JISIC 07

VI Jornadas Iberoamericanas

de Ingenieria del Software
e Ingenieria del Conocimiento

DEL 31 DE ENERO AL 2 DE FEBRERO
LIMA - PERU

POMNTIFICHA

DEPARTAMENTO : & UNIVERSIDAD

DE INGENIERIA .
SECCION INGENIERIA INFORMATICA _ [?E?IE?L‘E'ICA

o
=
iz
&
<
I
=
=
2
=1
e
10
5]
=
<
3
]
&
=

ISBN 9972-28

ISBN 978-9972-2885-1-7 ” '“

2288517

JIISIC’07

VI Jornadas Iberoamericanas de

Ingenieria del Software e Ingenieria del Conocimiento

Lima-Peru
31 de enero al 2 de febrero de 2007

Editado y Compilado por:

Facultad de Ciencias e Ingenieria
Departamento de Ingenieria
Maynard Kong
José Antonio Pow-Sang
Manuel Francisco Tupia
Luis Alberto Flores

PONTIFICIA
UNIVERSIDAD

CATOLICA
DEL PERU

V1 Jornadas Iberoamericanas de Ingenieria del Software e Ingenieria del Conocimiente-MISIC™07

Compilado por:
Facultad de Ciencias & Ingenieria de la Pontificia Universidad Catdlica del Perd
Departamento de Ingenieria de la Pontificia Universidad Cawlica del Perd

Editado por:
Facullad de Ciencias & Ingenieria de la Pontificia Universidad Catélica del Perd
Departamento de Ingenieria de la Pontificia Universidad Catolica del Perit
Maynard Kong Wong, José Antonio Pavw-Sang Portillo, Manuel Francisco Tupia Anticona y Luis Alberto Flores Garcia.

Primera edicion: enere de 2007
Hecho ¢l Depdsito Legal en la Biblioteca Nacional def Pena N°2007-00571
ISBN N° 978-9972-2885-1-7

i

Comité Permanente

Silvia Teresita Acufia, Universidad Auténoma de Madrid, Espafia
Manoe! Mendonga, Universidade Salvador, Brasil
Oscar Dieste, Universidad Complutense de Madrid, Espana

Comité Organizador

José Antonio Pow-Sang, Pontificia Universidad Catdlica del Perii (chair)
Manuel Tupia, Pontificia Universidad Catolica del Pero
Luis Flores, Pontificia Universidad Catolica del Peri
Felipe Solari, Pontificia Universidad Catélica del Perti

Comité de Programa

Maynard Kong, Pontificia Universidad Catélica del Perii, Peri1 (chair)
Raul Aguilar, Universidad Autonoma de Yucatan, México
Idoia Alarcon, Universidad Autonoma de Madrid. Espafa
Luis Alberto Alvarez, Universidad Austral, Chile
Marco Alvarez, Utah State University, EEUU
Pedro Antunes, Universidade de Lisboa, Portugal
Joao Araujo, Universidade Nova de Lisboa, Portugal
Marianela Aveledo, Universidad Simon Bolivar, Venezuela
Pere Botella, Universitat Politécnica de Catalunya, Espafia
David Camacho, Universidad Autonoma de Madrid, Espafia
Francisco Camargo, ITESM, México
Zalatiel Carranza, Universidad de Lima, Perd
Dante Carrizo, Universidad Complutense de Madrid, Espafia
Luca Cernuzzi, Univ. Catélica Ntra. Sefiera de la Asuncidn, Paraguay
Sergio Coronado, University of Luxembourg, Luxemburgoe
Ernesto Cuadros-Vargas, Universidad Catdlica San Pablo, Perti
Angelica de Antonio, Universidad Politécnica de Madrid, Espaia
Amador Duran, Universidad de Sevilla, Espafia
Juan Vicente Fchagiie, Universidad de la Repiblica, Uruguay
Yadran Eterovic, Pontificia Universidad Catolica de Chile, Chile
Mariano Fernandez, Universidad CEU San Pablo, Esparia
Xavier Ferre, Universidad Politécnica de Madrid, Espafia
Ramon Garcia, Institute Tecnoldgico de Buenos Aires, Argentina
Francisco Jose Garcia, Universidad de Salamanca, Espaiva
Luis Guerrero, Universidad de Chile, Chile
Ricardo Imbert, Universidad Politécnica de Madrid, Espaia
Mario Jino, Universidade Estadual de Campinas, Brasil
Nora La Serna, Universidad Nacional Mayor de San Marcos, Pert
Guillermo Licea, Universidad Auténoma de Baja California, México
Marta Lopez, Universidad Complutense de Madrid, Espana
Jose Antonio Macias, Universidad Awtonoma de Madrid, Espaha
Esperanza Marcos, Universidad Rey Juan Carlos, Espana
Victor Hugo Medina, Universidad Distrital Fco. José Caldas, Colombia
Nelson Medinilla, Universidad Politécnica de Madrid, Espafia
Ana Maria Moreno, Universidad Politécnica de Madrid, Espana
Jaime Mufoz, Universidad Autonoma de Aguascalientes, México
Melvin Perez, CAM Informatica, Republica Dominicana
Claudia Pons, Universidad Nacional de Ja Plata, Argentina
Angel Puerta, Redwhale Software , EEUU
1sidro Ramos. Universitat Politécnica de Valencia, Espafia
Gustavo Rodriguez, INAOE, México
Maria Isabel Sanchez Segura, Universidad Carlos 11 de Madrid, Espafia

v

Comité de Programa (continuacion)

René Santaolaya Salgado, CENIDET, México
Miguel Angel Serrano, CIMAT, México
Almudena Sierra, Universidad Rey Juan Carlos, Espafia
Enrique Sterra, Instituto Tecnoldgico de Buenos Aires, Argentina
Francisco Tirado, Universidad Complutense de Madrid, Espaiia
Ambrosio Toval, Universidad de Murcia, Espafia
Jorge Trifianes, Universidad de fa Republica, Uruguay
Raimundo Vega, Universidad Austral, Chile
Sira Vegas, Universidad Politécnica de Madrid, Espaia
Silvia Regina Vergilio, Universidade Federal do Parana, Brasil
Monica Villavicencio, Escuela Superior Politécnica del Litoral, Ecuador
Marcello Visconti, Universidad Técnica Federico Santa Marta, Chile
Aurora Vizcaino Barcels, Universidad de Castilla-La Mancha, Espana

