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.Pr()logo

Este volumen contiene los trabajos aceptados y presentados en las V1 Jornadas
Jberoamericanas de Ingenieria del Software e Ingenieria del Conocimiento (JIISIC’07)
celebradas en Lima, Peru, del 31 de enero al 2 de febrero de 2007. Desde su edicion
inicial en 2001, las JISIC han demostrado ser el foro de reunion mas importante, a
nivel Iberoamericano, de investigadores Y profesionales interesados en ambas
disciplinas.

El evento actual es la continuacion de la labor iniciada en las MISIC 01, celebrada en
en Buenos Aires (Argentina), JISIC’02 en Salvador de Bahia (Brasil), JIISIC’03 en
Valdivia (Chile), JIISIC’04 en Madrid (Espafia) ¥ JIISIC?06 en Puebla (México).

En la presente convocatoria se han recibido 88 articulos de calidad cientifica para su
evaluacién. Cada trabajo ha sido evaluado por al menos 2 revisores y s¢ ha contemplado
la resolucion de divergencias, que por cierto han sido muy pocas. Finalmente fueron
aceptados 54 articulos de autores procedentes de Argentina, Brasil, Colombia, Corea del
Sur, Cuba, Chile, Ecuador, Espafia, Estados Unidos de América, Mexico, Pera y
Uruguay. Ademas de la sesiones técnicas, se aceptaron cuatro tutoriales.

Es preciso indicar que todo esto no hubiera sido posible sin la colaboracién de muchas
personas. Por ello queremos agradecer especialmente a los miembros del Comité de
Programa por su excelente v desinteresada labor, necesaria para renovar la calidad y
prestigio ganado. También queremos destacar ¢l enorme esfuerzo de Manuel Tupia,
Luis Flores y Felipe Solari, miembros del Comité Organizador, sin cuyo trabajo no
hubieran podido celebrarse estas Jornadas. Nuestro agradecimiento al Ing. Eduardo
Ismodes, decano de la Facultad de Ciencias ¢ Ingenieria, y al Ing. Kurt Paulsen, jefe del
Departamento de Ingenieria, por el gran apoyo que nos han brindado. Por altimo, pero
no al final, expresamos nuestro sincero agradecimiento a todos los autores que
aportaron sus contribuciones al evento.

Maynard Kong José Antonio Pow-Sang
Presidente del Comité de Programa Presidente del Comité Organizador
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Abstract

Different methodologies exits to merge ontologies.
However, most of them need the source ontologies to
be defined in a particular and formal way. Moreover,
tools to help during the merging process have been
developed, but these are thought for synchronous
settings (where the knowledge engineers can exchange
ideas in real time) and very specific conditions. In this
paper we describe the merging process that two
research groups have used to merge two maintenance
ontologies in an asynchronous way. We also describe
the problems that we faced since each research group
was in a different country, with different time zone and
also different mother languages. The usage of a
systematic methodology helped us to tackle these
problems as will be explained in this paper.

1. Introduction

Onotologies capture consensual knowledge of a
specific domain in a generic and formal way, to alow
it to be reused and shared among groups of people.
Despite requiring consensus between different experts,
there is no single possible ontology to model a
particular domain, thus domain-specific ontologies are
modeled by multiple authors in multiple settings [24].
For example, in the case of software engineering
where ontologies can play important roles, and more
concretely in the software maintenance domain, there
are severa published ontologies [3, 4, 14, 22], each
one dealing with maintenance activity from a different
point of view. In an attempt to achieve a better result
we decided to merge two ontologies, those of Dias et
al. [4] and Ruiz et al. [22] that seemed to be most
complementary and which moreover, were based on a
third, that of Kitchenham et al. [14]. Our goa was to
construct a more general ontology by taking into

account the most important concepts related to
software maintenance.

