
QAOOSE 2006 Proceedings

10th ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engineering

3 July 2006 — Nantes, France

Edited by:

Michele Lanza, Fernando Brito e Abreu, Coral Calero, Yann-Gaël Guéhéneuc, Houari Sahraoui

Lugano
Universitá della Svizzera italiana

2006

Organizers

Fernando Brito e Abreu, Univ. of Lisbon, Portugal

Coral Calero, Univ. of Castilla, Spain

Yann-Gaël Guéhéneuc, Univ. of Montreal, Canada

Michele Lanza, Univ. of Lugano, Switzerland

Houari Sahraoui, Univ. of Montreal, Canada

Outline

QAOOSE 2006 is a direct continuation of nine successful workshops, held during previous editions
of ECOOP in Glasgow (2005), Oslo (2004), Darmstadt (2003), Malaga (2002), Budapest (2001),
Cannes (2000), Lisbon (1999), Brussels (1998) and Aarhus (1995).

The QAOOSE series of workshops has attracted participants from both academia and industry
that are involved/interested in the application of quantitative methods in object-oriented software
engineering research and practice. Quantitative approaches in the object-oriented field is a broad
and active research area that develops andor evaluates methods, practical guidelines, techniques,
and tools to improve the quality of software products and the efficiency and effectiveness of soft-
ware processes. The workshop is open to other technologies related to object-oriented such as
component-based systems, web-based systems, and agent-based systems.

This workshop provides a forum to discuss the current state of the art and the practice in the
field of quantitative approaches in the fields related to object-orientation. A blend of researchers
and practitioners from industry and academia is expected to share recent advances in the field-
success or failure stories, lessons learnedand seek to identify new fundamental problems arising in
the field.

ISBN 88-6101-000-8
Copyleft 2006 Universitá della Svizzera italiana
CH - 6900 Lugano

Contents

Metrics, Components, Aspects

“Measuring the Complexity of Aspect-Oriented Programs with Multiparadigm Metric”
N. Pataki, A. Sipos, Z. Porkoláb . 1

“On the Influence of Practitioners’ Expertise in Component Based Software Reviews”
M. Goulão, F. Brito e Abreu . 11

“A substitution model for software components”
B. George, R. Fleurquin, S. Sadou . 21

Visualization, Evolution

“Towards Task-Oriented Modeling using UML”
C. F. J. Lange, M. A. M. Wijns, M. R. V. Chaudron . 31

“Animation Coherence in Representing Software Evolution”
G. Langelier, H. A. Sahraoui, and P. Poulin . 41

“Computing Ripple Effect for Object Oriented Software”
H. Bilal and S. Black . 51

“Using Coupling Metrics for Change Impact Analysis in Object-Oriented Systems”
M. K. Abdi, H. Lounis, and H. A. Sahraoui . 61

Quality Models, Metrics, Detection, Refactoring

“A maintainability analysis of the code produced by an EJBs automatic generator”
I. Garćıa, M. Polo, M. Piattini . 71

“Validation of a Standard- and Metric-Based Software Quality Model”
R. Lincke and W. Löwe . 81

“A Proposal of a Probabilistic Framework for Web-Based Applications Quality”
G. Malak, H. A. Sahraoui, L. Badri and M. Badri . 91

“Investigating Refactoring Impact through a Wider View of Software”
M. Lopez, N. Habra . 101

“Relative Thresholds: Case Study to Incorporate Metrics in the Detection of Bad Smells”
Y. Crespo, C. López, and R. Marticorena . 109

A maintainability analysis of the code produced by an
EJBs automatic generator

Ignacio García-Rodríguez de Guzmán, Macario Polo, Mario Piattini

ALARCOS Research Group
Information Systems and Technologies Departament

UCLM-Soluziona Research and Development Institute
University of Castilla-La Mancha

Paseo de la Universidad, 4 – 13071 Ciudad Real, Spain
{Ignacio.GRodriguez, Macario.Polo, Mario.Piattini}@uclm.es

Abstract. Design and development of Web applications is an
increasinglydemanded topic. However, successive changes to their code and
databases result in a progressive decreasing of its quality and maintainability.
Because of that, we have built a tool for the automatic generation of multilayer
web components-based applications to manage databases. The source code of
these applications is automatically generated, being this one optimized,
corrected and already pre-tested and standardized according to a set of code
templates. This paper makes an overview of the code generation process and,
then, shows some quantitative analysis related to the obtained code, that are
useful to evaluate its maintainability. This study is important for developers
since they will probably require to implement some changes for its adaptation
to the final requirements.