Colaboradores en el Proceso de Revision

Abel Gomez
Alejandro Hossian
Alex Bustos
Aurora Pozo
César J. Acufia
Enrique Fernandez
Fernando Molina
Fuensanta Medina Dominguez
Jaime Navan
Jenniter Pérez
Joaguin Nicolas
José Angel Olivas
Jose Arturo Mora Soto
Jose Carsi
José Maria Cavero
Luis Flores
Manuel Tupia
Maria Alejandra Ochoa
Marisa Cogliati
Miguel Angel Martinez Aguilar
Nelly Condori-Fernandez
Norberto Millo
Paola Britos
Percy Pan Salas
Sonia Pamplona

.Pr()logo

Este volumen contiene los trabajos aceptados y presentados en las V1 Jornadas
Jberoamericanas de Ingenieria del Software e Ingenieria del Conocimiento (JIISIC’07)
celebradas en Lima, Peru, del 31 de enero al 2 de febrero de 2007. Desde su edicion
inicial en 2001, las JISIC han demostrado ser el foro de reunion mas importante, a
nivel Iberoamericano, de investigadores Y profesionales interesados en ambas
disciplinas.

El evento actual es la continuacion de la labor iniciada en las MISIC 01, celebrada en
en Buenos Aires (Argentina), JISIC’02 en Salvador de Bahia (Brasil), JIISIC’03 en
Valdivia (Chile), JIISIC’04 en Madrid (Espafia) ¥ JIISIC?06 en Puebla (México).

En la presente convocatoria se han recibido 88 articulos de calidad cientifica para su
evaluacién. Cada trabajo ha sido evaluado por al menos 2 revisores y s¢ ha contemplado
la resolucion de divergencias, que por cierto han sido muy pocas. Finalmente fueron
aceptados 54 articulos de autores procedentes de Argentina, Brasil, Colombia, Corea del
Sur, Cuba, Chile, Ecuador, Espafia, Estados Unidos de América, Mexico, Pera y
Uruguay. Ademas de la sesiones técnicas, se aceptaron cuatro tutoriales.

Es preciso indicar que todo esto no hubiera sido posible sin la colaboracién de muchas
personas. Por ello queremos agradecer especialmente a los miembros del Comité de
Programa por su excelente v desinteresada labor, necesaria para renovar la calidad y
prestigio ganado. También queremos destacar ¢l enorme esfuerzo de Manuel Tupia,
Luis Flores y Felipe Solari, miembros del Comité Organizador, sin cuyo trabajo no
hubieran podido celebrarse estas Jornadas. Nuestro agradecimiento al Ing. Eduardo
Ismodes, decano de la Facultad de Ciencias ¢ Ingenieria, y al Ing. Kurt Paulsen, jefe del
Departamento de Ingenieria, por el gran apoyo que nos han brindado. Por altimo, pero
no al final, expresamos nuestro sincero agradecimiento a todos los autores que
aportaron sus contribuciones al evento.

Maynard Kong José Antonio Pow-Sang
Presidente del Comité de Programa Presidente del Comité Organizador

vii

INDICE

ARTICULOS :

Sesion 1a: Bases de datos y Mineria de Datos
Un Modefo de Proceso para Eduecién de Requisitos en Proyectos de Data Mining

José Gallardo Arancibia. Oscar Marban Galfego, Clandio Meneses Villegas 3

Optimizing Lies i State Oriented Domains based on Genetic Algorithms
A. Zylberberg. E. Calot, J. lerache, H. Merlino. P. Britos. R. Garcia-Martines 1!

Extension del Lenguaje SQL con Nuevas Primitivas SQL para el Descubrimiento de Reglas de Clasificacion

Ricardo Timardn Pereira 19

Sesion 1b: Pruebas de Software, Validacién y Verificacion. Prop. de Inteligencia
Artificial a IS

Certificacion de Proptedades Usando Distintos Probadores de Teoremas: Un Caso de Estudio

J. Santiago Jorge, Victor M. Gulias, Laura M. Castre 27

GraspKM en la Recuperaciin de la Estructura de Software

Erick Vicente, Manwel Tupia, Luis Rivera 35

Testing Exploratorio en la Prctica

Bearriz Pérez. Amparo Fittier, Mariana Travieso, Mdnica Wodzisiowski 43
Sesion lc: Ingenieria de Requerimientos

Una Propuesta para la Elicitacion de Requerimientos de Seguridad Basada en Pregunias

Vianca Vega Z., Gloria Gasca H., Edmundoe Tovar (., José Carrille V- 51

Um Processo de Engenharia de Requisitos Baseado em Reutilizagio de Ontologias e Padioes de Analise

Ricardo de Almeida Falbo, Aline Freitas Martins, Bruno Margues Segrini. Gleison Baidco, Rodrige Dal Moro. Jufio Cesar
Nurdi 59

Elicitacion de Requisitos Empleando UN-Lencep v Esquemas Preconceptuales
Carlos Mario Zapata J., Fernando Arango 1. 69

Sesion 2a: Ingenieria del Conocimiento, Bases de Datos y Mineria de Datos

Onto-DOM: A Question-Answering Ontology-Based Strategy for Helerogeneous Knowledze Sources
Mariel Alejandra Ale. Cristian Gerarduzzi, Omar Chioni, Maria Rosa Galli 79

Knowledge Engineering for a Fuzzy Power Plant Process Controiler

Yeungchud Boe, MaiRey Lee, Sang Doo Shin, Thamas Gatton, Yigon Kisr 87

Un Acercamiento a los Modeles Multidimensionales Espacio Temporales

Freamiciscn Javier Moreno Arboleda, Fernande Arango lsa-a 93

viii

Sesion 2b: Ontologias, Metodologias, Patrones y Frameworks

Asynchronous Merging of Software Ontologics. An Experience

Nicolas Anguetil, Aurora Vizcaino, Francisco Ruiz, Kathic Oliveira, Maric Piaiini

Hacia una Metodologia Orientada al Conocimicnto para 1a Educcion de Requisitos en Ingenieria del Software
Alejundro Hossian, Enrique Sierva, Ramon Garcia-Martinez, Maria Alejandra Ochoa, Paola Britos