A great difficulty in this work was the geographic
distance between the two teams of authors of the
ontologies. As a result, the merging could not be
conducted in a typica way where the knowledge
engineers could meet and discuss together what
concepts to include, what restrictions to apply to these
concepts, etc. What is more, we had some extra
challenges. For instance, one ontology was developed
by a Brazilian University, and the other by a Spanish
University and although both ontologies were defined
in English this was not the mother tongue of any of the
developers of the ontologies. Because of this,
misunderstandings might arise. We attempted to
counter balance these difficulties by defining a
merging process that would take the specificity of our
situation into account.

In this paper we present the process followed to
merge the two ontologies and we report on the
difficulties found and the lessons learned from this
experiment.

The remainder of the paper is structured as follows.
Section 2 describes the merging process and some
methodologies and tools developed for this purpose.
Section 3 explains the process that we followed to
merge the ontologies. Section 4 presents the benefits
and limitations of the approach used. Finally in section
5 conclusions are outlined.

2. Merging ontologies

It isfirst necessary to clarify the difference between
two related words. merging and alignment. Merging
ontologies means to create a single coherent ontology
from two sources. Aligning ontologies means to
establish links between them and alow them to reuse
information from one another [16]. Alignment does not
aim to create a new ontology. Merging two ontologies

VI Jornadas Iberoamericanas de Ingenieria del Software e Ingenieria del Conocimiento
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implies some kind of alignment as one must map one
ontology on to the other to find out the commonalities,
synonyms, etc.

There are different methods by which to merge
ontologies and many of them provide a tool with
which to automatically identify potential matchings or
provide an environment to manually find and define
these matchings. Mapping tools and algorithms are:
ONIONS [23] which allows the creation of alibrary of
ontologies originating from different sources; the
Chimaera system [15] provides support to merge
ontological terms from different sources, to check the
coverage and correctness of ontologies and to maintain
ontologies over a period of time; OntoMorph [2]
provides two kinds of mechanisms for merging
ontologies. One is a syntactic rewriting support that
alows trandation between two different representation
languages, and the other is a semantic rewriting tool
that alows inference-based transformations; GLUE [5]
uses machine learning techniques, to provide pairs of
related concepts with some certainty factor associated
to each pair. Another approach is FCA-Merge [24]
which takes as input two ontologies to be merged and a
set of documents on the domain of the ontologies. The
merging is performed by extracting instances that
belong to concepts of both ontologies from the
documents. Finaly, PROMPT is an agorithm
embedded in Protégé 2000, that proposes first to
elaborate a list with the operations to be performed in
order to merge two ontologies [17]. This activity is
carried out automatically by a PROMPT plug-in. Then,
an iterative process is performed. For each iteration the
ontology developer selects an operation of the list and
executes it. After that, a list of conflicts is generated
and the list of possible operations for the following
iterations is updated.

Most previous techniques need the source
ontologies to be defined in a particular and formal way
and some, such as OntoMorph and Chimarea, use a
description logics based approach. Moreover, only
FCA-MERGE offers a structural description of the
global merging process [24]. These facts, and other
difficulties that will be detailed in the next section, led
us to define our own merging approach. Contrary to
the existing approaches, we did not seek automation of
the merging process and will not propose any tool to
help. In our experience, very few activities can be
automated and when this is possible, they do not
represent a significant work load. We will therefore
focus on presenting and discussing our methodology
which has given good results and proved to be useful.

VI Jor nadas Iberoamericanas de Ingenieria del So fiware e Ingenieria del Conocimiento
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3. Merging two software maintenance
ontologies

This work started as a result of two teams (the
Alarcos group from University of Castilla-La Mancha,
Spain; and GES from Catholoc University of Brasilia,
Brazil) wanting to collaborate on the definition of an
ontology for software maintenance. Each research
group had aready published an ontology on software
maintenance separately Ruiz et al. [22] and Dias et al.
[4] as a support for their respective ongoing research,
but we perceived that each ontology bore the mark of
its maker. Our goal in merging the ontologies was to
obtain a more general maintenance ontology. Although
we work under very strong restrictions, we also
perceived positive factors that suggested that the work
could be done.

What separates us:

- TheAtlantic ocean (geographical distance);

- Five hours (different time zones);

- Two languages (Spanish and Portuguese
although very close each other do not allow the
easy discussion of such complex issues raised
by an ontology merging).

