

The Association for Computing Machinery
1515 Broadway
New York, New York 10036

Copyright © 2006 by the Association for Computing Machinery, [nc, (ACM). Permission to make digital
or hard copics of portions of this worle for personal or classroam use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyright for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, 1o republish, to post on servers or to
redistribute to Lists, requires prior specific permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212} 869-0481 or <permissions(@acm.org>.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923,

Notice to Past Authors of ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other material previously
published by ACM. If you have written a work that has been previously published by ACM in any journal
or conference proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT want this
work to appear in the ACM Digital Library, please infarm permissions(@acm. org, stating the title of the
work, the author(s), and where and when published.

ISBN: 1-59593-218-6

Additional copies may be ordered prepaid from:

ACM Order Department
PO Box 11405
New York, NY 10286-1405

Phone: 1-800-342-6626
(US and Canada)
+1-212-626-0500

(all other countries)

Fax: +1-212-944-1318
E-mail: acmhelp@acm.org

ACM Order Number 594057
Printed in the USA

Message from the General Chair

For a long time scientists have been committed to describe and organize information acquired by
observations from the field. To improve the comprehension and testability of the observed
information, Bacon's works proposed to organize the way that the experiences should be
structured and somehow formalized, starting with the experimental method idea. From that point
in time, the ideas regarding experimentation have been explored and evolved into different
scientific areas, including physics, agriculture, medicine, engineering and social sciences among
others. It has not been different in Software Engineering. By applying the scientific method to
organize their experimental studies, software engineers have intensively worked to understand the
application and evolution of software processes and technologies. Acquiring knowledge through
different categories of experimental studies has supported researchers and practitioners to build a
Software Engineering body of knowledge. Families of studies start to be planned and shared
among the research community, composing a common research agenda to enlarge such body of
knowledge. Based on this, evidence based software engineering is becoming a reality. Nowadays,
besides the experimental studies, the experimentation approach represents an important tool to
allow the transfer of software technology to the industry and to improve software processes. This
is the context for the 5* ACM/IEEE International Symposium on Empirical Software Engineering.

This symposium provides an important vehicle for the further development of our understanding
about the methods and application of experimentation in Software Engineering. It represents a
concrete opportunity for our community to discuss the advances in the field and develop research
collaboration in a face-to-face setting. I hope our Software Engineering community can use these
good moments to go one step further, looking for ways to better spread knowledge regarding the
scientific method (experimentation) and its application into the Software Engineering context.

The fifth symposium in the ISESE series is part of the Experimental Software Engineering
International Week (ESEIW). It is an honor to see the conference for the first time in Brazil. As
started in the last ISESE issue, we have a full two-day program of three tracks in each day. Thisis
the second year that we have had to organize the three tracks in order to accommodate the number
of excellent papers submitted from different continents and accepted for publication.

I would like to thank the many people who have worked so hard to put this event together. These
include Dr. Claes Wohlin and Dr. José Carlos Maldonado, the program co-chairs, Dr. Emilia
Mendes, the short papers and poster program chair, Dr. Marcio de Qliveira Barros, the treasurer,
Dr. Sira Vegas, publicity chair, Ms. Paula Gomes Mian, Ms. Tayana Uchoa Conte, Ms. Taisa
Guidini and Mr. Marcos Kalinowski, the local arrangements, infrastructure and registration
handling staff. A special thanks to ACM SIGSOFT, IEEE Computer Society, SBC-Brazilian
Computer Society, PESC/COPPE, COPPE/UFRJ], UNIRIO, DNB Turismo, Hotel Everest,
Experimental Software Engineering Group at COPPE/UFRJ and COPPETEC Foundation for all
the positive support.

1 hope you are able to enjoy ISESE 2006 and the marvelous city of Rio de Janeiro. Welcome!

Guilherme Horta Travassos
ISESE 06 General Chair
Federal University of Rio de Janeiro
COPPE/PESC
Brazil

iil

Message from the Program Chairs

On behalf of the program committee for ISESE 2006, we wish to welcome you to Rio de Janeiro, Brazil,
for the Fifth International Symposium on Empirical Software Engineering. It is the first time the conference
is held in South America after taking place in Japan, Ttaly, USA and Australia,

The program of 1ISESE 2006 includes 40 full papers selected from 87 submitted papers, 17 short papers
selected from 36 submissions, and 5 posters from 9 submissions. Papers were reviewed by an international
program committee consisting of 67 members from 18 different countries. The selection was based on
more than 300 reviews. The committee had a difficult task and it is our sincere belief that the committee
work resulted in the acceptance of a set of high quality papers. A subset of the very best full papers will be
invited to submit an extended version of their papers to a special issue of Empirical Software Engineering:
An International Journal, published by Springer.

In addition to paper sessions, we have one keynote and one panel session. The keynote is given by
Professor Victor Basili from the University of Maryland, USA. He was invited to provide a perspective on
empirical software engineering since he was the main author of the paper “Experimentation in Software
Engineering” published in IEEE Transactions on Software Engineeting in 1986, and hence it is a 20-year
anniversary since its publication.

The conference provides a blend of papers covering a broad range of software development aspects, as well
as practice and theory. Papers repott on empirical studies applied to software development, management
and quality assurance as well as methods for empirical studies.

We hope that participants find papers of interest and the program provides you with an inspiring
conference, where you identify new ideas that will have an impact on your research or practice activities.

This year, ISESE 2006 is co-located with other meetings and initiatives all related to empirical software
engineering. This includes the fourteenth ISERN (Intcrnational Software Engineering Research Network)
meeting, the fourth International Advanced Schoo! of Empirical Software Engincering (IASESE 2006), the
first International Doctoral Symposium on Experimental Software Engineering (JDoESE 2006) and the
third Experimental Software Engincering Latin American Workshop (ESELAW 2006). The co-location of
these events will hopefully provide an interesting blend of practical and theoretical approaches to empirical
software engineering.

Finally, we extend our sincere thanks to the program committee for their work ensuring an excellent
selection of papers.