Casos de (Re)Uso: Uma Abordagem para Reuso de Software Interativo Dirigida por Casos de Uso & Padides Concretos de

Interacgiio,
Angusto Abelin Moreiva, Marcele Snares Pimenia

Sesion 2¢: Ingenieria de Requerimientos, Arquitecturas y Disedio de Software

Modelado de Aplicaciones con Procesos Concurrentes y Disiribuidos
Daniel A. Ginlianelli, Rocio A. Rodriguez, Pablo M. Vera

Requisitos No Funcionales: Evaluando ¢l hmpacto de Decisiones
Mareela Quispe-Cruz, Nelly Condori-Ferninde:z

Atributos Contextuales Relevantes para la Seleccion de Téenicas de Educcion de Requisitos

Dante Carrizo, Oscar Dieste

Sesion 3a: Arquitecturas y Diseiio de Software

Evalwacion de Arquitecturas de Sottware con ATAM {Architecture Tradeoff Analvsis Method): Un Caso de estudio

Andrea Delgado. Alberto Custro. Martin German

Transformacion de Vistas Arquitectonicas Orientada por Modelos

Raogelio Limon Cordero, Isidro Rumos Salavert, Aruro Aragon Sorroza

Analvzing and Designing Software Architecture Views driven by their Relarionships

Rogelio Limon Cordero, Isidro Ramos Salaveri, Maricele Morales Herndndez, Jorge Zardte Pere-
Sesion 3b: Métodos de Diseiio, Modelado de Dominio y Meta-Modelado

Apticando MDA al Diseo de un Diatawarchouse Temporal

Carlos Neil, Clandia Pons

Estrategias de Deteccion de “Feature Envy’ en Aplicaciones Java
Carlos Angarita Marquez, Silvia Takahashi Rodrignez

Un Caso Practico en MDA para Construir Aphicaciones JEES v NET

Andres Yie. Juan Bohdrquez, Rubby Casallas

Sesion 3¢: Calidad en el Software

Evolugao de um Processo Agil de Desenvolvimenio baseado em framework,

Franciene Duarte Gomes, Maria Istela Cagnin

Desarollo de un Cadigo de Mdéwicas para Pequefias Empresas Ecuatorianas Desarrolladoras de Software

Renid Gonzeilez Carrvion, Henrv Hernandez Kendon. Monica Villavicencio Cabe-as

99

107

115

133

143

151

161

171

181

191

201

21

221

A Organizagio de uina Maguina de Processoe @ Melhworia do Processe de Produpio de Seftware em um Ambiente de Fabrica
José A. Fabri, André L.P. Trindade, Alexandre L'Erdrio, Marcelo S. de P. Pessoa

Sesion 4a: Modelado de Procesos

A Minimat O€L-based Profile tor Model Transformation

Roxana Giandini, Gabriela Pérez, Clandia Pons

Extension MDA (Model Driven Architecture) para Proceso Basado en RUP (Rational Unified Pracess),
Andrea Delgado, Natacha Carballal, Catnling Rapeiti

Organzaciin de Conocimientos en Procesos de Ingenieria de Software por Medio de Modetado de Procesos: una Adapiacion

de SPEM

Oscar M. Rodriguez-Elias, Ana . Martine=-Garcia, Aurora Vizcaino, Jesis Favela, Mario Piattini

Sesion 4b: Ing. del Software basada en Componentes, Usabilidad e Interaceién
Persona-Computadora

Un modele de Componentes para ¢l Disefo v Ejecucion de Procesos de Colaboracion basado en ThinkLets

Vicior Atberto Hermida, Carlos Hernan Tobar, Julio Ariet Huriado, César A. Collazos

Monitoreo del Desempefio de los Factores de Seguridad de una Transaccidn Web a través de la interfaz de Usuario

R. Mendoza Gonzdalez, J. Mufioz Arfeaga, F. 1 dfvares Rodriguez, M. Vargas Martin
Sesion 4¢c: Métricas e Ingenieria del Software Empirica

Experimento Exploratorie para 1a Validacion de Medidas para Modelos de Procesos de Negocio

Elvirg Roldn, Félix Garcia, Francisco Ruiz, Marie Piottini

Esiudio Experimental en Equipos de Desarrollo de Software sobre las Relaciones entre Personalidad, Satisfaccon y Calidad
del Producte

Aarta Gomer, Silvia T. Aculia, Ramon Rice

Estimacion basada en Escenarios Principales,

José Cao. Enrique Fermindez, Herndn Merling, Alejandro Hossias, Enrique Sierra, Eduardo Diez. Paola Britos, Ramon
CGarcia-Martinez

Sesion 3a: Modelos de Calidad

RevisionCASE, Herramienta pari Gestionar Revisiones a Provectos de Sofrware Empleando Razonamiente Hasado en Casos

Marthe Delgade Dapena, Sofia Lifvares Cardenas. Josué Carralero Iznaga. Javier Travieso Arencibia, Iren Lorenzo Fonseca.

Alejandro Rosere Sndrec

Modelo Liviano de Calidad para la Mejora de Proceses de Desarrollo Software

Carmen J. Sanches, Maria E. Solis, Francisce J. Pino, Julio A. Hurtado

Diseno y Desarrotlo de un Entorno Integrade para Simuladores de Entrenamiento de Procesos Idustrizles

Pedre A. Corcuera
Sesién 5b: Métricas e Ingenieria del Software Empirica

Avaliando a Relagdo entre Tamanhko-Complexidade ¢ Numero de Defeitos de Software em Nivel de Maodulo
[Paledo Luis de Licca, Plinio R, 8. Vitela, Marie Jino

ix

229

237

247

257

267

215

283

293

301

309

325

Empirically Evalnating the Usefuiness of Soffware Viswalization Techniques in Program Comprehension Activities

Glance de F. Carneiro, Angelo C. Arengo Orvico, Manoel G. de Mendoma Neta
Sesion 5¢: Modelado y Mejora de Procesos

Un métode de Evaluacion Agil del Proceso Sofiware: Agile SP1 - Process Assessment Method

