmans, Marc Ehrig, Agnes Koschmider, Andreas Oberweis and Rudi Studer BUSINESS PROCESS DESIGN BASED ON COMMUNICATION AND INTERACTION Joseph Barjis and Isaac Barjis BUSINESS PROCESS VISUALIZATION - USE CASES, CHALLENGES, SOLUTIONS Stefanie Rinderle, Ralph Bobrik, Manfred Reichert and Thomas Bauer A PRACTICAL EXPERIENCE WITH NDT - THE SYSTEM TO MEASURE THE GRADE OF HANDICAP Maria J. Escalona, Dario Villadiego, Javier J. Gutiérrez, Jesus Torres and Manuel Mejías BUSINESS RULES ELICITATION IN THE PROCESS OF ENTERPRISE INFORMATION SYSTEM DEVELOPMENT	191 197 204 212
SHORT PAPERS SEMANTIC ALIGNMENT OF BUSINESS PROCESSES Saartje Brockmans, Marc Ehrig, Agnes Koschmider, Andreas Oberweis and Rudi Studer BUSINESS PROCESS DESIGN BASED ON COMMUNICATION AND INTERACTION Joseph Barjis and Isaac Barjis BUSINESS PROCESS VISUALIZATION - USE CASES, CHALLENGES, SOLUTIONS Stefanie Rinderle, Ralph Bobrik, Manfred Reichert and Thomas Bauer A PRACTICAL EXPERIENCE WITH NDT - THE SYSTEM TO MEASURE THE GRADE OF HANDICAP Maria J. Escalona, Dario Villadiego, Javier J. Gutiérrez, Jesus Torres and Manuel Mejías BUSINESS RULES ELICITATION IN THE PROCESS OF ENTERPRISE INFORMATION SYSTEM DEVELOPMENT Olegas V asilecas and Diana Bugaite	191 197 204 212 218
SHORT PAPERS SEMANTIC ALIGNMENT OF BUSINESS PROCESSES Saartje Brockmans, Marc Ebrig, Agnes Koschmider, Andreas Oberweis and Rudi Studer BUSINESS PROCESS DESIGN BASED ON COMMUNICATION AND INTERACTION Joseph Barjis and Isaac Barjis BUSINESS PROCESS VISUALIZATION - USE CASES, CHALLENGES, SOLUTIONS Stefanie Rinderle, Ralph Bobrik, Manfred Reichert and Thomas Bauer A PRACTICAL EXPERIENCE WITH NDT - THE SYSTEM TO MEASURE THE GRADE OF HANDICAP Maria J. Escalona, Dario Villadiego, Javier J. Gutiérrez, Jesus Torres and Manuel Mejías BUSINESS RULES ELICITATION IN THE PROCESS OF ENTERPRISE INFORMATION SYSTEM DEVELOPMENT Olegas V asilecas and Diana Bugaite WISE: A FRAMEWORK FOR PROVIDING DISTRIBUTED PROCESS VISIBILITY USING AN EVENT-BASED PROCESS MODELLING APPROACH Caire Costello, Weston Fleming, Owen Molloy, Gerard Lyons and James Duggan	191 197 204 212 218 224
SHORT PAPERS SEMANTIC ALIGNMENT OF BUSINESS PROCESSES Saartje Brockmans, Marc Ehrig, Agnes Koschmider, Andreas Oberweis and Rudi Studer BUSINESS PROCESS DESIGN BASED ON COMMUNICATION AND INTERACTION Joseph Barjis and Isaac Barjis BUSINESS PROCESS VISUALIZATION - USE CASES, CHALLENGES, SOLUTIONS Stefanie Rinderle, Ralph Bobrik, Manfred Reichert and Thomas Bauer A PRACTICAL EXPERIENCE WITH NDT - THE SYSTEM TO MEASURE THE GRADE OF HANDICAP Maria J. Escalona, Dario Villadiego, Javier J. Gutiérrez, Jesus Torres and Manuel Mejúas BUSINESS RULES ELICITATION IN THE PROCESS OF ENTERPRISE INFORMATION SYSTEM DEVELOPMENT Olegas Vasilecas and Diana Bngaite WISE: A FRAMEWORK FOR PROVIDING DISTRIBUTED PROCESS VISIBILITY USING AN EVENT-BASED PROCESS MODELLING APPROACH Claire Costello, Weston Fleming, Owen Molloy, Gerard Lyons and James Duggan AN ARCHITECTURE-CENTRIC APPROACH FOR MANAGING THE EVOLUTION OF EXISERVICES-ORIENTED ARCHITECTURE Frédéric Ponrraz, Hervé Verjus and Flavio Oquendo	 191 197 204 212 218 224 234