José Carlos Maldonado Emilia Mendes Claes Wohlin
Program Co-Chair Program Co-Chair Program Co-Chair
(full papers} (short papers and posters) (full papers)
ICMC-USP University of Auckland Blekinge Institute of Technology
Brazil New Zealand Sweden

oy ey e

PU—

SO

Table of Contents

International Symposium on Empirical Software Engineering 2006:

OFGANMIZATIONo.ooocoooeeeeisieteeas et s s ssmssnonstsss s X
AddItioNal REVIEWRES ...t eeresssssbasssssssamssss sttt ssnssss X
SPONSOrS & SUPPOTTETS........ocooocvcerisccssiersisone s sssessssmssiss s X
Session 1:
Session Chair: G. Travassos (COPPE/UFRJ)
s Keynote: Is There a Future for Empirical Software Engineering?oocovveerececcrcuenirsssassmnsssnsasesens |
V. R. Basili (University of Maryland & Fraunhofer Center for Experimental Software Engineering)
Session 2A: Faults and Failures
Session Chair: H. Erdogmus (NRC Institute for Information Technology)
¢ Comparing the Fault-Proneness of New and Modified Code — An Industrial Case Study 2
P. Tomaszewski (Blekinge Institute of Technology), L.-O, Damm (Blekinge Institute of Technology & Ericsson AB)
¢ Predicting Fault-prone Components in a Java Legacy LSV L) VOO .
E. Arisholm (Simula Research Laboratory), L. C. Briand (Simula Research Laboratory & Carieton University)
s Predicting Component Failures at Design TiMe ...t 18
A, Schroter, T. Zimmermann, A, Zeller (Saarfand University)
Session 2B: Research Methodology
Session Chair: A. Jedlitschka (Fraunhofer Institute of Experimental Software £ngineering)
e Analysis of the Influence of Communication between Researchers
on EXperiment REPHCAHON ..ot ssrimssrni s s b s s s .28
S. Vegas, N. Juristo, A. Moreno (Universidad Politécnica de Madrid), M. Solari (Universidad ORT),
P. Letelier (Universidad Politécnica de Valencia),
s Evaluating Guidelines for Empirical Software Engineering Studiesccoooeemiinsinseneceeennnenn 38
B. Kitchenham (National ICT Australia Lid),
H. Al-Khilidar, M. Ali Babar, M. Berry (National {CT Australia Ltd. & University of New South Wales),
K. Cox (National [CT Australia Ltd,), J. Keung (National ICT Australia Ltd, & University of New South Wales),
F. Kurniawati (National ICT Australia Ltd.),
M. Staples, H. Zhang (National ICT Australia Ltd. & University of New South Wales),
L. Zhu (National ICT Australia Lid.)
» Using Observational Pilot Studies to Test and Improve Lab Packagesc..cominninnnnnnn e 48
M. Mendonga, D. Cruzes, I. Dias (Salvador University),
M. C. F. de Oliveira (fnstituto de Ciéncias Matemdticas e de Computacdo)
Session 2C: Cost and Effort Estimation
Session Chair; M. Hast (Lund University)
o A Framework for the Analysis of Software Cost Estimation ACCUracy58
S. Grimstad (Simula Research Laboratory & University of Oslo), M. Jargensen (Simula Research Laboratory)
e A Comparative Study of Attribute Weighting Heuristics for Effort Estimation by Analogy66
J. Li, G. Ruhe (University of Calgary)
e Cross-company and Single-company Effort Models Using the 1SBSG Database:

a Further Replicated Study ...,
C. Lokan (UNSW@ADFA), E. Mendes (University of Auckland)

vil

Session 4A: Comparing Defect Detection Techniques
Session Chair: S. Vegas (Universidad Politecnica de Madrid)

« An Empirical Comparison Between Pair Deve!opment
and Software Inspection in Thailand ..
M. Phongpaibul, B. Boehm (University ofSouthern C'a!;forma)

» PBR vs. Checklist: A Replicaticn in the N-Fold Inspection Context...........oocninn

L. He, J. Carver (Mississippi State University)

e An Empirical Analysis and Comparison of Random Testing Techniques ...

1. Mayer, C. Schneckenburger (Ulm University)

Session 4B: Software Design
Session Chair: S. Biffl (Technical University of Vienna}

e Defects in Automotive Use Cases ...

F. Tomer (Vaive Car Corporation), M. lva.rsson F Pettersson P Ohman (Cha[mers Umversrty of Tec}malogy)

» A Case Study on the Application of UML in Legacy Development....
B. Anda (Simula Research Laboratory), K. Hansen (48B Corporate Research C'emer)

* Documenting Design Decision Rationale to Improve individual
and Team Design Decision Making: An Experimental Evaluation ..
D. Falessi, G. Cantone (University of Roma), M. Becker (Fraunhofer {ESE)

Session 4C: Software Projects
Session Chair; M. T, Baldassarre (University of Bari}

» Successful Software Project and Products: An Empirical Investigation ..o

R. Berntsson-Svensson, A. Aurum (University of New South Wales)

s Predicting Good Requirements for In-house Development Projects ...

I. Verner, K. Cox, S. I. Bleistein (National ICT Ausiralia)

* Agile Customer Engagement: a Longitudinal Qualitative Case Studyc.cccoovviimn e

G. K. Hanssen, T. E. Erlend Fzgri (SINTEF ICT)

Session 5A: Defect Detection
Session Chair; G. Cantone (University of Roma}

¢ Maximising the Information Gained From an Experimental Analysis
of Code Inspection and Static Analysis for Concurrent Java Components...
M. A. Wojcicki, P. Strooper (The University of Cueensiand)

¢ Testing and Inspecting Reusable Product Line Components:
First Empirical Results ... -
C. Denger, R. Kolb (Fraunhofer !nsutute ﬁ)r Experzmemal Safmare Engmeermg)

s A Literature Survey of the Quality Economics of Defect-Detection Techniquescccccocenen

S. Wagner (Technische Universitat Miinchen}

Session 5B: Software Operation and Evolution
Session Chair: M. Zelkowitz (University of Maryland & Fraunhofer Center)

® The Evolution of FreeBSD and LINLIX ...t e s s

C. Izurieta, J, Bieman {Colorado State University)

viii

B85

95

105

A3

124

. 134

144

154

164

174

.. 184

194

204

A Family of Empirical Studies to Compare Informal

and Optimization-based Planning of Software Releases ...

G. Du,). McElroy, G. Ruhe (University of Calgary}

Empirical Estimates of Software Availability of Deployed Systems............c.ooimciiisinncns

A. Mockus {Avaya Research)

Session 5C: Software Development and Developers
Session Chair: J. Kontio (Heisinki University of Technology)

A Follow up Study of the Effect of Personallty on the Performance
of Software Engineering Teams... e ettt e s
). Kam, T. Cowling (University of Sheﬁ"refd)

An Empirical Study of Developers Views on Software Reuse in Statoil ASA...........cccoivvvinncrene

0. P. N. Slyngstad, A. Gupta, R. Conradi, P. Mohagheghi ({University of Science and Technology),
H. Renneberg, E. Landre (Siatoil KTJ/IT)

Distributed Versus Face-to-Face Meetings for Architecture Evaluation:
A Controlled Experiment....

M. Ali Babar (National ICT Ausrra!ra Lm’ & Umversn‘y af New Sowh Wales)

B. Kitchenham (National {CT Austratia Ltd),

R. Jeffery (National ICT Australia Ltd. & University of New South Wales)

Session 6A: Software Testing

Session Chair: M. Morisio (Politecnico di Toring)

Improving Software Testing by Observing Practice ...
Q. Taipale, K. Smolander (Lappeenranta University of Technology)

An Industrial Case Study of Structural Testing Applled
to Safety-critical Embedded Software ..
I. Guan, J. Offutt, P. Ammann (George Mason Umversn‘y)

An Empirical Evaluation of a Testing and Debugging Methodology for Excel..................