The positive points:

- The domain, software maintenance, is
relatively well defined.

- Theresearchers are all domain experts to some
degree.

- Both ontologies are based on the same sources,
the main ones being (see aso Figure 1) an
ontology for software maintenance [14] and
another ontology for the software process [6].
Also used as a source by [14]. There are also a
number of other minor sources in common
such as international standards, significant
publications, etc.

Kitchenham et al, [14]

Products ontology
Activities ontology
Process ontology
Procedures sub-ontology
Process Organization sub-ontology
Peopleware ontology

—

Ruz ef ol, [22] Dics ef ol, [4]

Products sub-ontology System sub-ontology

Activities sub-ontology Skills sub-ontology

Process sub-ontology Modification Process sub-ontology
Agenis sub-ontology Organizational Structure sub-ontology
Application Domain sub-ontology

Figure 1. Schematic representation of three software
maintenance ontologies



Before going on describing difficulties found and
the process that we followed to merge the ontologies in
more detail, we will describe the two source
ontologies.

3.1. The two software maintenance ontologies

Table 1 and 3 characterize the two ontologies.
Table 2 and 4 list some of the references used to build
the two ontologies, including the common references
highlighted in gray.

Table 1. Details of Ruiz et al.’ ontology

Concept Value

Domain Management of Software Maintenance Projects

Author Alarcos Research Group (UCLM)

Ontology to enable information to be interchanged among engineers,
managers and users fo maintenance projects

Level of farmality Semi-formal (REFSENO and UML)

Scope List of concepts:

This is classified(for reasons of clarnity) into partial ontologies and
subontologles
- Maintenance Ontology
Products Subontology
Activities Subontology
Process Organization Subontology
Procedures
Requests Management
Problems
Agents Subontology
- Workflow Ontology
- Measurement Ontology

See table 2

Source of knowledge

Table 2. Sources of Knowledge used Ruiz et al.’s

ontology
Informal ontology for SMP proposed by Kitchenham et al. in [14]

Conceptual model for corrective maintenance by Kajko-Mattson in [12,13]

Cntology for the software development process proposed by Falbo et al. In [6]

|Conceptual model for software process and software measurement proposed by [1]

|Documents which define the MANTIS processes systen:

- Model of IS0 12207 life cycle

- Process reference model 1SO15504-2 [9]

- IS0 14764 about SMP model [10]

- Model of activities and tasks of the MANTEMA methodology [20)

Ruiz et al’s [22] ontology was focused on the
concepts related to software maintenance projects from
a static and dynamic point of view. Because of this the
ontology also considers workflow and measurement
issues. However, in this paper we only focus on the
maintenance ontology from a static point of view,
since these two issues were perceived as a specificity
of Ruiz et al’s ontology that Dias et al. did not
consider in their work.

Dias et al.'s ontology was developed to describe the
knowledge used in software maintenance. Therefore,
the two ontologies, athough focusing on software
maintenance, have different goals, scope, organization
(sub-ontologies). Note that Kitchenham et al’s
ontology, used as a source in both cases considered

here, also has a different focus since it is aimed at
classifying research in software maintenance.

Both source ontologies were modeled with UML.
[7] state that UML may be used as a technique for
modeling ontologies since it is easy to understand and
use for people outside the Al community. Moreover,
there is a standard graphical representation for UML
models, and many CASE tools are available to
manipul ate these representations.

Table 3. Details of Dias et al.’ ontology

! Concept Value

| Domain

;Authol

Practice of Software Maintenance Projects

GES Research Group (Catholic University of Brasilia)

|Purpose Ontology to identify and organize all the knowledge needed when

performing maintenance.

| Level of formality Formal (UML, dictionary of concepts, definition of restrictions in first

order legic)

|Scope List of concepts:
There are five subontologies:
System Subontology
Maintenance Process Subontology
Computer Science Skills Subontology
Organization Subontology
Application Domain Subontology

Source of knowledge More than 30 references, see Table 4 for principle sources

Table 4. Sources of Knowledge used Diaset al.’s

ontology
Informal ontology for SMP proposed by [14]