A SOA-BASED SYSTEM INTERFACE CONTROL FOR E-GOVERNMENT Namho Yoo and Hyeong-Ah Choi	242
APPLYING AGENT-ORIENTED MODELLING AND PROTOTYPING TO SERVICE-ORIENTED SYSTEMS Aneesh Krishna, Ying Guan and Aditya Ghose	246
ON IMPLEMENTING INTEROPERABLE AND FLEXIBLE SOFTWARE EVOLUTION ACTIVITIES Mourad Bouneffa, Henri Basson and Y. Maweed	253
CPN BASED COMPONENT ADAPTATION Yoshiyuki Shinkawa	261
METHODOLOGICAL GUIDELINES FOR SQA IN DEVELOPMENT PROCESS - AN APPROACH BASED ON THE SPICE MODEL Anna Grimán, Maria Perez and Luis Mendoza	269
TOWARDS PRACTICAL TOOLS FOR MINING ABSTRACTIONS IN UML MODELS Michel Dao, Marianne Huchard, Mohamed Ronane Hacène, Cyril Roume and Petko Valtchev	276
VALIDATION OF INFORMATION SYSTEMS USING PETRI NETS Asghar Bokhari and Skip Poehlman	284
DESIGN OF REAL-TIME SYSTEMS BY SYSTEMATIC TRANSFORMATION OF UML/RT MODELS INTO SIMPLE TIMED PROCESS ALGEBRA SYSTEM SPECIFICATIONS Kawtar Benghazi Akhlaki, Manuel Icidro Capel Tuñon and Juan Antonio Holgado Terriza	290
VISUAL CONTRACTS - A WAY TO REASON ABOUT STATES AND CARDINALITIES IN IT SYSTEM SPECIFICATIONS José Diego De la Cruz, Lam-Son Lê and Alain Wegmann	298
MANAGING THE KNOWLEDGE NEEDED TO SUPPORT AN ELECTRONIC PERSONAL ASSISTANT - AN END-USER FRIENDLY GRAPHICAL ONTOLOGY EDITING TOOL Matthias Einig, Roger Tagg and Georg Peters	304
AN ONTOLOGY FOR ARCHITECTURAL EVALUATION - CASE STUDY: COLLABORATION SYSTEMS	
Anna Grimán, María Pérez, José Garrido and María Rodriguez	310
APPROACH Alejandro Vaisman	316
A FORMAL ARCHITECTURE-CENTRIC MODEL-DRIVEN APPROACH FOR THE AUTOMATIC GENERATION OF GRID APPLICATIONS David Manset, Hervé Verjus, Richard McClatchey and Flavio Oquendo	322
EVOLUTION MANAGEMENT FRAMEWORK FOR MULTI-DIMENSIONAL INFORMATION SYSTEMS Nesrine Yahiaoui, Bruno Traverson and Nicole Levy	331
APPLYING SOFTWARE FACTORIES TO PERVASIVE SYSTEMS: A PLATFORM SPECIFIC FRAMEWORK	
Javier Muñoz and Vicente Pelechano	337
STRUCTURED APPROACH FOR THE INTRODUCTION OF INFORMATION SERVICES INTO THE PRIVATE SOCIAL SOLIDARITY INSTITUTIONS Alexandra Queirós and Nelson Rocha	343