1. Introduction

Reengineering is one of the most powerful tools offered by software engineering to
maintain legacy systems (Fig. 1). According to [1], reengineering is composed in turn
by other two techniques, the “forward” and the “reverse engineering”

Fig. 1. Simplified reengineering model

71

2 Ignacio García-Rodríguez de Guzmán, Macario Polo, Mario Piattini

Reverse engineering is the process of building abstract formal specifications from
source code of a legacy system that can be later used to build new versions of the
system, but now, using forward engineering [1].

In this context, we have developed a tool which generates Web applications from a
relational database applying complete reengineering process. These Web applications
are generated automatically, and support the management of a relational database.
According to [2-5], the most usual practice when reverse engineering is applied to
databases is to obtain an entity-relation scheme, although, other proposals get an
object oriented representation from the database, usually as a class diagram [6, 7].
The use of class diagrams instead of ER schemas provides, from a reengineering point
of view, the possibility of taking advantage of the object oriented paradigm
constructions for the later steps.

Because of their nature, web applications have a complex development process,
especially when a middleware must support the management of the database, and
security of transaction constraints must be taken into account. Enterprise JavaBeans
is a technology specifically designed for dealing whit this problems, but these
characteristics (such as indirect relationship among classes and interfaces, that are
managed by component containers) make difficult its development and maintenance.

Our proposal is based on a tool which automatically generates distributed
component-based applications (specifically EJB components and Web Services, both
written in Java), using some principles of software engineering inside them. Some of
these principles are the use of design patterns (which provide great consistency,
extensibility and understandability to the application). As a result, applications can be
easily extended adding new features which implement new. Furthermore, some
technical documentation is generated when the web application is generated. This
documentation helps us in the afore-mentioned maintenance process, making easier
the modification of the source code. In addition, automatic development of these kind
of web applications lets to the development team to save a lot of time. In order to
analyze the maintainability of the generated code, in this paper we make a
quantitative analysis of the generated source code by means of the use of some object-
oriented metrics. A quantitative way, an overview of such easy is to maintain these
applications.

This paper is organized as follows: Section 2 contains an overview of some related
technologies and metrics; in Section 3, some metrics are applied to an example web
application obtained from a relational database by our tool. Result are shown and
commented in the same section; finally, we draw our conclusions and future lines of
work in Section 4.

2. Web Application technologies and Metrics for source code
evaluation

From a relational database, our tool generates a multilayer application [8] based on
EJB components and JSP pages. Fig. 2 shows the general architecture of the
automatically web applications.

72

A maintainability analysis of the code produced by an EJBs automatic generator 3

Fig. 2. Basic architecture of the automatic generated applications

In Fig. 2 we can distinguish a layer made up of JSP pages whose goal is to offer a
friendly interface to the user in order to manage the database. The middle layer is a
middleware composed by EJB components which implements the logic to perform the
management of the database. The third layer is made up of the relational database
and, maybe, some additional classes. We do not provide an analysis of neither the tool
nor of the generated web application from since this points are out of the scope of this
paper.

The most important elements of the generated web applications are the EJB
(Enterprise Java Bean) components, which are components written in Java language.
An EJB component has a couple of interfaces, a class which implements the methods
(of the interfaces and others) and a set of additional classes which gives support for
some features that could be necessary implement. Actually exits three types of EJB
components (Entity Beans, Message Driven Bean and Session Bean. For our proposal,
the most interesting EJB type is the Entity Bean, because this one referents a
persistent entity existing in the relational database.