Conceptual model for corrective maintenance by [13]

Cntology for the software development process proposed by [6]

|Book on software Maintenance [19]

;Buoks on Software Engineering [18, 21]
EStxndard on Software Maintenance |IEEE-1218 [8], IS0 12207, and IS0 14764

3.2. The merging constraints

The work we undertook was to merge these two
existing software maintenance ontologies into a new
one. Contrary to the ideas proposed by [16] we did not
adopt one “stable” (preferred) ontology on which to
map the other. In this merge, the two source ontologies
have exactly the same “weight”. One reason for thisis
that both source ontologies are approximately of the
same age and were too recent at the time we started the
merging to have been used in other works. Therefore
“changing” one or the other would have exactly the
same (small) impact.

We started the work with each group studying the
other’s ontology. In this way we were able to get a
better idea of what difficulties we would have, and
what differences existed between this specific work
and the merging process proposals found in literature
which were of a more theoretical nature (meaning that
the goa of these other works was not aways to
actually merge ontologies, but to propose processes or
tools that would help in merging):
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- The first conclusion was that the structure of
the ontologies, although different overall had
some commonalities:  description  (sub-
ontology) of the software system maintained,
description of the maintenance process,
description of the organizational structure.

- A brief look at the concepts in the two
ontologies showed that very few of them have
similar names [16]: 11 concepts, which is about
15% of Ruiz et al., and 10% of Diaset al.

- Asalready highlighted, an important constraint
is that the two teams are geographically
separated. This in itself ruled out most of the
proposed merging tools which assume that all
work isdone at a“central” location.

- One ontology is described in a semi-formal
way (see Tables 1 and 3) and the other more
formally, but both use UML for graphical
representation and textual description of the
concepts (dictionary of concept).

- Each group has a biased understanding of the
source material. Concretely, each group
understands its own ontology and the rational
for its design well, and the other ontology
much less. There was no central authority
which would have a balanced view of the
sources ontologies.

We felt, and continue to believe, that the worst
difficulty was the geographical dispersion. Merging
two ontologies is very much like designing a new one-.
It is essentially an exchange activity where experts
confront their views to reach a common understanding.
Doing so at distance proved a major difficulty.

3.3. The merging process

Because we were not able to exchange ideas
quickly, we felt the necessity to have a well defined
process to follow. As software engineers (primarily),
we based this process upon some well known
principlesin our field, mainly from the USDP (Unified
Software Development Process) [11], aso known as
RUP — Rational Unified Process). The USDP is a
process for developing software, an activity that bears
some resemblance to our situation:

- There is a highly conceptual initia part to
software development (domain modeling) that
isvery similar to ontology modeling.

- Software development projects nowadays
require the participation of many different

1 Noy and Musen in [17] suggest that merging is actually a
sub-case of designing a new ontology.
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people often in different places and speaking
different languages (off-shore development).

- UML isthe representation language of choice.

The positive practices that we wanted to incorporate

from the USDP are:

- lterative and incremental process. don't try to
do everything a once but dowly (and
iteratively) work toward the solution.

- Manage the project risks so that they don't
suddenly jeopardize the project.

In the USDP, the iterative and incremental approach
implies that all the functionalities are not implemented
at once but spread out over various iterations, and that
each functionality will itself be typically developed in
severa iterations (first the core functionality, then its
aternative scenario). This is different from the
iterative process proposed by [16], because in
PROMPT, the iterations simply repeat the same
activity whereas in USDP, each iteration is a small
(sequential) process itself, including all activities from
the most abstract (requirement elicitation, requirement
analysis) to the most detailed (implementation and
testing). In the case of ontology merging, we do not
have the same abstraction span. However, one may
still have different "activities” such as considering the
subontologies, the concepts, the associations between
them and finaly the restrictions (for formal
ontologies).

In the USDP, the iterations are a way of dealing
with risks in software development: by developing the
riskiest functionalities (only them and only their core
feature) in the first iterations, one can evaluate more
rapidly if one is able to implement them as planned.
This allows better control over the whole project.