ARGUMENT-BASED APPROACHES IN PRIORITIZED CONFLICTING SECURITY POLICIES Salem Benferhat and Rania El Baida	349
PERFORMANCE EVALUATION FRAMEWORK FOR IT/IS BASED ASSET MANAGEMENT Abrar Haider and Andy Koronios	355
METHOD FOR USER ORIENTED MODELLING OF DATA WAREHOUSE SYSTEMS Lars Burmester and Matthias Goeken	366
A FORMAL APPROACH TO DETECTING SHILLING BEHAVIORS IN CONCURRENT ONLINE AUCTIONS Yi-Tsung Chema and Haiting Xu	375
A DROIECT MANAGEMEN'T MODEL TO A DISTRIBUTED SOFTWARE ENGINEERING	515
ENVIRONMENT Lúcia Norie Matsueda Enami, Tania Fatima Calvi Tait and Elisa Hatsue Moriya Huzita	382
USING ASPECT-ORIENTED SOFTWARE DEVELOPMENT IN REAL-TIME EMBEDDED SYSTEMS SOFTWARE - A REVIEW OF SCHEDULING, RESOURCE ALLOCATION AND	
SYNCHRONIZATION Pericles Leng Cheng and George Angelos Papadopoulos	388
TECHNOLOGY FOR LEAST-COST NETWORK ROUTING VIA BLUETOOTH AND ITS PRACTICAL APPLICATION - REPLACING INTERNET ACCESS THROUGH WIRELESS PLIONE NETWORKS BY BT DATA LINKS	
HONE NETWORKS BY BI DATA LINKS Hans Weghorn	394
A REUSE-BASED REQUIREMENTS ELICITATION PROCESS Sangim Ahn and Kiwon Chong	403
AN XML-BASED LANGUAGE FOR SPECIFICATION AND COMPOSITION OF ASPECTUAL	
Elisabete Soeiro, Isabel Sofia Brito and Ana Moreira	410
HYBRID MODELING USING I* AND AGENTSPEAK(L) AGENTS IN AGENT ORIENTED SOFTWARE ENGINEERING Aniruddha Daseutta, Farzad Salim. Aneesh Krishna and Aditva K. Ghose	420
MOLDING ARCHITECTURE AND INTEGRITY MECHANISMS EVOLUTION - AN	
ARCHITECTURAL STABILITY EVALUATION MODEL FOR SOFTWARE SYSTEMS Octavian-Paul Rotaru	426
POSTERS	
A VIEWPOINTS MODELING FRAMEWORK BASED ON EPISTEMIC LOGIC Min Jiang and Guoqin Wu	435
TOWARDS A SUITE OF METRICS FOR BUSINESS PROCESS MODELS IN BPMN Elvira Rolón, Francisco Ruiz, Félix García and Mario Piattini	440
A SUPPORTING TOOL TO IDENTIFY BOTH SATISFIED REQUIREMENTS AND TOLERANT THREATS FOR A JAVA MOBILE CODE APPLICATION Harubiko Kaiya, Kouta Sasaki, Chikanobu Ogawa and Kenji Kaijiri	444
DIFFERENT STRATEGIES FOR RESOLVING PRICE DISCOUNT COLLISIONS	
Henrik Stormer	449