As we said in the beginning, these applications carry a substantial complexity,
because there are some technologies involved in the development process in order to
implement all the features, and also, to delegate the database management to the
component-based middleware requires an additional effort. This is due to the fact that
we have to program the necessary logic to orchestrate all the components in such way
that the database integrity be respected. That corresponds to define the choreography
among the EJB components.

After studying the problem, we notice that the development process of such
applications could be performed in an automatically way, because the generated
source code could be predicted. The preliminary analysis let us to generate free-error
code, and as far as possible, this code is already optimized by means of the use of
design patterns. In this manner, we obtain the basic number of classes, with the basic
number of methods per class for each component, being written both classes and
methods in a clearly and concise. This allows the possibility of realize task of
adaptive and perfective maintenance in the future, when new features and
requirements have to be added to the web applications in order extend the offered
services.

To check these assertions, we will use some well-known software metrics to verify
the quality of the source code of the generated applications. The used metrics are the
following:

73

4 Ignacio García-Rodríguez de Guzmán, Macario Polo, Mario Piattini

• LOC (Lines Of Code): This metric is the sum of lines of the source code
of the

• class.
• WMC (Weighted Methods Class): This metric is the sum of the

complexities of methods of a class, this is, the sum of the ciclomatic
complexities.

• CBO (Coupling Between Objects Classes): This metric measures coupling
among classes.

According to several studies, high coupling is the best predictor of the fault
proneness of classes [9]. When the coupling or complexity understandability and
testability of the system decreases, and any attempt of change something in
maintenance task will be hard and difficult. So, these metrics are good predictors of
the quality of our generated Web applications.

A database example (see Fig. 3) has been designed to illustrate the results of
applying these metrics to the obtained source code. The database schema is very
simple but enough for our illustrative goal.

Fig. 3. A simple database

Once we have the database schema, the last step is generating the source code of
the Web application. The following sections deal with the measure of this generated
source code.

3. Source code quality measure

With out tool, an EJB is generated for each table. Fig. 4 shows the signature of the
operations generated for the CreditCard table (Fig. 3).

Next sections concrete present the calculus of the values of these metrics for these
EJBs; Section 3.4 includes the description of the equations for predicting their values
from the database schema.

74

A maintainability analysis of the code produced by an EJBs automatic generator 5

Fig. 4. Classes and interfaces automatically generated from the table CreditCard

3.1. Lines of Code

This metric measures the total number of lines ended with a semicolon in classes and
interfaces. Below, we show the results for each element of each Enterprise Java Bean
generated from the original data base:

The number of lines of code generated depends on the schema of the database, the
number of columns and tables, foreign keys, indexes and stored procedures. Also the
number of LOC source code generated is very predictable, because lines of code
generated from a table are directly proportional to the elements related with it.

3.2. Coupling between objects classes

The high coupling is a non-desirable characteristic in an OO system that can be
measured using the Coupling Between Object Classes metric (CBO). CBO is a count
of the number of classes a class is coupled to. It is measured by counting the number
of related class hierarchies on which a class depends [10].

Inside the source code generated by our tool, coupling depends directly on the
scheme of the database too. So coupling is directly proportional to the number of
foreign keys existing among tables. For example, if there is a table in the database
with three foreign keys to other tables, the EJB which represents this table will be

75

6 Ignacio García-Rodríguez de Guzmán, Macario Polo, Mario Piattini

related with the other three EJBs epresenting the tables whose primary keys are
foreign keys in the first table.

For this reason, the coupling measured here will be the existing coupling among
components, not among classes, because coupling among classes automatically
generated will be a constant. Other thing is the coupling caused by an external
developer that modifies the source code in order to add some functionality or new
features to the generated application. Because this relation among components
depends on the number of foreign keys in the tables of the database, the level of
coupling of the system will be also predictable.

Fig. 5. CreditCardHome Interface with its 8 lines of code

Continuing with our example, the coupling from the component point of view is
represented in Fig. 6. As we can see, the CreditCard EJB depends of the Account and
the Person EJBs. This figure can be compared with Fig. 3, where we can clearly see
the foreign keys.