We attempted to apply these principles to the
merging of ontologies by following the idea of an
initial core (similar to the core functionalities of the
USDP and their core scenario) that we could
progressively expand to a complete ontology. Thisidea
was applied on two different levels. First, at the
ontology level, we started with a “core” sub-ontology
which happened to be common to both ontologies to
be merged (we will come back to this later). When we
were satisfied that we would be able to merge this sub-
ontology, even if the merging was not yet completed,
we started to look for the next sub-ontology.

We applied a similar process at the level of
concepts. When working on a sub-ontology, we
focused first on a core concept (or a small group of
core concepts) that we then expanded with related
concepts, enlarging the scope to the point that we were
satisfied that the sub-ontology considered was
completely described. Thus in one iteration, we might
be dealing with the core concepts of one sub-ontology



while still resolving some pending issues (of relatively
little importance) of another sub-ontology.

The associations between the concepts proved to be
easy to deal with once the concepts themselves had
been agreed upon. Clearly, changing the meaning of
concepts or adding new concepts had an impact on the
associations, but this is normal and expected. Still we
feel that focusing on the concepts first alowed to
minimize the amount of re-work.

Finaly in our case the restrictions are not an issue
as one of the source ontology is semi-formal (therefore
we do not need to merge restrictions).

3.4. Merging example: applying the iterative
process

To better illustrate how we conducted the merging,
we will now describe in some detail how we applied
our process. Due to the geographical dispersion of the
ontology designers, we adopted the following
procedure: First, we agreed on a core sub-ontology to
work on, then one team started working on the
merging of this portion of the ontology. This team sent
a proposal by e-mail to the other team which analyzed
it, commented on it (accepting and/or counter arguing)
and sent back its comments. This corresponds to one
iteration where, as explained previously, we would
work at various levels of detail (concept and/or
associations). The proposal went back and forth
between the two teams, until only minor issues
remained pending. Then we started to look for the core
concept of a second sub-ontology while the pending
issues for the first were resolved “"in the background".
We did this for each of the three sub-ontologies that
we required.

The first sub-ontology we considered was the
system ontology. When one talks about software
maintenance, it seems clear to us that the software
system to be maintained should be considered. Indeed,
this was the only common sub-ontology that the two
source ontologies had (in one ontology it was called
Product sub-ontology instead of System sub-ontology)
(see Figure 1). Although the two source ontologies
agree on this, their respective software system sub-
ontologies present significant differences: their names
are different and they are at different levels of
abstraction. In Ruiz et al. [22] the Product sub-
ontology has only three concepts whereas there are 27
in Dias et al.’s [4] System sub-ontology. The two
source sub-ontologies are presented in Figures 2 and 3.

‘ OperationManual | HardbwareManwal

| E I ] |
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Figure 2. System sub-ontology [4]

To resolve this conflict, we applied the principle of
finding the core concepts of this sub-ontology and
expanded this core to the entire sub-ontology. Again
these core concepts were what the two sub-ontologies
had in common. This part proved to be similar to the
initial step of the SMART agorithm which
recommends the creation of a list of the concepts
considered in each ontology [16], looking for concepts
with identicall names or with linguistically similar
names.
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Figure 3. Products sub-ontology [22]

At this point we realized that, an automated tool
would have had difficulties in identifying how to map
the sub-ontologies as they used two different names
(system and product), and their core concepts used
different names too (again system and product).

From the three concepts in Ruiz et al. Product sub-
ontology (Figure 3), two were found in Dias et al.
System sub-ontology (Figure 2). These are the
“software system” maintained and its “artifacts’ (a
software system is composed of artifacts). It seems
clear to us that these two concepts are indeed core
concepts of a System sub-ontology and could be used
as a base to cultivate the entire sub-ontology. For this
reason, we applied the “merge-class’ operator, as
described in [16]: the two “artifact” concepts were
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merged in the new sub-ontology, and, the “system”
and “product” concepts were merged as a “software
product” concept. From this base, we expanded our
initial sub-ontology. We decided to include the
“version” concept present in one sub-ontology (Figure
3) and not the other (Figure 2), and the rest consisted
of deciding what concepts from the System sub-
ontology (Figure 2) would reach the merged sub-
ontology (lessimportant issues).