A SYSTEMATIC ANALYSIS PATTERNS SPECIFICATION Ricardo Raminhos, Marta Pantoquilho, João Araújo and Ana Moreira	453
APPLYING BLOCK ACTIVITY PATTERNS IN WORKFLOW MODELING Lucinéia Heloisa Thom and Cirano Iochpe	457
THE VOCABULARY ONTOLOGY ENGINEERING FOR THE SEMANTIC MODELLING OF HOME SERVICES Jamme Kalania, Julia Kantarenitch, Sana Carro, José María Miranda, Álvaro Ramos and Jaras Parna	461
jurno Rauoja, juua Ranoroviun, sura Carro, jose maria miranaa, suvaro Ramos ana jorge i arra	401
AN ALGORITHM FOR BUILDING INFORMATION SYSTEM'S ONTOLOGIES Mohamed Mhiri, Sana Chabaane, Achraf Mtibaa and Faïez Gargouri	467
OBJECT NORMALIZATION AS THE CONTRIBUTION TO THE AREA OF FORMAL METHODS OF OBJECT-ORIENTED DATABASE DESIGN Jan Vraný, Zdenek Struska and Vojtech Merunka	471
UNDERSTANDING B SPECIFICATIONS WITH UML CLASS DIAGRAM AND OCL CONSTRAINTS	
Bruno Tatibouët and Isabelle Jacques	475
CODE OF ETHICS FOR PROFESSIONALS OF INFORMATION SYSTEMS – CEPIS MODEL Helena Dulce Campos and Luis Amaral	479
ENABLING OR DISABLING WITH OLD SPECIFICATIONS - A NEW INFORMATION SYSTEM BASED ON OLD SPECIFICATIONS Raija Halonen	483
DEONTIC PROTOCOL MODELLING - MODELLING BUSINESS RULES WITH STATE MACHINES Ashley McNeile and Nicholas Simons	489
USER AUTONOMY IN REQUIREMENTS CHANGING SUPPORTED BY ORGANIZATIONAL SEMIOTICS AND TAILORING Carlos Alberto Cocozza Simoni, Maria Cecilia Calani Baranauskas and Rodrigo Bonacin	493
VERIFYING THE VALUE OF OBJECTIVE MEASURES - A PROPOSAL FOR A SYSTEMATIC EVALUATION OF MEASURES <i>Harald Kjellin</i>	497
INFORMATION-CENTRIC VS. STORAGE/DATA-CENTRIC SYSTEMS Charles Milligan, Steven Halladay and Deren Hansen	501
SECURITY THREATS TO DIGITAL TELEVISION PLATFORM AND SERVICE DEVELOPMENT Jarkko Holappa and Reijo Savola	508
FORMALISATION OF A FUNCTIONAL RISK MANAGEMENT SYSTEM Víctor M. Gulías, Carlos Abalde, Laura M. Castro and Carlos Varela	516
A NEW PERFORMANCE OPTIMIZATION STRATEGY FOR JAVA MESSAGE SERVICE SYSTEM Xianofeno Guo, Xiaonino Dino, Hua Zhono and Iino I i	520
	520
A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS APPLICATIONS Akito Kiriyama, Yuji Nakagawa, Tadao Takaoka and Zhiqi Tu	524
TOWARDS A RIGOROUS PROCESS MODELING WITH SPEM Benoit Combemale, Xavier Crégut, Alain Caplain and Bernard Coulette	530