1. Carver (Mississippi State University), M. Fisher II, G. Rothermel (University af Nebraska at Lincoln)

Session 6B: Architecture and Refactoring
Session Chair: G. Ruhe (University of Calgary)

Common Refactorings, a Dependency Graph and Some Code Smells:

An Empirical Study of JAVa O8S ...

$. Counsell (Brunel University), Y. Hassoun (Tmperial College),
G. Loizou, R. Najjar (School of Information Systems and Compuling)

Drivers for Software Refactoring Decisions ..

M. V. Mantylg, C. Lassenius (Felsinki University of Technology)

Eliciting Better Quality Architecture Evaluation Scenarios:
A Controlied Experiment on Top-Down vs. Bottom-Up....

M. Ali Babar (National ICT Australia Ltd. & University af New South Wales)

S. Biffl (Vienna Technical University}

Session 6C: Metrics and Measurement
Session Chair: M. Oivo (University of Oulu}

¢ A Goal Question Metric Based Approach for Efficient Measurement

Framework Definition...
P. Berander, P. Jénsson (Blekmge Instzmte af Technoiogy)

Evaluating the Practical Use of Different Measurement Scales
in Requirements Prioritisation... .
L. Karlsson, M. Host, B. Regnell (Lund Umversrty)

212

222

..232

242

252

...262

272

278

............. 288

. 297

307

316

...326

Session 7A: Defect Classification
Session Chair: N. Juristo (Universidad Politecnica de Madrid)

* Requirement Error Abstraction and Classification: An Empirical Study........ccoooemrciiiie
G. S. Walia, J. Carver, T. Philip (Mississippi State University)

» Identifying Domain-Specific Defect Classes Using Inspections and Change History.................
T, Nakamura, L. Hochstein, V. R. Basili {University of Maryland)

Session 7B: Test-driven Development

Session Chair; L. Williams (Morih Carofing State University)

e Evaluating the Efficacy of Test-Driven Development: Industrial Case Studies...........cccoeooieeiees
T, Bhat {Center for Software Excellence), N. Nagappan (Microsofi Research)

¢ Evaluating Advantages of Test Driven Development:
a Controlled Experiment with Professionals ...
G. Canfora, A. Cimitile (University of Sannio), F. Garcia, M. Piattini (University of Castitia La Mancha),
C. A. Visaggio (University of Sannio}

AUBROT LMK oo e svereeseees s 2sensssra 8RS e AR s eSS RS R

336

346

356

.. 364

372

s

|
3
i
iz;;

Program Chairs (full papers):

Program Chair (short papers & posters).
Publicity Chair:
Treasurer:

Local Arrangements Committee:

Steering Committee Chair:

Steering Commiittee:

Program Commiittee:

Genera! Chair:

International Symposium on Empirical Software
Engineering 2006: Organization

Guilherme Horta Travassos (COPPE/UFRJ, Brazil)

José Carlos Maldonado (JCMC-USP, Brazil)
Claes Wohlin (Blekinge Institute of Technology, Sweden)

Emilia Mendes (The University of Auckland, New Zealand)
Sira Vegas (Universidad Politécnica de Madrid, Spain)
Marcio de Oliveira Barros (UNIRIO, Brazil)

Tayana Uchda Conte (COPPE/UFRJ, Brazil)
Paula Gemes Mian (COPPE/UFR.J, Brazil)
Marcos Kalinowski (COPPE/UFRJ, Brazil)
Taisa Guidini Gongalves (COPPE/UFRJ, Brazil)

Ross Jeffery (NICTA/University of New South Wales, Australia)

Natalia Juristo (Universidad Politécnica de Madrid, Spain)

José Carlos Maldonado (JCMC-USP, Brazil)

Carolyn Seaman (University of Maryland, Baltimore County, USA}
Guilherme Horta Travassos (COPPE/UFRJ, Brazil)

Sira Vegas (Universidad Politécnica de Madrid, Spain)

June Verner (NICTA/University of New South Wales, Australia)
Claes Wohlin (Blekinge Institute of Technology, Sweden)

Ana M. Moreno (Universidad Politecnica de Madrid, Spain)

Ana Regina C. da Rocha (COPPE/UFRJ - Universidade Federal
do Rio de Janeiro, Brazil)

Andreas Jedlitschka (Fraunhofer Institute of Experimental Software
Engineering, Germany)

Anneliese Andrews (University of Denver, USA)

Arndt Von Staa (PUC-Rio - Pontificia Universidade Catdlica, Brazil)

Audris Mockus (Avaya Labs Research, USA)

Aybitke Aurum (University of New South Wales, Australia)

Barbara Kitchenham (NICTA, Australia and Keele University, UK)

Carolyn Seaman (University of Maryland, Baltimore County, USA)

Chris Lokan (University of New South Wales, Australia)

Christopher Lott (Telcordia, USA)

Dag Sjeberg (Simula Research Labs, Norway)

David Budgen (University of Durham, UK)

David Carrington (University of Queensland, Australia)

Dewayne Perry (University of Texas, USA)

Filippo Lanubile (University of Bari, ltaly)

Forrest Shull (Fraunhofer Centre for Experimental Software
Engineering Maryland, USA)

X1

&
13

Program Committee {(continued):