This is another point where an automated tool
would have been of little use since the commonalities
between the two sub-ontologies were very few (two
concepts) and most of the work was discussed between
the two groups to decide at what level of abstraction
we wanted to work and what concepts of the System
sub-ontology would be rejected or merged in the final
sub-ontology.

The resulting sub-ontology is presented in Figure 4.
We needed only one iteration (i.e. one round-trip:
proposal from one group and answer/comment from
the other) to agree on the core concepts of this first
sub-ontology. The remaining (minor) issues were
closed in another iteration (focused on the second sub-
ontology).

Software Product
]

ProcessDocument

WorkProduct

| SourceComponent || SupportDocument |

Figure 4. Merged Software Product sub-ontol ogy

After having solved the main problems of the first
sub-ontology, we continued. For the other sub-
ontologies, we did not have a one to one
correspondence between the two sources (one source
sub-ontology would map to two, or more, in the other
source), but having already defined a core sub-
ontology and its concepts helped in merging the rest,
because we had a common base to work from.

The next sub-ontology we considered was that of
maintenance activity. This seemed to be the next
logical sub-ontology to consider after that of system,
first because it is also central to the idea of software
maintenance, second because it is closely related to the
system sub-ontology, and third because the two source

VI Jor nadas Iberoamericanas de Ingenieria del So fiware e Ingenieria del Conocimiento
Lima, Peru

ontologies had a sub-ontology relating to the
maintenance process. This time, the two source
ontologies had more differences since Dias et al
consider only one such sub-ontology whereas Ruiz et
al. have two (see Figure 1). The idea of working
iteratively in this case is important because it helps
focus on a smaller part of the whole ontology. This is
where the process alows better control on the whole
project.

Existing tools are deficient in this regard since they
appear to consider either the entire source ontologies to
be merged (losing the focus we have just described) or
would work on two given sub-ontologies (as in our
first iteration), thus loosing some information since in
this case the mapping is from two sub-ontologies (Ruiz
et al.) toone (Diaset al.).

To merge the Process sub-ontologies, we again
started from core concepts which we defined to be the
“maintenance  process’ and its  “activities’.
Interestingly, the very activity of looking for core
concepts showed that if both source ontologies defined
the “activity” concept neither had thought above the
“process’ concept. We agreed that this was an
important concept to add. From these two concepts, we
progressively added related concepts (for example a
decomposition of the activities). This was more
difficult than with the first sub-ontologies as we had to
select concepts coming from both source ontologies, or
either of them, or reconcile differing views on
concepts. Things were even more difficult as we found
that some interesting concepts were actually members
of a fourth sub-ontology (e.g. the technology concept
in Dias et al's Skills sub-ontology). We needed two
iterations to settle the core of this sub-ontology, and
one more for the minor issues.

The fina sub-ontology to be merged is that of
Organization which includes concepts on the roles
needed to perform the activities, positions in the
organization, etc. It is similar to the second one in that
it consists of merging two sub-ontologies from one
source with one sub-ontology from the other. It is also
made more difficult by the fact that some concepts of
these sub-ontologies have already been merged in the
Process sub-ontology. Again, two iterations were
necessary to agree on the core issues. Finally one more
iteration was necessary to complete the work and solve
the minor issues. In total, we needed six iterations.

4. Lessons learned
We have drawn the following conclusions from this

merging experiment and how we dedt with the
difficultiesidentified in Section 3.2:
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Core elements: As one would expect, in most
cases the core elements (either sub-ontologies
or concepts) we identified were the things the
two source ontologies had in common. This is
actually an approach adopted by most merging
technologies. However, we found at least one
example of a core concept (Process sub-
ontology) that was not present in either source
ontologies.