Julio Ariel Hurtado, César Pardo, Luis Fernandez. Juan Carlos Vidal

MUM - Proceso de Desarrollo de Software Modutarizado, Unificade v Medible

Beartriz Péres, Lucia Pedrana, Marcelo Bellini

Enfoque de Metamodelado y Mubtiformalismo Aplicado al Proceso Software usando AToM3
Mabel del V. Sosa, Silvia T. Acwdia, Juan de Lara

O Papel do CMMI na Configuragdo de wn Meta-Processe de Producio de Software com Caracteristicas Fabris: Um Estudo
de Case

José Augusto Fabri, André Luic Presende Trindade. Mdrcio Sifveira. Marcelo S. de Pania Pessoa
Sesion 6a: Modelos de Calidad

Utilizacion de un Método ad hoc para el Mejoramiento de Procesos con MoProSoft

Verénica Martinez, Yessica Gomez, Hanna Okiaba. Angélica Urritia. Rodolfo Villarroel

Perfil UML 2.0 para Aplicaciones de Monitoreo Ambiental
Adriana 8. Urcinolo, Rodolfo J. ftnraspe, Ecequiel Movano

Una Abstraccion Posible del Tovotismo Subtensa en un Modelo Concurrente de Ciclo de Vida de Software
Alejandro Estavno. Marcelo Estayno, Alicia Mon

Sesion 6b: Aplicaciones Industriales y Computo Movil

Aplicacian de la Tecnologia Bluetooth Oriemiada a la Integracion de Servicios de Internet ¢n Dispositivos Mdviles
Juan Guillermo Torres Hurtado, Aivaro Bernal Noreia

Modelo Multiagente en Sistemas de Mision Critica Aplicado al Control de Trafico Aéreo Bajo el Concepto de Free Flight

Victor Battisra, Jorge lerache. Paola Britos, Dario Rodriguez, Ramén Garcia-Martinez

El Problema Cincntico en Manipuladores Robaticos Industriales un Abordaje de Solucion mediante Redes Neuronalkes
Artificiales

Alejandro Hossian, Enrique Sierra, Enrigue Fernandez, Paola Brites, Ramon Garcia-Mariinez

Sesion 6¢: Educacion en Ing. de Software e Ing. del Conocimiento, Informatica
Educativa

Estudio, Implantacion v Resultados de fa Adaptacion Espacio Furopeo de Tducacion Superior ¢n {as Asignaturas de
Programacion de fa Tindacion de Informitica de la Universidad de Malaga

Jose Luis Pastrana, Maria Victoria Belmonte. Carlos Cotta, Antonio Fernandez, Enrigue Soler, Maria Inmaculada Yagne

Ontologias en el Desarroflo de Entornos Virtuales para Entrenamiento

Rail A. Agilar, Angélica de Amopic, Fidel Rojus-Toledo

341

349

359

367

375

385

393

403

411

419

427

435

445

xi

Gesion 6d: Mejora de Procesos

Experiencia en Team Software Process (TSP) v Mejoras de Estimacion, Calidad ¥ productividad de los Equipos en la Gestion
del Software
Gonzalo Cuevas, José Calvo Manzano, Tomas San Feliu, Sussy Bayona 451

Aprcndiz,ajc por Refuerzos en problemas de Plancamiento con Restricciones
Pedro E. Colle, Ermesto AMurtinez 459

Tutoriales

Uso de Esquemas Preconceptuales para la Generacikn Automatica de Diagramas de Clases, Comunicacion y Maguina de
Estadoes

Carlos Mario Zapald g 169

Como Organizar usn Frocesso Faubril de Produgio de Software

José Augnste Fabri. Marcelo 5. de Paula Pessoa 473

El Uso de a incertidumbre como Herramienta en Ja Ingenieria de Software
Nelson Medinilla Martipez 477

Aplicacion de Téen icas de Aprendizaje Cooperativo en la Ensefianza del Desarrollo de Software
Podro Campos, Luis Alberto Flores, José Amonio Pow-Sang, Clenudier Zapuia 481

Asynchronous Merging of Software Ontologies: An Experience

NicoIasAnquetiIl, Aurora Vizcaino®, Francisco RuizZ, Kathia Oliveira’ and Mario Piattini®
" GES Research Group. Catholic University of Brasilia, Brazil

{anquetil, kathia}@uch.br
? Alarcos Research Group. University of Castilla-La Mancha, Spain

{aurora.vizcaino, francisco.ruiz, mario.piattini}@uclm.es

Abstract

Different methodologies exits to merge ontologies.
However, most of them need the source ontologies to
be defined in a particular and formal way. Moreover,
tools to help during the merging process have been
developed, but these are thought for synchronous
settings (where the knowledge engineers can exchange
ideas in real time) and very specific conditions. In this
paper we describe the merging process that two
research groups have used to merge two maintenance
ontologies in an asynchronous way. We also describe
the problems that we faced since each research group
was in a different country, with different time zone and
also different mother languages. The usage of a
systematic methodology helped us to tackle these
problems as will be explained in this paper.

1. Introduction

Onotologies capture consensual knowledge of a
specific domain in a generic and formal way, to alow
it to be reused and shared among groups of people.
Despite requiring consensus between different experts,
there is no single possible ontology to model a
particular domain, thus domain-specific ontologies are
modeled by multiple authors in multiple settings [24].
For example, in the case of software engineering
where ontologies can play important roles, and more
concretely in the software maintenance domain, there
are severa published ontologies [3, 4, 14, 22], each
one dealing with maintenance activity from a different
point of view. In an attempt to achieve a better result
we decided to merge two ontologies, those of Dias et
al. [4] and Ruiz et al. [22] that seemed to be most
complementary and which moreover, were based on a
third, that of Kitchenham et al. [14]. Our goa was to
construct a more general ontology by taking into

account the most important concepts related to
software maintenance.

A great difficulty in this work was the geographic
distance between the two teams of authors of the
ontologies. As a result, the merging could not be
conducted in a typica way where the knowledge
engineers could meet and discuss together what
concepts to include, what restrictions to apply to these
concepts, etc. What is more, we had some extra
challenges. For instance, one ontology was developed
by a Brazilian University, and the other by a Spanish
University and although both ontologies were defined
in English this was not the mother tongue of any of the
developers of the ontologies. Because of this,
misunderstandings might arise. We attempted to
counter balance these difficulties by defining a
merging process that would take the specificity of our
situation into account.