According to [10], coupling between objects should not be greater than 5 since
higher CBO decreases system understandability, avoids the reuse of components and
makes more costly maintenance. Our tool keeps the coupling between classes and
components at the minimum level.

Fig. 6. Coupling between EJBs

76

A maintainability analysis of the code produced by an EJBs automatic generator 7

3.3. Weighted Methods per Class

The last metric applied to the generated source code by our tool from a relational
database is the Weighted Methods per Class (WMC). This metric is very similar to the
McCabe Ciclomatic Complexity [11].

As Ciclomatic Complexity, [11] WMC gives the minimum number of test cases for
a given system, supposing each decision condition as a different decision node; when
the complexity is greater than 10, the probability of find faults in code grows, and so,
we should raise again the architecture of the module which obtains this punctuation.

According to [10], WMC, must be lower than 100, so a class must have at most
twenty methods per class and the ciclomatic complexity per method must be lees than
5. WMC is given by the following expression:

)(jComplexityCiclomatic
classesi

i
Methodsj

∑ ∑
∈ ∈

In our small example, WMC for each class and for all the components are the
following:

As we can notice see, none of the EJB in the example overcomes the limit imposed

by [10]. In case, the code generated is fault-free.
In the case that other developers add some code generated by themselves,

complexity of web applications could be increased depending on the ability of these
developers, although to follow the code and design styles our tool adds some
technical documentation in addition to the generated code, and so, developers can
notice the design styles and follow them.

77

8 Ignacio García-Rodríguez de Guzmán, Macario Polo, Mario Piattini

Fig. 7. loadRow method with a 2 ciclomatic complexity level

3.4. Equations to predict metrics (and its maintainability)

Finally, in sight of the result afore-obtained and the source code generated, we have
derived some equations. These equations allow to predict some characteristics of the
web applications generated from a database.

To predict the Number of Lines of Code (LOC) for the EJB components, we can
apply the following equation:

ColFKNColNOfIndexesNKLOC LOC º*3º*8º*13 +++= (1)

Where KLOC is a constant representing the minimum lines to be always generated and
its value is 90; NºOfIndexes is the number of indexes in the table associated to the
EJB; NºCol is the number of columns in the table and NºColFK is the number of
columns of the table which are foreign keys.
Coupling between objects (CBO), for a given EJB, can be predicted from the table
by means of the following equation:

∑
=

=
FKs

i
iEJB FKColsNCBO

0
)(º

(2)

Where FKs is the set of foreign keys of the table represented by the EJB, FK is the
foreign key that is being examined, NºCols() is a function that obtains the number of
columns that targets to different tables inside de same foreign key. Note that a
consequence to take in account when we realize this operation is that if columns
belonging to the current foreign key are targeting to the same table, functions returns
one.

78

A maintainability analysis of the code produced by an EJBs automatic generator 9

To estimate the Weighted Methods per Class, we have obtained other equation:

ColFKNColNKWMC WMC º*2º*4 ++= (3)

Where KWMC is a constant representing the minimum ciclomatic complexity to be

always generated and its value is 20, NºCol is the number of columns of the table
associated to the EJB, and NºColFK is the number of foreign key columns.

Also, if there is stored procedures in the database, an additional EJB is generated
containing methods to call them. In this case, this EJB is not an Entity Bean but a
Session Bean. As well as an Entity Bean materializes a record from a table, a Session
Bean only interacts with the client. For our purpose, the Session Bean will allow us to
invoke the stored procedures of the database. In order to estimate the effect caused to
the calculated metrics, we derive two very simple expressions which give us a
measure of LOC and WMC (coupling is not affected). The estimated metrics for the
Session Bean representing the stored procedures are:

StorProcNKLOC LOC º*12+= (4)

StorProcNºKWMC WMC *3+= (5)

In the LOC equation, KLOC is the minimum number of lines always included in the

bean, and NºStorProc is the number of stored procedures the database In the WMC
equation, KWMC is a constant which value is 7, and NºStorProc is the number of stored
procedures in the database. For the stored procedures owned by the system, the tool
does not generate code.