Gerardo Canfora (University of Sannio, Italy)
Giovanni Cantone (University of Roma “Tor Vergata,” ltaly)
Giuseppe Visaggio (University of Bari, ftaly)
Guenther Ruhe (University of Calgary, Canada)
Gustavo Rossi (UNLP - Universidad Nacional de La Plata, Argentina)
Hakan Erdogmus (NRC Institute for Information Technology, Canada)
Toannis Stamelos (dristotle University of Thessaloniki, Greece)
Ttana M. S. Gimenes (UEM - Universidade Estadual de Maringd, Brazil)
James Bieman (Colorado State University, US4)
Jeff Carver (Mississippi State University, USA)
June Vermer (NICTA/University of New South Wales, Australia)
Jyrki Kontio (Helsinki University of Technology, Finland)
Kenichi Matsumoto (Nara Institute of Science and Technology, Japan)
Laurie Williams (North Carolina State University, USA)
Linda Ott (Michigan Technological University, USA)
Lionei Briand (Carleton University, Canada)
Luciano Baresi (Politecnico di Milano, Italy)
Magne Jorgensen (Simula Research Labs, Norway)
Manoel Mendonga (Universidade de Satvador — UNIFACS, Brazil)
Marcela Genero (University of Castilla-La Mancha, Spain)
Marcelo Visconti (UTFSM - Universidad Tecnica Federico
Santa Maria, Chile)
Miarcio Barros (Universidade Federal do Estado do Rio de Janeiro -
UNIRIO, Brazil)
Marcio E. Delamaro (UNIVEM - Centro Universitdrio Euripides
de Marilia, Brazil)
Maria C. F. de Oliveira (CMC-USP - Universidade de Sdo Paulo, Brazil)
Mario Piattini (University of Castilla-La Mancha, Spain)
Markku Qive (University of Qulu, Finland)
Marcus Ciolkowski (Universitdt Kaiserslautern, Germany)
Martin Host (Lund University, Sweden)
Martin Shepperd (Brunel University, UK)
Marvin Zelkowitz (University of Maryland, USA4)
Maurizio Morisio (Politecnico di Torino, ltaly)
Mikael Svahnberg (Blekinge Institute of Technology, Sweden)
Murray Wood (University of Strathelyde, UK)
Natalia Juristo (Universidad Politecnica de Madrid, Spain)
Pearl Brereton (Keele University, UK)
Pekka Abramsson (VTT, Finland)
Per Runeson (Lund University, Sweden)
Philip Johnson (University of Hawaii, USA)
Pornsiri Muenchaisri (Chulalongkorn University, Thailand)
Rachel Harrison (University of Reading, UK)
Reidar Conradi (Norwegian University of Science and Technology,
Norway)

xii

Program Committee (continued):

Additional reviewers:

Sponsors:

Collahoration:

Host universities:

Ross Jeffery (NICTA/University of New South Wales, Australia)
Sandra Fabbri (UFSCAR- Universidade Federal de Sdo Carlos, Brazil)
Sandro Morasca (Universiti dell'nsubria — Como, ftaly)

Shinji Kusumoto, Osaka University, Japan

Silvia Mara Abrahao (Valencia University of Technology, Spain)
Stefan Biffl (Technical University of Vienna, Austria)

Steve MacDonell (Auckiand University of Technology, New Zealand)
Tracy Hall {University of Hertfordshire, UK)

Walter Tichy (University of Karlsruhe, Germany)

Anita Ashok Gupta Sarita Mazzini Bruschi
Maria Teresa Baldassarre Parastoo Mohagheghi
Richard Bemntsson-Svensson Odd Petter Nord Slyngstad
Reinaldo C. Silva Filho
Maria Istela Cagnin
Danilo Caivano
Marcos L. Chaim
Tayana Uchda Conte

Marco Antdnio Pereira Aratijo
Omolade Saliu

Lais Salvador

Alessandro Sarcia

Adenilso Siméo

Daniela Cruzes Martin Solari

Feras Dabous Mark Staples

Mircio Delamaro Tor Stalhane

Oscar Dieste Tatiana Tavares
Davide Falessi Sira Vegas

Paula Gomes Mian Auri M. Vincenzi
Marcos Kalinowski Alf Inge Wang
Jingzhou Li Elisa Yumi Nakagawa
Teresa Mallardo Liming Zhu

Jobson Luiz Massollar da Silva

IEEE

COMPUTER
SOCIETY

Brazilian Computer Society

G
i
"‘»’g.:’
nainpa blaylae Tore e UF
Par-founept s Ratsinds foprhy s

xiil

Evaluating Advantages of Test Driven Development:
a Controlled Experiment with Professionals

Gerardao Canfora
Research Centre on Software
Technology (RCOST)
viale Traiano, 1
82100 Benevento, ltaly
+390824 305555
canfora@unisannio.it

Mario Piattini
Alarcos Research Group,
University of Castilla-La-Mancha
Paseo de la Universidad, 4
13071 Ciudad Real, Spain
+34926295300
Mario.Piattini@uclm.es

ABSTRACT

Test driven development (TDD) is gaining interest among
prctitioners and researchers: it promises to increase the quality of
the code. Even if TDD is considered a development practice, it
relies on the use of unit testing. For this reason, it could be an
alternative to the testing afier coding (TAC), which is the usual
approach to Tun and execute unit tests after having written the
code. We wondered which are the differences between the two
practices, from the standpoint of quality and productivity. In order
10 answer our research question, we carmied out an experiment in a
Spanish Software House. The results suggest that TDD improves
the unit testing but slows down the overall process.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics — performance measures
Lprocess melrics, product metrics

General Terms: Management, Measurement, Performance,
Design, Experimentation.

Keywords: Empirical Software Engineering, Test Driven
Development, Process Quality.

1. INTRODUCTION
TDD is a key practice of extreme programming (XP) [1]: it
prescribes that the code is developed or changed exclusively on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee,

ISESE'06, September 21-22, 2006, Rio de Janeiro, Brazil.

Copyright 2006 ACM 1-59593-218-6/06/0009...$5.00.

Aniello Cimitile
Research Centre on Software
Technology (RCOST)
viale Traiano, 1
82100 Benevento, Italy
+390824305555
cimitile@unisannio.it

364

Felix Garcia
Alarcos Research Group, University
of Castilla-La-Mancha
Paseo de la Universidad, 4
13071 Ciudad Real, Spain
+34926295300
Felix.Garcia@uclm.es

Corrado Aaron Visaggio
Research Centre on Software Technology (RCOST)
viale Traiano, 1
82100 Benevenio, ltaly
+3908243055565
visaggio@unisannio.it

the basis of the unit test results. As a first step, the developer
defines the classes of the system together with the correspondent
class interfaces. Then, the developer composes the test suite for
each class: the test suite must include the assertions needed to
verify the behavior of all classes® methods. Finally, the body of
each method is completed throughout an iterative process,
consisting of two activities: to execute the tests and, when some
of them fail, to change the code in order to remove the bugs,
which are supposed to be the cause of the failure. The process is
over when all the tests succeed.

The test suite is not only the container of the tests to be run, but it
becomes an essential component of the system, too: it is used as
(part of) design documentation, as it describes the dynamic
aspects of the system, by mapping the expected values retumed
by cach method with the ones passed as input. It entails the
following advantages:

. such documentation is embedded i the code, thus the
lifecycle of code and documentation should merge in
only one.

. it provides an unambiguous and immediate definition of
functional quality for the code: if the tests succeed, the
code is accepted as good.

. the access is fast: the developer just needs to execute the
suite in order to get the content of the documentation,
rather than browsing many sheets full of different
diagrams.