In this paper we present the process followed to
merge the two ontologies and we report on the
difficulties found and the lessons learned from this
experiment.

The remainder of the paper is structured as follows.
Section 2 describes the merging process and some
methodologies and tools developed for this purpose.
Section 3 explains the process that we followed to
merge the ontologies. Section 4 presents the benefits
and limitations of the approach used. Finally in section
5 conclusions are outlined.

2. Merging ontologies

It isfirst necessary to clarify the difference between
two related words. merging and alignment. Merging
ontologies means to create a single coherent ontology
from two sources. Aligning ontologies means to
establish links between them and alow them to reuse
information from one another [16]. Alignment does not
aim to create a new ontology. Merging two ontologies

VI Jornadas Iberoamericanas de Ingenieria del Software e Ingenieria del Conocimiento
Lima Peru

99

100

implies some kind of alignment as one must map one
ontology on to the other to find out the commonalities,
synonyms, etc.

There are different methods by which to merge
ontologies and many of them provide a tool with
which to automatically identify potential matchings or
provide an environment to manually find and define
these matchings. Mapping tools and algorithms are:
ONIONS [23] which allows the creation of alibrary of
ontologies originating from different sources; the
Chimaera system [15] provides support to merge
ontological terms from different sources, to check the
coverage and correctness of ontologies and to maintain
ontologies over a period of time; OntoMorph [2]
provides two kinds of mechanisms for merging
ontologies. One is a syntactic rewriting support that
alows trandation between two different representation
languages, and the other is a semantic rewriting tool
that alows inference-based transformations; GLUE [5]
uses machine learning techniques, to provide pairs of
related concepts with some certainty factor associated
to each pair. Another approach is FCA-Merge [24]
which takes as input two ontologies to be merged and a
set of documents on the domain of the ontologies. The
merging is performed by extracting instances that
belong to concepts of both ontologies from the
documents. Finaly, PROMPT is an agorithm
embedded in Protégé 2000, that proposes first to
elaborate a list with the operations to be performed in
order to merge two ontologies [17]. This activity is
carried out automatically by a PROMPT plug-in. Then,
an iterative process is performed. For each iteration the
ontology developer selects an operation of the list and
executes it. After that, a list of conflicts is generated
and the list of possible operations for the following
iterations is updated.

Most previous techniques need the source
ontologies to be defined in a particular and formal way
and some, such as OntoMorph and Chimarea, use a
description logics based approach. Moreover, only
FCA-MERGE offers a structural description of the
global merging process [24]. These facts, and other
difficulties that will be detailed in the next section, led
us to define our own merging approach. Contrary to
the existing approaches, we did not seek automation of
the merging process and will not propose any tool to
help. In our experience, very few activities can be
automated and when this is possible, they do not
represent a significant work load. We will therefore
focus on presenting and discussing our methodology
which has given good results and proved to be useful.

VI Jor nadas Iberoamericanas de Ingenieria del So fiware e Ingenieria del Conocimiento
Lima, Peru

3. Merging two software maintenance
ontologies

This work started as a result of two teams (the
Alarcos group from University of Castilla-La Mancha,
Spain; and GES from Catholoc University of Brasilia,
Brazil) wanting to collaborate on the definition of an
ontology for software maintenance. Each research
group had aready published an ontology on software
maintenance separately Ruiz et al. [22] and Dias et al.
[4] as a support for their respective ongoing research,
but we perceived that each ontology bore the mark of
its maker. Our goal in merging the ontologies was to
obtain a more general maintenance ontology. Although
we work under very strong restrictions, we also
perceived positive factors that suggested that the work
could be done.

What separates us:

- TheAtlantic ocean (geographical distance);

- Five hours (different time zones);

- Two languages (Spanish and Portuguese
although very close each other do not allow the
easy discussion of such complex issues raised
by an ontology merging).

The positive points:

- The domain, software maintenance, is
relatively well defined.

- Theresearchers are all domain experts to some
degree.

- Both ontologies are based on the same sources,
the main ones being (see aso Figure 1) an
ontology for software maintenance [14] and
another ontology for the software process [6].
Also used as a source by [14]. There are also a
number of other minor sources in common
such as international standards, significant
publications, etc.

Kitchenham et al, [14]

Products ontology
Activities ontology
Process ontology
Procedures sub-ontology
Process Organization sub-ontology
Peopleware ontology

—

Ruz ef ol, [22] Dics ef ol, [4]

Products sub-ontology System sub-ontology

Activities sub-ontology Skills sub-ontology

Process sub-ontology Modification Process sub-ontology
Agenis sub-ontology Organizational Structure sub-ontology
Application Domain sub-ontology

Figure 1. Schematic representation of three software
maintenance ontologies

Before going on describing difficulties found and
the process that we followed to merge the ontologies in
more detail, we will describe the two source
ontologies.

3.1. The two software maintenance ontologies

Table 1 and 3 characterize the two ontologies.
Table 2 and 4 list some of the references used to build
the two ontologies, including the common references
highlighted in gray.

Table 1. Details of Ruiz et al.’ ontology

Concept Value

Domain Management of Software Maintenance Projects

Author Alarcos Research Group (UCLM)

Ontology to enable information to be interchanged among engineers,
managers and users fo maintenance projects

Level of farmality Semi-formal (REFSENO and UML)

Scope List of concepts:

This is classified(for reasons of clarnity) into partial ontologies and
subontologles
- Maintenance Ontology
Products Subontology
Activities Subontology
Process Organization Subontology
Procedures
Requests Management
Problems
Agents Subontology
- Workflow Ontology
- Measurement Ontology

See table 2

Source of knowledge

Table 2. Sources of Knowledge used Ruiz et al.’s

ontology
Informal ontology for SMP proposed by Kitchenham et al. in [14]

Conceptual model for corrective maintenance by Kajko-Mattson in [12,13]

Cntology for the software development process proposed by Falbo et al. In [6]

|Conceptual model for software process and software measurement proposed by [1]

|Documents which define the MANTIS processes systen:

- Model of IS0 12207 life cycle

- Process reference model 1SO15504-2 [9]

- IS0 14764 about SMP model [10]

- Model of activities and tasks of the MANTEMA methodology [20)

Ruiz et al’s [22] ontology was focused on the
concepts related to software maintenance projects from
a static and dynamic point of view. Because of this the
ontology also considers workflow and measurement
issues. However, in this paper we only focus on the
maintenance ontology from a static point of view,
since these two issues were perceived as a specificity
of Ruiz et al’s ontology that Dias et al. did not
consider in their work.