INFORMATION ASSURANCE ASSET MANAGEMENT ARCHITECTURE USING XML FOR SYSTEM VULNERABILITY Nambo Yoo and Hyeong-Ah Choi	534
GRADUAL MODELING OF INFORMATION SYSTEM - MODEL OF METHOD EXPRESSED AS TRANSITIONS BETWEEN CONCEPTS Marek Picka and Robert Pergl	538
INTRODUCING A UML PROFILE FOR DISTRIBUTED SYSTEM CONFIGURATION Nancy Alexopoulou, A. Tsadimas, M. Nikolaidou, A. Dais and D. Anagnostopoulos	542
UML-BASED BUSINESS PROCESS REENGINEERING (BPR-UML) APPLIED TO IT OUTSOURCING Edumilis Maria Méndez, Luis Eduardo Mendoza, María A. Pérez and Anna C. Grimán	546
ARCHITECTING SOA SOLUTIONS FROM ENTERPRISE MODELS - A MODEL DRIVEN FRAMEWORK TO ARCHITECT SOA SOLUTIONS FROM ENTERPRISE MODELS Xabier Larrucea and Gorka Benguria	551
TOWARDS A MAINTAINABILITY EVALUATION IN SOFTWARE ARCHITECTURES Anna Grimán, Luisana Chárez, María Pérez, Luis Mendoza and Kenyer Domínguez	555
CEO FRAMEWORK ENTERPRISE MODELS CONFORMANCE WITH ISO14258 Patrícia Macedo, Carla Ferreira and José Tribolet	559
GENERATION AND USE OF ONE ONTOLOGY FOR INTELLIGENT INFORMATION RETRIEVAL FROM ELECTRONIC RECORD HISTORIES Miguel A. Prados de Reyes, Maria Carmen Peña Yañez, Maria Amparo Vila Miranda and M. Belen Prados Suarez	565
COMMONALITY VERSUS VARIABILITY - THE CONTRADICTORY NATURE OF ENTERPRISE SYSTEMS Stig Nordheim	572
TRANSFORMATION OF UML DESIGN MODEL INTO PERFORMANCE MODEL - A MODEL-DRIVEN FRAMEWORK Ramrao Wagh, Umesh Bellur and Bernard Menezes	576

AUTHOR INDEX

581

TOWARDS A SUITE OF METRICS FOR BUSINESS PROCESS MODELS IN BPMN

Elvira Rolón

Engineering Fac. "Arturo Narro Siller", Autonomous University of Tamaulipas, Centro Universitario Tampico-Madero, C.P. 89336 Tampico, Tams., México erolon@proyectos.inf-cr.uclm.es

Francisco Ruiz, Félix García, Mario Piattini

Department of Information Technologies and Systems, UCLM-Soluziona Research and Development Institute University of Castilla-La Mancha, Paseo de la Universidad N° 4, 13071 Ciudad Real, Spain {Francisco.RuizG, Felix.Garcia, Mario.Piattini}@uclm.es

Keywords: Business Process, BPMN, Metrics, Conceptual Models, Software Process.

Abstract In this paper we present a suite of metrics for the evaluation of business process models using BPMN notation. Our proposal is based on the FMESP framework, which was developed in order to integrate the modeling and measurement of software processes. FMESP includes a set of metrics to provide the quantitative basis necessary to know the maintainability of the software process models. This previously existent proposal has been used in this work as the starting point to define a set of metrics for the evaluation of the complexity of business process models defined with BPMN. To achieve this goal, the first step has been to adopt the metrics of FMESP, which can be directly used to measure business process models, and then, new metrics have been defined according to the particular aspects of the business processes and BPMN notation.

1 INTRODUCTION

Software processes and business processes present certain similarities. The most common is that both try of capturing the main characteristics of a group of partially ordered activities carried out to achieve a specific goal, that they are those of obtaining a product software (Acuña and Ferré, 2001) or a satisfactory results (generally a product or service) for the customer and other stakeholders of the process respectively (Sharp and McDermott, 2000).

Curtis et al., (1992) define some of the specific goals and benefits of modelling the software process, such as: 1. Ease of understanding and communication, 2. Process management support and control, 3. Provision for automated orientations for process performance, 4. Provision for automated execution support, and 5. Process improvement support.

On the other hand, some specific goals of business process modelling are (Erickson and Penker, 2000; Beck et al., 2005): 1. To ease the

understanding of the key mechanisms of an existing business, 2. To serve as the basis for the creation of appropriate information systems that support the business, 3. To improve the current business structure and operation, 4. To show the structure of an innovated business, 5. To identify outsourcing opportunities and, 6. To facilitate the alignment of business specifications with the technical framework that IT development needs.

Something that particularly characterizes software and business processes is the fact that for more than one decade and, as result of the confrontation of the new technologies, more competitive markets, business environments in constant change and requirements for customer's satisfaction, the developers and software presidents, as well as people of business and the organizations in general have been focused in their processes like a reference point to survive and prosper (Florac et al., 1997). It has increased the necessity for analyzing, evaluating, measuring and improving the processes.