As it is seen, the design of the database has a strong influence on the quality of the
application that manages it. Using the thresholds proposed by NASA [10] together to
equations 1-6 (as predictors of the quality of the application), it is possible to
determine, before the application development, that a change in database design is
required in order to keep adequate values of maintainability and fault proneness in the
application.

4. Conclusions and future work

Development of component-based web applications constitutes a complex process
which involve some technologies. For this reason, a tool has been developed in order
to automate this process. The fact of generating correct web applications is so
important that writing of optimized, easily understandable and documented source
code.

The tool presented, give us a very simple method to develop web applications to
support the management of a relational database. This management is realized by
means of a set of EJB components which constitutes the middleware that implements

79

10 Ignacio García-Rodríguez de Guzmán, Macario Polo, Mario Piattini

all the necessary logic. As the generated application must probably be modified to
adapt it to the actual requirements, we have studied the quality of the generated source
code from the maintainability point of view. Thus, we have analysed some features of
the code as predictors of maintainability. As our prediction method has demonstrated,
the developed tool generates code which is easily to maintain and understand.

Other lines of work could consist in develop other techniques which optimize more
the source code obtained, reducing the number of EJB components in the systems.
Some of these techniques could be the implementation of any heuristic to optimize the
number of tables represented by an EJB, or the choreography defined to coordinate
the operations of the EJB during the management of the relational database.

5. Acknowledgements

This work is partially supported by the MÁS project (Mantenimiento Ágil del
Software), Ministerio de Ciencia y Tecnología/FEDER, TIC2003-02737-C02-02, and
the ENIGMAS project, Plan Regional de Investigación Científica, Desarrollo
Tecnológico e Innovación, Junta de Comunidades de Castilla La Mancha, PBI-05-058

References

1. Arnold, R.S., Software Reengineering, ed. 0-8186-3272-0. 1992: IEEE Press. pp. 675.
2. Andersson, M. Extracting an Entity Relationship Schema from a Relational Database

through Reverse Engineering. in 13th International Conference on Entity-Relationalship
Approach. 1994. Berlin: Loucopolous.

3. Pedro de Jesus, L. and P. Sousa. Selection of Reverse Engineering Methods for Relational
Dabases. in Proceedings of the Third European Conference on Software Maintenance.
1998. Los Alamitos, California: Nesi, Verhoef.

4. Chiang, R., T. Barron, and V.C. Storey, Reverse engineering of relational databases:
extracting of an EER model from a relational database. Journal of Data and Knowledge
Engineering, 1994. 12((2)): p. pp. 107-142.

5. Hainaut, J.-L., et al. Database Design Recovery. in Eighth Conferences on Advance
Information Systems Engineering. 1996. Berlin.

6. Polo, M., et al., Generating three-tier applications from relational databases: a formal and
practical approach. Information & Software Technology, 2002. 44(15): p. pp. 923-941.

7. García-Rodríguez de Guzmán, I., M. Polo, and M. Piattini. An Integrated Environment for
Reengineering. in Proceedings of the 21st International Conference on Software
Maintenance (ICSM 2005). 2005. Hungary, Budapest: IEEE Computer Society.

8. Larman, C., Applying UML and Patterns. 1998, New York: Prentice Hall, Upper Saddle
River.

9. Briand, L., J. Wuest, and H. Lounis. Using Coupling Measurement for Impact Analysis in
Object-Oriented System. in IEEE International Conference on Software Maintenance
(ICSM´99). 1999. Oxford.

10. Rosenberg, L., R. Stapko, and A. Gallo, Applying Object Oriented Metrics. 1999, NASA.
11. Piattini, M.G., et al., Análisis y diseño de Aplicaciones Informáticas de Gestión: Una

perspectiva de Ingeniería del Software. 2004, Madrid: RA-MA. 710.

80