Dias et al.'s ontology was developed to describe the
knowledge used in software maintenance. Therefore,
the two ontologies, athough focusing on software
maintenance, have different goals, scope, organization
(sub-ontologies). Note that Kitchenham et al’s
ontology, used as a source in both cases considered

here, also has a different focus since it is aimed at
classifying research in software maintenance.

Both source ontologies were modeled with UML.
[7] state that UML may be used as a technique for
modeling ontologies since it is easy to understand and
use for people outside the Al community. Moreover,
there is a standard graphical representation for UML
models, and many CASE tools are available to
manipul ate these representations.

Table 3. Details of Dias et al.’ ontology

! Concept Value

| Domain

;Authol

Practice of Software Maintenance Projects

GES Research Group (Catholic University of Brasilia)

|Purpose Ontology to identify and organize all the knowledge needed when

performing maintenance.

| Level of formality Formal (UML, dictionary of concepts, definition of restrictions in first

order legic)

|Scope List of concepts:
There are five subontologies:
System Subontology
Maintenance Process Subontology
Computer Science Skills Subontology
Organization Subontology
Application Domain Subontology

Source of knowledge More than 30 references, see Table 4 for principle sources

Table 4. Sources of Knowledge used Diaset al.’s

ontology
Informal ontology for SMP proposed by [14]

Conceptual model for corrective maintenance by [13]

Cntology for the software development process proposed by [6]

|Book on software Maintenance [19]

;Buoks on Software Engineering [18, 21]
EStxndard on Software Maintenance |IEEE-1218 [8], IS0 12207, and IS0 14764

3.2. The merging constraints

The work we undertook was to merge these two
existing software maintenance ontologies into a new
one. Contrary to the ideas proposed by [16] we did not
adopt one “stable” (preferred) ontology on which to
map the other. In this merge, the two source ontologies
have exactly the same “weight”. One reason for thisis
that both source ontologies are approximately of the
same age and were too recent at the time we started the
merging to have been used in other works. Therefore
“changing” one or the other would have exactly the
same (small) impact.

We started the work with each group studying the
other’s ontology. In this way we were able to get a
better idea of what difficulties we would have, and
what differences existed between this specific work
and the merging process proposals found in literature
which were of a more theoretical nature (meaning that
the goa of these other works was not aways to
actually merge ontologies, but to propose processes or
tools that would help in merging):

VI Jornadas Iberoamericanas de Ingenieria del Software e Ingenieria del Conocimiento
Lima Peru

101

102

- The first conclusion was that the structure of
the ontologies, although different overall had
some commonalities: description (sub-
ontology) of the software system maintained,
description of the maintenance process,
description of the organizational structure.

- A brief look at the concepts in the two
ontologies showed that very few of them have
similar names [16]: 11 concepts, which is about
15% of Ruiz et al., and 10% of Diaset al.

- Asalready highlighted, an important constraint
is that the two teams are geographically
separated. This in itself ruled out most of the
proposed merging tools which assume that all
work isdone at a“central” location.

- One ontology is described in a semi-formal
way (see Tables 1 and 3) and the other more
formally, but both use UML for graphical
representation and textual description of the
concepts (dictionary of concept).

- Each group has a biased understanding of the
source material. Concretely, each group
understands its own ontology and the rational
for its design well, and the other ontology
much less. There was no central authority
which would have a balanced view of the
sources ontologies.

We felt, and continue to believe, that the worst
difficulty was the geographical dispersion. Merging
two ontologies is very much like designing a new one-.
It is essentially an exchange activity where experts
confront their views to reach a common understanding.
Doing so at distance proved a major difficulty.

3.3. The merging process

Because we were not able to exchange ideas
quickly, we felt the necessity to have a well defined
process to follow. As software engineers (primarily),
we based this process upon some well known
principlesin our field, mainly from the USDP (Unified
Software Development Process) [11], aso known as
RUP — Rational Unified Process). The USDP is a
process for developing software, an activity that bears
some resemblance to our situation:

- There is a highly conceptual initia part to
software development (domain modeling) that
isvery similar to ontology modeling.

- Software development projects nowadays
require the participation of many different

1 Noy and Musen in [17] suggest that merging is actually a
sub-case of designing a new ontology.

VI Jor nadas Iberoamericanas de Ingenieria del So fiware e Ingenieria del Conocimiento
Lima, Peru

people often in different places and speaking
different languages (off-shore development).

- UML isthe representation language of choice.

The positive practices that we wanted to incorporate

from the USDP are:

- lterative and incremental process. don't try to
do everything a once but dowly (and
iteratively) work toward the solution.

- Manage the project risks so that they don't
suddenly jeopardize the project.

In the USDP, the iterative and incremental approach
implies that all the functionalities are not implemented
at once but spread out over various iterations, and that
each functionality will itself be typically developed in
severa iterations (first the core functionality, then its
aternative scenario). This is different from the
iterative process proposed by [16], because in
PROMPT, the iterations simply repeat the same
activity whereas in USDP, each iteration is a small
(sequential) process itself, including all activities from
the most abstract (requirement elicitation, requirement
analysis) to the most detailed (implementation and
testing). In the case of ontology merging, we do not
have the same abstraction span. However, one may
still have different "activities” such as considering the
subontologies, the concepts, the associations between
them and finaly the restrictions (for formal
ontologies).

In the USDP, the iterations are a way of dealing
with risks in software development: by developing the
riskiest functionalities (only them and only their core
feature) in the first iterations, one can evaluate more
rapidly if one is able to implement them as planned.
This allows better control over the whole project.

We attempted to apply these principles to the
merging of ontologies by following the idea of an
initial core (similar to the core functionalities of the
USDP and their core scenario) that we could
progressively expand to a complete ontology. Thisidea
was applied on two different levels. First, at the
ontology level, we started with a “core” sub-ontology
which happened to be common to both ontologies to
be merged (we will come back to this later). When we
were satisfied that we would be able to merge this sub-
ontology, even if the merging was not yet completed,
we started to look for the next sub-ontology.