As a result of the situation outlined above, the modelling of business processes in particular is

becoming increasingly popular in the last years. In this work, our target is to focus on the conceptual level of the business process modelling, since we believe that it is one of the point key to obtain models of quality that can serve as support for an effective maintainability and management of business processes.

Conceptual process models show what a system does or must do, they are independent of implementation and the language to perform it is usually a graphic language. This is the case of *Business Process Modeling Notation* (BPMN) (BPMI, 2004), which is the new standard for modeling business processes and Web services processes, proposed by the *Business Process Management Initiative* (BPMI). In this paper, we describe a proposal of metrics for business processs models represented in BPMN.

2 STARTING POINT

In our work we have based on the FMESP (Framework for the Modeling and Evaluation of Software Processes) proposal (García et al., 2006), which consists of a framework for the modeling and measurement of software process. FMESP is based on the idea that it is necessary to carry out a good administration of the software processes with the purpose of obtaining software products with quality, and such management considers it in an integrated way by embracing two important aspects: the process modeling and process evaluation. As a result, it provides the conceptual and technological support for the modeling and measurement of software processes in order to promote their improvement.

For the evaluation of the software process, FMESP includes a set of metrics, which measures the structural complexity of software processes models (SPMs). The aim is to evaluate the influence of the structural complexity of the software process models on their maintainability. The FMESP metrics have been defined by analysing the SPEM (Software Process Engineering Metamodel) metamodel (OMG, 2002) at two different scopes and: model scope, to evaluate the overall structural complexity of the model and; core element scope, to evaluate the concrete complexity of the fundamental elements of the model, namely *activities, roles* and *work products*.

With the aim to establish which metrics are useful SPMs maintainability indicators, a family of experiments was carried out (Canfora et al., 2005). The FMESP metrics defined to evaluate the complexity of concrete elements in the software process model (activities, work products and process roles) are not described here due to they are out of the scope of this paper.

3 APPLICATION AND EXTENSION OF FMESP TO BPMN MODELS

The FMESP framework is based on the fact that the research on software process measurement had been focused on the study of the execution results and not in the repercussion that could have the structural complexity of the processes models in its quality. A similar situation happens in the area of business processes modelling. As a result of the research on the side of business people, in the literature we can find diverse proposals for the evaluation of processes but mostly from the point of view of the results obtained in their execution.

Considering our interest in evaluating the business process by starting from the model that represents it in a conceptual level, our work recaptures the FMESP proposal but adapting and extending it to business process models. To achieve it we have defined a set of metrics to evaluate the structural complexity of business process models in a conceptual level.

The goal is to have empirical evidence about the influence that the structural complexity of business models can have on their maintainability. It can provide companies with the quantitative basis necessary to develop more maintainable business process models. The first step to achieve this goal is to define a set of suitable metrics for the evaluation of the structural complexity of business models. This definition has been based on the elements that compose the BPMN metamodel. These metrics have been grouped in two main categories: Base and Derived Measures.

The base measures have been defined by counting the different kind of elements that compose a business process model represented with BPMN, and 43 base measures have been defined according to the main elements of BPMN metamodel. These are distributed, in accordance with the four categories of elements, in the following way: 37 base measures correspond with the *Flow Objects* category, 2 with the *Connecting Objects* category, 2 with the *Swimlanes* category and 2 with the *Artefacts* category. The first 37 base measures which

correspond with the *Flow Objects* category, are grouped according to the common elements to which they correspond. In this way, 23 measures have been defined for the Event element, 9 for the Activity element and 5 for the Gateways element.

With the base measures, it is possible to discover how many significant elements there are in the business process diagram. Nevertheless, starting from the base measures a set of 14 derived measures has been defined (Table 1) which allows us to see the proportions that exist between the different elements of the model. With all measures defined, it is possible to evaluate the structural complexity of business process models developed with BPMN. In this way, when we structurally analyse the model, it is also possible for us to evaluate its quality.