TDD is not intended to be a quality assurance technique, even if it
lets the developer make preliminary assessments of the code
while writing. TDD is considered as a practice of code
development rather than code testing, but the role of unit testing is
relevant for establishing the design strategy and the algorithms to
adopt. Consequently, when dealing with TDD, the issues

anceming testing must be taken into account, as well as the ones
oncemning coding. From this standpoint, TDD might be
onsidered as an alternative to TAC, the more traditional
gpproach to unit testing, consisting in writing and running the
tsts after that the code is written. We believe that: (i) TDD is
mare time consuming than TAC; but (i) TDD improves the
quality of unit testing. On one hand, as the developer is forced to
continuously skip from test to code (and vice versa) until the tests
mceeed, the iterative process of TDD seems to us more costly
than the traditional TAC. As a matter of fact, in TAC the two-
thases, coding and testing, arc¢ executed quite in a rigorous
sequence, except for the bug-fixing, which is usually very
Iocalized and entails a very few iterations code-tests. On the other
tand, as the developer tends to obtain the greater information he
an from the results of testing in order to write correctly the code,
TDD facilitates the accuracy and the precision of test cases.

With the aim of verifying our conjecture, we have carried out an
experiment with the collaboration of professionals working in a
Spanish Software Company.

The research goal is stated as:
Analyze Test Driven Development and Test After Coding
With the purpose of comparing
With respect to performances of testing
From the point of view of the developers
In the context of a group of professionals.
The research goal consists of two research questions:

- R.1. Is TDD more productive than TAC from the
viewpoint of testing? In the case, the product is intended
as the set of test cases and cormrect code; the code is
considered comrect if all the related tests succeed. Thus,
‘productivity’ is seen as the efficiency in producing test
cases and correct code.

. R.2. Can TDD improve the quality of unit testing? We
evaluate the differences between TDD and TAC in terms
of accuracy and precision of unit tests.

The paper proceeds as follows: section 2 illustrates the related
work; section 3 describes the experimental design; data are
analyzed in section 4; the limits of the experiment are discussed in
section 5; and, finally, section 6 draws the conclusions.

2. RELATED WORK

TDD is gaining a wide acceptance, thanks to the growing
popularity of XP. In the last few years, a oumber of empirical
studies investigated mainly quality and productivity achieved
with the test driven development.

George and Williams performed a set of structured experiments
[5] in which 24 pairs of professional programmers were involved.
One group developed a small JAVA program by applying TDD,
whereas the other (control) group used the waterfall lifecycle
maodel. The pairs using TDD produced a better quality code (18%
higher) than the pairs who did not use TDD, although the former
required 16% longer time. This study provided evidence that

365

TDD increases the level of tests passed and improves the quality
of the code.

Williams et al. carried out a case study in IBM [13]; the process
consisted of developing an automatic package of test cases once
the system was designed with UML. As a result, the code
developed by applying TDD had 40% fewer defects when
compared with the code of an experienced team using an ad-hoc
testing approach. Besides, TDD had a minimal impact on the
developer’s productivity.

Edwards proposes the use of TDD as a testing practice in a
classtoom. TDD was evaluated with a pilot study in a computer
science undergraduate classroom [3]). Students who applied TDD,
produced code with 45% fewer defects than the students who did
not use TDD.

Miller and Hagner [9] describe an experiment aiming at
comparing TDD and TAC. The subjects were postgraduate
students who had to write the code of a graphical library. The
results indicated that there were no significant differences
between TDD and TAC in terms of reliability and productivity.
Geras ¢t al. conducted a similar experiment with senior
undergraduate students [6]. It emerged that there was a very little
difference in productivity, but there were significant differences
regarding the failure frequency in favor of TDD. Pancur et al. also
investigated the differences between TDD and TAC [10],
throughout an experiment with senior students attending the same
class. Some of the students wrote the program code using TDD
and the rest of students applied TAC; in both cases an iterative
process was applied and automated support for logging the results
of test runs {frequency of test runs, passed and not passed test
cases) was in place. The differences between TAC and TDD were
reduced by using many iterations and testing tools in both the
Processes,

Erdogmus and Morisio evaluated other relevant quality factors of
TDD [4]. They aimed at understanding if programmers using
TDD wrote more test cases than programmers who applied the
traditionat TAC approach. In order to achieve this, an experiment
with undergraduate students was performed: subjects had to
develop a JAVA program, consisting of several small storics,
each one describing a concrete feature of the product. The
students were divided in two groups: the experiment group
applied TDD while the control group applied TAC. Both groups
performed an incremental process: they could add new features
and execute the cormesponding regression tests for each increment.
As a result, students who used TDD wrote a greater number of
test cases and they tended to be more productive. However, this
did not resuit in a proportional improvement of guality.

Although a discrete number of studies concems TDD, the
building of knowledge body around the practice is yet at an initial
stage. Therefore, it is necessary to confirm the obtained results by
comparing the different conclusions reached with the different
experiments, and by studying in depth other aspects of TDD.

So far, there is no work dealing with the TDD, if considered as
well as a process which merges together testing and code in a
unique practice. This work aims at providing an analysis on the
productivity and on the effectiveness of TDD. Controlled
experiments carried out in industrial settings, as well as the one

g

‘
P

- prsented here, might be useful to reinforce the validity of the

fisdings.

3. THE EXPERIMENT
The experiment aimed at testing the following null hypotheses.

Hy: there is no difference in the productivity between TDD and
TAC.

Hy; there is no difference in quality of unit tests between TDD
ad TAC.

Hy helps to answer the research question R.1, whereas Hy, the
research question R.2.

Subjects

The experiment was carried out in the facilities of the Soluziona
Software Factory, a software house located in Ciudad Real, Spain.
The professional business of Soluziona Software consists of
software development and maintenance in the following areas:
gas, water and electricity management systems, economic
mmagement of quality and environment, market simulators,
economic-financial management, corporative systems, public
health system, e-commerce, telecommunications, etc. 28
employees of the company took part to the experiment: they have
a BSc in Computer Science and a wide knowledge in software
programming and modeling (UML, databases, etc.).

Assignments

The subjects were required to realize a system, named
“TextAnalyzer”, in order to satisfy two different requirements in
two different runs, and precisely, one requirement per run. The
programming language was java, while ECLIPSE [14] and JUnit
[15] were chosen as development environments. For precision’s
sake, the subjects were required to write the code and the test
suites for the requirements.

Subjects received two forms that they had to fulfill, one for run, in

the following way:

. to indicate the requirement realized in each run together
with the practice performed (TDD or TAC).

. for each requirement, subjects had to list the
correspondent assertions they wrote in order to test the
methods of the JAVA classes, which satisfied such
requirement.

. for each assertion subjects had to write down
o the start time; and

o end time, which takes into account when the test is
overcome, i.¢. when every bug is detected and the test is
passed without any failure.

Exemplar forms are showed in the appendix together with the two
assipnments. All the experimental material was translated in
Spanish by the Spanish authors.

Rationale for sampling Population

The 28 subjects were selected among a set of professionals with
comparable skills: they had 5 years of experience in using java
and in computer programming, All the subjects had previously

participated in several software engineering projects and had at
least one year of experience as employee of the company. As the
subjects had no previous experience on TDD, we performed
training sessions before the experiment, as discussed in the

‘process’ sub-section.