Length: Some sub-ontologies required two
iterations before we reached an agreement on
the core issues and one more for the minor
ones. Each iteration in this model corresponds
to the analysis of a sub-ontology by one team,
and the analysis of the resulting proposal by the
other team (round-trip). Each of these analyses
by one team could require weeks depending on
the work load at that particular time. Typically,
one month or more could pass between one
group’s proposal and the answer to this
proposal. This was inevitable given the
communication medium we chose (e-mail) and
the geographical dispersion.

Rework: The long intervals between each
patticipation in the merging ultimately
increased our work load as the first thing a
team would have to do when commenting on a
proposal would be to re-analyze the entire
process to remind themselves of what had
adready been discussed, what had been
proposed (and why) and what argument had
been exchanged. In short, to reconstruct the
entire discussion up to that point. A tool to help
record and then reconstruct the discussion
would be agreat help in this sense.
Communication channel: An ontology captures
consensual knowledge in a domain. Reaching
this consensus implies sharing ideas,
confronting  opinions,  arguments  and
counterarguments. This is an activity that
requires (a lot of) communication between the
participants. Geographica dispersion is a huge
obstacle to this communication. Because our
objective was to actually merge the ontologies,
we have not had time to research and develop a
methodology that would alleviate this
communication problem. Our method was a
simple transposition to e-mail of what could
have happened if we had been able to discuss
the problem “eye-to-eye”. This is definitely not
enough, although it does offer some advantages
aswill soon be discussed.

Iterative progress: Because the merging
spanned a long time frame, it was important to

have a structuring framework for discussion.
One does not conduct a slow, lengthy, e-mail
discussion in the same way as one would carry
out an “eye-to-eye” exchange. It was important
to have a clear sense of what we were doing at
any given point, where we were going and how
much was still needed to get there. This is one
of the benefits of the iterative approach we
used.

Incremental progress: Usually, as one team was
working on a piece of the ontology, the other
would simply wait (“idly”) for the next round
of discussion. We did not concurrently start
discussions on various sub-ontologies. This
would not fit the incremental approach we
chose. It is not clear whether this was a good
decision or not. However the iterative and
incremental approach allowed us to deal with
the risk of making a wrong decision at one
point that would imply re-working an entire
sub-ontology. It is impossible from our limited
experience to say if working concurrently on
two sub-ontologies would not have increased
such arisk.

Process formality: Although we presented
rather strict definitions of our process, its
iterations and how they happened, in redity
things are not so clear cut. For example we
defined one iteration as a round trip of
comments between the two groups. However,
the real unit of activity was one analysis by a
group (“half an iteration”). For example, a
group would start a new iteration (discussion of
the core issue for a sub-ontology) and at the
same time (in the same e-mail) it would close
the iteration of the preceding sub-ontology.
Asynchronous communication: E-mail
communication has the well known advantage
of being asynchronous. One does not need to
set appointments or wait for others. Given that
the two teams are in different time zones this
was a very good thing and proved useful.
Historical record: E-mail communication and
written communication in general also offers
the advantage of being easily archived. Thisis
important when one needs to go back to past
decisions and remember how they were arrived
at

5. Conclusions

Merging methodologies is useful to guide the
merging activity and to carry it out in a systematic and
ordered way. Some automatic tools have been

105



106

proposed with the goal of making that activity easier.
However, the merging process is very similar to
developing a new ontology [7] since it is necessary to
understand the source ontologies clearly, to decide the
level of granularity of the final ontology and to make a
lot of design decisions.

In this paper we have reported our experience in
merging two ontologies on software maintenance in
real life conditions. These conditions included:
geographical dispersion of the participants, semi-
formal definition of one ontology, two ontologies
which were organized differently with few concepts
clearly in common. In these conditions, we have found
the use of automated merging tools to be of little value
as most of the work consisted of discussion between
experts to define what concepts to keep from either
source ontology, what the exact definition of some
concepts was, or a what level of granularity we
wanted to work.

To carry out the merging, we defined an iterative
and incremental process where the ontologies are
merged iteratively by sub-ontologies and each iteration
consists of an incremental approach from some core
concepts to the entire sub-ontology.

We closed the paper with a discussion of our
experience, highlighting some benefits and drawbacks
of our approach.
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