Table 1: Derived Measure	based on	BPMN.
--------------------------	----------	-------

Name	Definition		
	Total Number of Start Events of the Model		
TNSE	TNSE = NSNE+NSTE+NSMsE+NSRE+		
	NSLE+NSMuE		
Total Number of Intermediate Events of the			
INIE	INIE = ININE+INITE+ININE+INIEE+INICAE+ NICOE+NIDE+NITE+INIMIE		
	Total Number of End Events of the Model		
TNEE	TNEE = NENE+NEM $_{2}$ E+NEEE+NEC $_{2}$ E+		
INEE	NECoE+NELE+NEMuE+NETE		
	Total Number of Task of the Model		
TNT	TNT = NT+NTL+NTMI+NTC		
TNCS	Total Number of Collapsed Sub-Process of the Model		
incs	TNCS = NCS+NCSL+NCSMI+NCSC+NCSA		
TNE	Total Number of Events of the Model		
INE	TNE = TNSE + TNIE + TNEE		
TNG	Total Number of Gateways of the Model		
	ING = NEDDB+NEDEB+NID+NCD+NPF		
TNDO	Total Number of Data Objects in the Process Model $TNDQ = NDQIn + NDQQut$		
	INDO = NDOIN + NDOOut		
CLA	CLA = TNT		
CLIA	NSF		
	Connectivity Level Between Pools		
CLP	$\mathbf{CLP} = \mathbf{NMF}$		
	NP		
	Proportion of Data Object like Incoming Product and		
PDOPIn	the total of Data Objects		
	$PDOPIn = \underline{NDOIn}$		
	INDU		
	Proportion of Data Object like Outgoing Product and		
PDOPOut	$\mathbf{PDOPOut} = \mathbf{NDOOut}$		
	TNDO		
	Proportion of Data Object like Outgoing Product of		
	Activities of the Model		
rDOTOut	PDOTOut = <u>NDOOut</u>		
	TNT		
	Proportion of Pools and/or Lanes of the Process and		
PLT	Activities in the Model		
	$PLT = \underline{NL}_{TD}$		
	INI		

We have described two proposals of metrics to evaluate software process models and business process models respectively. These metrics have

been defined on two different metamodels, namely SPEM for software processes and BPMN for business process models. It is important to highlight that SPEM is a generic metamodel, and the measures proposed can be applied to other process modelling languages, even not specific to software as BPMN.

On the other hand, being BPMN specifically focused on business processes it presents some aspects that are not contemplated for software processes and it means that new specific metrics are necessary.

According to the issues mentioned, in order to measure BPMN business process models the metrics of the framework FMESP for SPEM have been successfully applied, but new metrics (not defined in FMESP) have been necessary due to the specific notation of BPMN to model some particular aspects of business processes. Table 2 shows the modelling elements considered in SPEM and BPMN notations.

Table 2: Elements of SPEM and BPMN for metrics definition.

Element	SPEM	BPMN
Events		>
Activities	~	>
Gateways		>
Work Products (Data Objects)	~	>
Roles (Lanes)	~	>
Dependences (Sequence Flow)	~	>
Message Flow		>
Pools		>

As we can observe in Table 2, there are some elements useful in BPMN for the modeling of business process that SPEM does not contemplate, such as the Events, Gateways, Message Flow and Pools.

Since we have new base measures coming from the use of the metamodel of BPMN, a new group of derived measures is generated which has not been defined in FMESP. With all the metrics defined, the base ones as well as the derived ones, we believe that one could have information about the structural complexity of the model of business processes, allowing us to evaluate aspects like their understandability, coherence, completeness, modifiability and consistency in order to assure the quality of the model at conceptual level (Lindland et al., 1994).