Variables

The variables are described in Table 1.

Variahle

Table 1. Variables used in the experiment

Deseriplion

Meaning

Hypothesis Hy,
Mean Time per
Assertion. It is the
time required to write
and execute an 1t is assumed as an
assertion in the test indicator of the
suite. In both the oductivity. The product
MeanTPA . . pr g P
practices the time for | js considered as the test
executing the cases and the corrected
assertion includes also | gode.
changing the code for
fixing the bugs
emerged from the test.
MeanTime | It is the mean time for
writing and executing
a test suite. They are indicators of the
effort spent by subjects
1t is the amount of when performing the
TotalTime | fMe spent by the practices
subject for realizing
the overall
assignment.
Hypothesis Hy;
It is assumed as an
Mean Assertion per indicator of test cases’
Method. Lt is the mean | accuracy. The more are
MeanAPM | number of assertions | the assertions dedicate to
written for a class’ a method the more is
method. complete the test case for
that method.
It is assumed as an
indicator of the precision
Total Iflumber.of of test in the overall
Assertions. Tt is the coct. Th is th
total amount of project. The greatet is the
AssertTot <ons in th number of assertions the
assr.?rt;:ms tn the greater is the number of
project. aspects of the code which
are covered by the test.

366

The process

The experiment consisted of two runs; each run lasted five hours.
‘Every subject implemented both the assignments and performed
both the practices but in two different runs. The experimental
design is illustrated in Table 2.

For instance, among the 11 subjects, the subject 8j performed TDD
at the first run for implementing the A2’s requirements, and, the
Al’s requiremenis were developed at the second run, with the
TAC practice. Before the experiment, the subjects took part to a
training session, which included a seminary about test -driven
development, and lab exercises in order fo increase the familiarity
with the practice.

Table 1:The experimental design

RLUNI RUN H
Suhjeets Treatment Assignment Treamment Assignmtent
Sa TAC Al TDD A2
5 TDD A2 TAC Al
8, TAC A2 TDD Al

4. ANALYSIS OF DATA

Data presented in this section have been cleaned by outliers with
the aid of a tool, which performs statistical analyses. In order to
get suddenly an idea of the overall experiment’s results,
histograms were used. In the appendix, the data set is reported in
greater detail.

4.1 Deseriptive Statistics
Figure | compares the mean values of the evaluated metrics,
whereas box plots of data set can be found in the appendix.

Mean Values

aTAC
WTDD

MeamTPA MeanAPM AsseriTot MeanTime Total Time

Figure 1: Comparing mean values of data sets.

It emerges that:

. TDD requires more time than TAC for the execution of
the tasks: TDD slows down the overall thythm of the
work (sce TotalTime metric}) and also the mean
throughput of developers (see MeanTPA). This might be
due to the iterative nature of the TDD’s process. This
finding has not a negative connotation at all, as we

367

believe that the exceeding time is used to increase the
quality of code. Unfortunately, we cannot demonstrate it
here: quality’s aspects of the software are not observed,
since it is not the focus of the paper.

Standard Deviations

o3NEEEBIBR

MeamTPA MeanAPM AssartTot MeanTime AmountTime

Figure 2: Comparing standard deviations of data sets.

. TDD fosters a greater accuracy {MeanAPM) and
precision (AssertTot) of testing. TDD leads the subjects
to analyze in depth the test cases for all the methods,
obtaining an overall improvement of the umit tests. We
observed that subjects designed accurately the use
scenarios of different methods, identifying completely
equivalence classes, selecting thoroughly the input in
order to detect the bugs. Conversely, when they apply
TAC, the test is faced with a kind of monolithic
approach, whete the tests for all the methods are grouped
together in larger test cases; this drives the subjects to be
less precise when defining the assertions, and instead of
dividing the problem in many sub-problems and deal
with them separately, they tend to face the problem at
one time. As a consequence, developers are more prone
to neglect some aspects in the test cases: the quality of
unit testing is, sometime, seriously affected.

Figure 2 shows the standard deviation values of the data sets,
Standard deviation computes the dispersion around the ceniral
value and it is an indicator of the variability of the sample’s data
set.

TDD is more predictable than TAC for the data sets of all the
metrics. Predictability is refated to the opportunity to make good
estimations during the planning phase of software projects. This
could be a point in favor of TDD, as it could be a motivation to
adopt the practice in real contexts.

Such a property might be explained with the fact that TDD puts a
great emphasis on the unit testing: as each method must have the
correspondent unit test, all the subjects must produce roughly the
same number of test cases with a similar precision.

Conversely, in TAC the responsibility of the test cases quality is
left to the individual developer, since it is realized after that the
code is written, This entails that some developers spend more
time testing because they analyze the scenarios in greater detail,
whereas others prefer to stop at a certain point; hence the greater
repeatability of the TDD’s performances.

f;'!'esting Rank Rank p-level

4) Testing of Hypotheses

Table 3 shows the results of hypotheses testing; Mann-Whitney
tess were used because the sample data set was not normally
disributed, and the p-level was fixed at 0.05.

Table 3. Testing of hypotheses

Comment
Sum Sam (b
(a)

Hypothesis Hy
ManTPA | 846.00 | 585.00 0.037374 | There is evidence
TED(a)- 1 that TDD requires
TAC(b) more time per
: assertions than TAC
ToalTime | 885.00 | 546.000 |0.005501 | There is evidence
TBD{a)- that TDD requires
TAC(b) an overall amount
of time longer than
TAC
MeanTime | 861.00 | 570.00 0.018412 | There is evidence
ThDNa)- that TDD requires
TAC(H) more time in
average than TAC
Hypothesis Hy,
AsertTot | 763.00 | 668.00 0.544772 | There is no
TDIXa)- evidence that TDD
TAC(b) produces more
assertions than TAC
MeanAPM | 755.50 | 675.50 0.633341 | There is no
TOD¢a)- evidence that TDD
TAC(b) produces more
assertions per
method than TAC

The statistical test of hypotheses produced the following results:
’ there is evidence that TDD requires more time than TAC.

. there is no evidence that TDD lets developers realize
more accurate and precise test cases than TAC.

4.3 Lessons Learned to improve the

experimental design

No particular matters occurred during the experiment nor subjects
complained for anything, thus we suppose that the experimental
design was good enough. However, two considerations must be

highlighted:

. it might be useful to enlarge the time window; TDD is
very time consuming, and hurry might drive the subjects
to do less than they wish. We believe that this explains
why we did not obtain empirical evidence on the quality
data sets.

368

. our impression is that the strongest difference between
the two practices may be perceived on the code: analysis
of the quality obtained is worth investigating.