We applied a similar process at the level of
concepts. When working on a sub-ontology, we
focused first on a core concept (or a small group of
core concepts) that we then expanded with related
concepts, enlarging the scope to the point that we were
satisfied that the sub-ontology considered was
completely described. Thus in one iteration, we might
be dealing with the core concepts of one sub-ontology

while still resolving some pending issues (of relatively
little importance) of another sub-ontology.

The associations between the concepts proved to be
easy to deal with once the concepts themselves had
been agreed upon. Clearly, changing the meaning of
concepts or adding new concepts had an impact on the
associations, but this is normal and expected. Still we
feel that focusing on the concepts first alowed to
minimize the amount of re-work.

Finaly in our case the restrictions are not an issue
as one of the source ontology is semi-formal (therefore
we do not need to merge restrictions).

3.4. Merging example: applying the iterative
process

To better illustrate how we conducted the merging,
we will now describe in some detail how we applied
our process. Due to the geographical dispersion of the
ontology designers, we adopted the following
procedure: First, we agreed on a core sub-ontology to
work on, then one team started working on the
merging of this portion of the ontology. This team sent
a proposal by e-mail to the other team which analyzed
it, commented on it (accepting and/or counter arguing)
and sent back its comments. This corresponds to one
iteration where, as explained previously, we would
work at various levels of detail (concept and/or
associations). The proposal went back and forth
between the two teams, until only minor issues
remained pending. Then we started to look for the core
concept of a second sub-ontology while the pending
issues for the first were resolved “"in the background".
We did this for each of the three sub-ontologies that
we required.

The first sub-ontology we considered was the
system ontology. When one talks about software
maintenance, it seems clear to us that the software
system to be maintained should be considered. Indeed,
this was the only common sub-ontology that the two
source ontologies had (in one ontology it was called
Product sub-ontology instead of System sub-ontology)
(see Figure 1). Although the two source ontologies
agree on this, their respective software system sub-
ontologies present significant differences: their names
are different and they are at different levels of
abstraction. In Ruiz et al. [22] the Product sub-
ontology has only three concepts whereas there are 27
in Dias et al.’s [4] System sub-ontology. The two
source sub-ontologies are presented in Figures 2 and 3.

‘ OperationManual | HardbwareManwal

| E I] |
%
[fon | (]| o]

Figure 2. System sub-ontology [4]

To resolve this conflict, we applied the principle of
finding the core concepts of this sub-ontology and
expanded this core to the entire sub-ontology. Again
these core concepts were what the two sub-ontologies
had in common. This part proved to be similar to the
initial step of the SMART agorithm which
recommends the creation of a list of the concepts
considered in each ontology [16], looking for concepts
with identicall names or with linguistically similar
names.

Product Artifact

is - of

Maturity 1 1.7 | Quality
Size O Type
Composition Age
Quallty Deliverable

1.+

e
Includes, 2 .
- + composed
+ formed of

b e

Age
Application fype

1 << is - origin- of >>
Generates

1.7 \Version

Contains

Figure 3. Products sub-ontology [22]

At this point we realized that, an automated tool
would have had difficulties in identifying how to map
the sub-ontologies as they used two different names
(system and product), and their core concepts used
different names too (again system and product).

From the three concepts in Ruiz et al. Product sub-
ontology (Figure 3), two were found in Dias et al.
System sub-ontology (Figure 2). These are the
“software system” maintained and its “artifacts’ (a
software system is composed of artifacts). It seems
clear to us that these two concepts are indeed core
concepts of a System sub-ontology and could be used
as a base to cultivate the entire sub-ontology. For this
reason, we applied the “merge-class’ operator, as
described in [16]: the two “artifact” concepts were

VI Jornadas Iberoamericanas de Ingenieria del Software e Ingenieria del Conocimiento
Lima Peru

103

104

merged in the new sub-ontology, and, the “system”
and “product” concepts were merged as a “software
product” concept. From this base, we expanded our
initial sub-ontology. We decided to include the
“version” concept present in one sub-ontology (Figure
3) and not the other (Figure 2), and the rest consisted
of deciding what concepts from the System sub-
ontology (Figure 2) would reach the merged sub-
ontology (lessimportant issues).

This is another point where an automated tool
would have been of little use since the commonalities
between the two sub-ontologies were very few (two
concepts) and most of the work was discussed between
the two groups to decide at what level of abstraction
we wanted to work and what concepts of the System
sub-ontology would be rejected or merged in the final
sub-ontology.

The resulting sub-ontology is presented in Figure 4.
We needed only one iteration (i.e. one round-trip:
proposal from one group and answer/comment from
the other) to agree on the core concepts of this first
sub-ontology. The remaining (minor) issues were
closed in another iteration (focused on the second sub-
ontology).

Software Product
]

ProcessDocument

WorkProduct

| SourceComponent || SupportDocument |

Figure 4. Merged Software Product sub-ontol ogy

After having solved the main problems of the first
sub-ontology, we continued. For the other sub-
ontologies, we did not have a one to one
correspondence between the two sources (one source
sub-ontology would map to two, or more, in the other
source), but having already defined a core sub-
ontology and its concepts helped in merging the rest,
because we had a common base to work from.

The next sub-ontology we considered was that of
maintenance activity. This seemed to be the next
logical sub-ontology to consider after that of system,
first because it is also central to the idea of software
maintenance, second because it is closely related to the
system sub-ontology, and third because the two source

VI Jor nadas Iberoamericanas de Ingenieria del So fiware e Ingenieria del Conocimiento
Lima, Peru

ontologies had a sub-ontology relating to the
maintenance process. This time, the two source
ontologies had more differences since Dias et al
consider only one such sub-ontology whereas Ruiz et
al. have two (see Figure 1). The idea of working
iteratively in this case is important because it helps
focus on a smaller part of the whole ontology. This is
where the process alows better control on the whole
project.

Existing tools are deficient in this regard since they
appear to consider either the entire source ontologies to
be merged (losing the focus we have just described) or
would work on two given sub-ontologies (as in our
first iteration), thus loosing some information since in
this case the mapping is from two sub-ontologies (Ruiz
et al.) toone (Diaset al.).