4 CONCLUSIONS AND FURTHER WORK

In this paper, we have displayed how the proposal of FMESP can be applied in order to evaluate business process models at conceptual level. Taking into consideration that in the field of process engineering there are not metrics applicable to business process models at conceptual level, we make use of the philosophy of FMESP in order to evaluate the structural complexity of business process models. We have taken as our starting point a definition of base measures and derived measures following the BPMN terminology, which is the most recent standard notation defined by BPMI for the modeling of business process.

By integrating both proposals, we provide a more refined framework for evaluating business process models. This gives support to Business Process Management, which has as one of its stages the definition and modelling of the process being assessed. It will allow a more appropriate management of the business processes and can provide organizations with important profits.

Model metrics can be very useful to select the models with the most easiness of maintenance among various alternatives in companies with change their models to improve their business processes. Also, it can help to facilitate the business processes evolution in these companies by assessing the process improvement at conceptual level.

The business process model metrics provide companies with objective information about the maintainability of these models. More maintainable models can benefit the management of the business processes mainly in two ways: i) guaranteeing the understanding and the diffusion of the processes, as they evolve, without affecting their successful execution; ii) reducing the effort necessary to change the models with the consequent reduction of the maintenance.

Currently we are developing a family of experiments with the purpose of to evaluate quality aspects of the conceptual business process models. These experiments are been carried out with a population integrated by experts in business analysis and in software engineering in order to be able a comparison between results of both kinds of stakeholders and to determine the influence of these different points of view.

Participants receive a kit consisting of a set of business processes models represented with BPMN. Models has different characteristics and dimensions. A questionnaire is also provided for each one of the models including questions related with its understandability. In order to assess how influence the BPMN notation in the modifiability of models other additional section of the questionnaire asks about several modifications -specially studied- to the original model.

ACKNOWLEDGMENTS

This work has been partially financed by the ENIGMAS Project (Junta de Comunidades de Castilla-La Mancha, Consejería de Educación y Ciencia, reference PBI-05-058) and MAS Project (Ministerio de Ciencia y Tecnología, reference TIC 2003-02737-C02-02).

REFERENCES

- Acuña, S. T. and Ferré, X., 2001. Software Process Modelling. *Proceedings of the 5th. ISAS-SCI 2001*, Orlando Florida, USA. Vol: 1, pp. 237-242.
- Beck, K., Joseph, J. and Goldszmidt, G., 2005. Learn Business Process Modeling Basics for the Analyst. *IBM*, www.128ibm.com/developersworks/library/wsbpm4analyst
- BPMI, 2004. Business Process Modeling Notation, Specification Version 1.0. Business Process Management Initiative, www.bpmi.org
- Canfora, G., García, F., Piattini, M., Ruiz, F. and Visaggio, C.A.. 2005. "A Family of Experiments to Validate Metrics for Software Process Models." *Journal of Systems and Software* 77 (2): pp. 113-129.
- Curtis, B., Kellner, M. I. and Over, J., 1992. "Process Modeling." *Communications of the ACM* Vol. 35 (No. 9): pp. 75-90.
- Erickson, H.-E. and Penker, M., 2000. *Business Modeling with UML- Business Patterns at Work*. USA, Robert Ipsen.
- Florac, W. A., Park, R. E. and Carleton, A. D., 1997. Practical Software Measurement: Measuring for Process Management and Improvement, Guidebook. *Carnegie Mellon University*,
- García, F., Ruiz, F., Piattini, M., Canfora, G. and Visaggio, C.A., 2006. "Framework for the Modeling and Evaluation of Software Processes." *Journal of Systems Architecture* (accepted to appear).
- Lindland, O. I., Sindre, G. and Solvnerg, A., 1994. "Understanding Quality in Conceptual Modeling" *Software IEEE* Vol. II (Issue 2): pp. 42-49.
- OMG, 2002. Software Process Engineering Metamodel Specification, adopted specification, version 1.0. *Object Management Group, Inc.*,
- Sharp, A. and McDermott, P., 2000. Workflow Modeling: Tools for Process Improvement and Application Development. London, Artech House (Pub).