5. THREATS OF VALIDITY

Threats to construct validity

The dependent variables aimed at capturing the productivity of
the evaluated practices. Since they were obtained from the data
collected by forms filled in by subjects, the measurement was
objective. In order to facilitate the accuracy of data, the subjects
were provided with an example of a fulfilled form and the process
was carefully explained during the prior training session. Besides,
in order to indicate cormrect times, all subjects used their own
computer system clocks.

Threats to Internal Validity
The following issues have been dealt with:

. Differences among subjects. Using a within-subjects
design, error variance due to differences among subjects
was reduced. The subjects were professionals with
experience in JAVA programming, familiar with the
ECLIPSE environment, and with the assignments,
Moreover, the subjects learnt TDD, TAC, and JUnit,
during the same (introductory) seminar before the
experiment.

. Leaming effects. The subjects were required to deal with
only one assignment for each run and the assignments
were the as independent as possible, in order to cancel
the learning effects. There is no evidence that lcaming
effects occurred between the two runs, as Mann Whitney
tests show in Table 4.

. Fatipue effects. On average, the experiment lasted 13
hours (three hours for training session and five hours for
each mun). However, this time was distributed into three
consecutive days: the first was dedicated to train the
subjects, while the second and the third ones were
dedicated to the first and second run, respectively. This
arrangement was chosen in order to reduce as much as
possible the fatigue effects. As a result, fatigue effects
did not appear. As a confirmation, some subjects asked
for a longer time to accomplish better the assignments.

. Persistence effects. In order to avoid persistence effects,
the experiment was run with subjects who had never
done a similar experiment.

. Subject motivation. Professionals showed a great interest
in taking part to a scientific experiment. They were
pleased to exercise TAC, TDD and JUnit which could
bring benefits to their daily work.

. Other factors. Plagiarism and influence among subjects
were controlled by supervising the runs. Regarding the
experimental package, each subject performed both the
practices, but in different runs; each assignment was
solved by the same number of subjects, and the two
practices were used equally to implement the

I
i
E
i
H
H
¢
£
19
r
i
4
£

assignments. This reduced the possible threats related
with likely differences in the assignments. As Table 5
shows, there are no statistically significant differences
among the assignments. The Mann- Whitney test was
used and the p-level fixed at 0.05.

Table 4 . Comparison between the first and second run

Testing Rank Rank p-fevel

Sum {a} Sum (b)

MeanTPA 691.000 T740.000 0.775584
I Run (a) -
II Run (b)
Total Time 638.000 793.000 0.509
I Run (a) -
1 Run (b)
MeanTime 673.000 758.000 0.9715
TRun (2) -
I1 Run {b}

AssertTot 663.500 767.500 0.8376
I Run {a) -
T Run (b)
MeanAPM 691.000 740.000 0.7755
I Run a) -
It Run (b)

Table 5. Comparison between the first and the second
assignment

Rank Rank

Testing Sum(a) Sum(b) p-level
MeanTPA 755.000 676.000 0.154045
I Asgmt (a) -
I Asgmt (b)
TotalTime 758.000 672.500 0.136817
I Asgmt (a) -
1I Asgmt (b)
MeanTime 721.500 709.500 0.407382
T Asgmt (a) -
I Asgmt (b)
AssertTot 659.500 771.500 0.622097
T Asgmt (a) -
I Asgmt (b)
MeanAPM 660.000 771.000 0.97124
I Asgmt (a) -
I Asgmt (b)

369

Threats to External Validity

Three threats to external validity have been identified which
could limit the ability to generalize the research results to the
population under study [12].

. Material and tasks. In the experiment, the scope of the
assignments was not actually comparable to real projects
of the company, since the material and assignments were
designed considering the restrictions of time. Thercfore
assipnments more similar to industrial projects shall be
considered in future studies.

. Subjects. As the experiment has been performed by
professionals, generalization of the results was
facilitated.

. Environment. The experiment was performed in one of
the work rooms of the company and the tasks had to be
solved with ECLIPSE, JUnit and the computers used by
the professionals in their daily work. The overall settings
provided the subjects with a very realistic environment,

6. CONCLUSIONS

TDD is a practice which prescribes to write and change the code
of a class’ method only on the basis of the correspondent unit test’
results.

Although TDD is considered a ‘development practice’ rather than
a testing practice, it is actually twofold, because it includes bath
coding and testing aspects in a tightly interleaved process. Since
TDD is a practice per se and it might be used also independently
from the other agile practices and in other kinds of software
processes, we wondered if and when TDD can be preferred to the
traditional TAC.

We believe that TDD is more time consuming than TAC, but
leads developer to design more precise and more accurate test
cases.

We carried out an experiment in order to verify our thesis, and
obtained the following results:

* there is statistical evidence that TDD requires more time than
TAC: this does not necessarily entail that TDD deteriorates
the productivity, as the quality of code could be improved,
As discussed previously, it is probably due to the iterative
process of TDD; the process of TAC is more lincar and
requires a smaller number of feedbacks and reworks on code,

e there is not statistical evidence that TDD brings about more
accurate and precise unit tests than TAC, even if subjects
who used TDD outperformed those who use TAC, during all
the experimental runs. We are convinced that TDD increases
such quality aspects and that evidence might be obtained in a
longer experiment, where differences between the two
practices could be more evident.

« TDD leis a greater predictability of performances than TAC:
such a result might be helpful when estimating project’s
costs. This is due to the fact that the reworks on code in TAC
depends on the willing and care of the developer, thus the
time are more varying. In TDD the load of testing depends
on the class design, thus more predictable,

Mancha, Cunsgjeria de Educacion v ciencia, PBI06-0024). ttps//www junit.org.
8. REFERENCES
[1] Beck, K. Extreme Programming explained: Embrace 9, APPENDIX
change. Addison-Wesley: Reading, Massachusetts, 1999. Table 6. Mean values
o Do e Cr oo et TR
IEEE Software 22, (November-December 2005), pp-17-19. MeanTPA 3 4805 1318117
{3] Edwards, §. Using test-driven development in the classroom: MeanAPM 3768151 3.62927
Providing students with automatic, concrete feedback on 4 5953 “; 55
performance. In Proc. of the Int'I Conference on Education AsscﬂTot 14. :
and Information Systems: Technologies and Applications MeanTime 17.45015 35.07586
(EISTA’03), (Orlando, Florida, USA, 2003). TotalTime 85.03846 135.9231
[4] Erdogmus, H. and Morisio, M. On the effectiveness of test-
; first approach to programming. /EEE Transactions on Table 7. Standard deviations
; Software Engineering 31, (January 2005), pp. 1-12.
[5] George, B. and Williams, L. A structured experiment of test-
driven development. Information and Software Technology MeanTPA 6.32758 11.76298
46 (May 2004), pp.337-342. MeanAPM 2.10803 3.3934064
[6] Geras, A., Smith, M. and Miller, I. A Prototype Empirical AssertTot 1141012 11.99025
Evaluation of Test Driven Development. In Proc. of the 10tk MeanTime 12.58014 36.6277
TotalTime 47.73886 £4.73886

The most relevant limit of our experiment stands in its nature of
emtrolled experiment: the available time window and the tasks
wire exemplar ones, In the real scenarios, tasks are more
cmplex. However, experiments in vitro are necessary for
eploring the research field before executing experiments on the
fidd, that is for:

+ understanding the most relevant issues which deserve to be
investigated and which do not: we believe that code’s quality
might provide helpful insight.

* adjusting experimental design on the basis of the feedback
from the subjects and the matters arisen during the runs; by
enlarging the time window, we can obtain a greater evidence
of the difference between the practices.

A strength point is the collaboration of professionals, as it helped
toenforce the external validity.

As future steps, we are planning:

* 1o replicate the experiment in other environments, such as
universities and companies, in order to enforce the validity
of the results; our aim is to enlarge the observation time up
to six or 12 months, and

* to analyze the relationship with the intrinsic quality of the
code delivered, especially with regard to software
maintainability.

7. ACKNOWLEDGEMENTS

‘We would like to thank you managers of Soluziona for allowing
usto carry out the experiment and the engineers who took part to
it, This research has been partially supported by the projects:
FAMOSO, partially funded by Ministerio de Industria, Turismo y
Comercio, FIT-340000-2005-161 Plan Nacional de Investigacion
Cientifica, Desarrollo e Innovacion Tecnologica 2004-2007 and
“Fondo Europeo de Desarrollo Regional (FEDER)”, European
Union, and MECENAS (Junta de Comunidades de Castilla-La-

Inter’l Symposium on Software Metrics (METRICS04),
(Sidney, Australia, 2004}, IEEE CS Press, pp. 405-416.

[7] Grable, R., Jernigan, J., Pogue, C., and Divis, D. Metrics for
Small Projects: Experiences at the SED. [EEE Sofiware 16,
{March-April 1999), pp. 21-29.

{#] Kitchenham, B., and Mendes, E. Software Productivity
Measurement Using Multiple Size Measurement, JEEE
Transaction on Software Engineering 30, (December 2004),
pp.1023-1035.

[9] Muller, M., and Hagner, Q. Experiment about Test-first
programming. In Proc. of Empirical Assessment in Software
Engineering (EASE 12), (Keele, UK, 2002).

[10} Pankur M., Ciglaric M., Trampus M. and Vidmar T.
Towards empirical evaluation of test-driven development in
a university environment. In EUROCON 2003. Computer as
a Tool. The IEEE Region 8, Volume: 2, (Ljublijana,
Slovenia, 2003), IEEE CS Press, pp.83, 86.

[11] Premraj, R., Kitchenham, B., Shepperd, M., and Forselius, P.
An Empirical Analysis of Software Productivity over Time.
In Proc. of the 11th [EEE Int’l Software Metrics Symposium
(METRICS '03), (Como, ltaly, 2005), IEEE CS Press, pp.37.

[12] Sjoberg, D., Anda, B., Arisholm, E., Dyba, T., Jorgensen,
M., Karahasanovic, A., Koren, E. and Vokéc, M. Conducting
Realistic Experiments in Software Engineering. In Proc. of
the 2002 Int’l Symposium on Empirical Software
Engineering (ISESE’02), (Nara, Japan, 2002}, IEEE CS
Press, pp.17.

[13] Williams L., Maximilien, E., and Vouk, M. Test-driven
development as a defect-reduction practice. In Proc. of the
I4th IEEE Int’l Symposium on Software Reliability
Engineering (ISSRE03), (Denver, Colorado, USA, 2003},
IEEE CS Press, pp.34-48.

[14] The ECLIPSE IDE. Available in http://www.eclipse.org/
[15] The JUnit Testing Framework. Available in

370

B T Rt

Assignation # | Kind of | Unit Test | Number of { Start | End
To develop a system named “TextAnalyzer”, which must operate Req | Practice Class Assertions | Time | Time
“ vith the following text: TAC MaxOcecur 7 14.00 | 14.15
“Todo pasa y todo queda, pero lo nuestro es pasar, pasar haciendo Caleulator
minos, caminos sobre el mar, Nunca persegui la gloria, ni dejar Test
en la memoria de los hombres mi cancién; yo amo los mundos ListPublish 2 14.20 | 16.00
sutiles, ingrividos y gentiles, como pompas de jabon. Me gusta erTest
verlos pintarse de sol vy grana, volar hajo el cielo azul, temblar
sibitamente y quebrarse... Nunca persegui la gloria. Caminante, son
s huetlas el camino ¥ nada mas; caminante, no hay camino, se MeanTime
hace camnino al andar.”
Assignment 1 T o g
120 - . —
The program must calculate the frequency of the words in the text _
{expressed in percentage), and the position of their first occurrences. -
As a result, the program must display a list with the four most g * .
fiequent words and their first occurrence. An example of the output S T —
of the program could be the following: o B M |
- The word “aldea” firstly appears in the 7th position and its » [:,l,:;
frequency is 40%. N U [P
: - The word “camino™ firstly appears in the 50th position and its = - TA g
£ © " Dutfers
i frequency is 25%. TDD - TAC . Eatamas
‘ - The word “todo™ firstly appears in the 10th position and its Figure 3. Box plots of meantime.
frequency is 5.4%.
- The word “llegada™ firstly appears in the 20th position and its
ey 50 | Attt | |
Once the former list has been displayed, the program must offer the upo - : T R
user the option of displaying the rest of words (ordered by B — .
frequency), by showing the following message: “Do you want to . . u .
abtain the frequency (%) and the first occurrence of the rest of H T §” .
words in the text (Y/N)? » . -
Assignment 2 T -
The program must calculate the maximum and minimum distance) _I l_ r =pr
(expressed in number of words) between two words indicated by «7 DD ; TAC ??Th
the user. For example, regarding the provided text, if the user TDD | TAC
fypes the word_s:_“camm'ante“ alnd “camino”, th_e program must Figure 4. Box plots of asserttot and timetot,
display: “the minimum distance is 2 and the mazimum distance is
14”. If one or both the words do not appear in the text the
program must return -2. If the two words indicated by the user are
the same word, the program must return -1. mﬂPA] M M
Forms e I R
Exempiar forms filled in follow. Ao al R
Kind of | Unit Test | Number of | Start | End 1 [ERE ' -
| Req | Practice Class Assertions | Time | Time E i .
' 1 |[TDD |FinderTest 6 12.10 | 1240 i .
: Occurrence 5 1245 {13.50 T L R
: Calculator . X ¥
: Test N L g —E:“E-up
MDTAC| |TTDYTAC| "=

Figure 5. Box plots of meantpa and meanapm

37