To merge the Process sub-ontologies, we again
started from core concepts which we defined to be the
“maintenance process’ and its “activities’.
Interestingly, the very activity of looking for core
concepts showed that if both source ontologies defined
the “activity” concept neither had thought above the
“process’ concept. We agreed that this was an
important concept to add. From these two concepts, we
progressively added related concepts (for example a
decomposition of the activities). This was more
difficult than with the first sub-ontologies as we had to
select concepts coming from both source ontologies, or
either of them, or reconcile differing views on
concepts. Things were even more difficult as we found
that some interesting concepts were actually members
of a fourth sub-ontology (e.g. the technology concept
in Dias et al's Skills sub-ontology). We needed two
iterations to settle the core of this sub-ontology, and
one more for the minor issues.

The fina sub-ontology to be merged is that of
Organization which includes concepts on the roles
needed to perform the activities, positions in the
organization, etc. It is similar to the second one in that
it consists of merging two sub-ontologies from one
source with one sub-ontology from the other. It is also
made more difficult by the fact that some concepts of
these sub-ontologies have already been merged in the
Process sub-ontology. Again, two iterations were
necessary to agree on the core issues. Finally one more
iteration was necessary to complete the work and solve
the minor issues. In total, we needed six iterations.

4. Lessons learned
We have drawn the following conclusions from this

merging experiment and how we dedt with the
difficultiesidentified in Section 3.2:

VI Jornadas Iberoamericanas de Ingenieria del Software e Ingenieria del Conocimiento

Lima Peru

Core elements: As one would expect, in most
cases the core elements (either sub-ontologies
or concepts) we identified were the things the
two source ontologies had in common. This is
actually an approach adopted by most merging
technologies. However, we found at least one
example of a core concept (Process sub-
ontology) that was not present in either source
ontologies.

Length: Some sub-ontologies required two
iterations before we reached an agreement on
the core issues and one more for the minor
ones. Each iteration in this model corresponds
to the analysis of a sub-ontology by one team,
and the analysis of the resulting proposal by the
other team (round-trip). Each of these analyses
by one team could require weeks depending on
the work load at that particular time. Typically,
one month or more could pass between one
group’s proposal and the answer to this
proposal. This was inevitable given the
communication medium we chose (e-mail) and
the geographical dispersion.

Rework: The long intervals between each
patticipation in the merging ultimately
increased our work load as the first thing a
team would have to do when commenting on a
proposal would be to re-analyze the entire
process to remind themselves of what had
adready been discussed, what had been
proposed (and why) and what argument had
been exchanged. In short, to reconstruct the
entire discussion up to that point. A tool to help
record and then reconstruct the discussion
would be agreat help in this sense.
Communication channel: An ontology captures
consensual knowledge in a domain. Reaching
this consensus implies sharing ideas,
confronting opinions, arguments and
counterarguments. This is an activity that
requires (a lot of) communication between the
participants. Geographica dispersion is a huge
obstacle to this communication. Because our
objective was to actually merge the ontologies,
we have not had time to research and develop a
methodology that would alleviate this
communication problem. Our method was a
simple transposition to e-mail of what could
have happened if we had been able to discuss
the problem “eye-to-eye”. This is definitely not
enough, although it does offer some advantages
aswill soon be discussed.

Iterative progress: Because the merging
spanned a long time frame, it was important to

have a structuring framework for discussion.
One does not conduct a slow, lengthy, e-mail
discussion in the same way as one would carry
out an “eye-to-eye” exchange. It was important
to have a clear sense of what we were doing at
any given point, where we were going and how
much was still needed to get there. This is one
of the benefits of the iterative approach we
used.

Incremental progress: Usually, as one team was
working on a piece of the ontology, the other
would simply wait (“idly”) for the next round
of discussion. We did not concurrently start
discussions on various sub-ontologies. This
would not fit the incremental approach we
chose. It is not clear whether this was a good
decision or not. However the iterative and
incremental approach allowed us to deal with
the risk of making a wrong decision at one
point that would imply re-working an entire
sub-ontology. It is impossible from our limited
experience to say if working concurrently on
two sub-ontologies would not have increased
such arisk.

Process formality: Although we presented
rather strict definitions of our process, its
iterations and how they happened, in redity
things are not so clear cut. For example we
defined one iteration as a round trip of
comments between the two groups. However,
the real unit of activity was one analysis by a
group (“half an iteration”). For example, a
group would start a new iteration (discussion of
the core issue for a sub-ontology) and at the
same time (in the same e-mail) it would close
the iteration of the preceding sub-ontology.
Asynchronous communication: E-mail
communication has the well known advantage
of being asynchronous. One does not need to
set appointments or wait for others. Given that
the two teams are in different time zones this
was a very good thing and proved useful.
Historical record: E-mail communication and
written communication in general also offers
the advantage of being easily archived. Thisis
important when one needs to go back to past
decisions and remember how they were arrived
at

5. Conclusions

Merging methodologies is useful to guide the
merging activity and to carry it out in a systematic and
ordered way. Some automatic tools have been

105

106

proposed with the goal of making that activity easier.
However, the merging process is very similar to
developing a new ontology [7] since it is necessary to
understand the source ontologies clearly, to decide the
level of granularity of the final ontology and to make a
lot of design decisions.

In this paper we have reported our experience in
merging two ontologies on software maintenance in
real life conditions. These conditions included:
geographical dispersion of the participants, semi-
formal definition of one ontology, two ontologies
which were organized differently with few concepts
clearly in common. In these conditions, we have found
the use of automated merging tools to be of little value
as most of the work consisted of discussion between
experts to define what concepts to keep from either
source ontology, what the exact definition of some
concepts was, or a what level of granularity we
wanted to work.

To carry out the merging, we defined an iterative
and incremental process where the ontologies are
merged iteratively by sub-ontologies and each iteration
consists of an incremental approach from some core
concepts to the entire sub-ontology.

We closed the paper with a discussion of our
experience, highlighting some benefits and drawbacks
of our approach.

6. References

[1] Becker-Kornstaedt, U., Webby, R.: A Comprehensive
Schema Integrating Software Process Modelling and
Software Measurement. . Fraunhofer IESE-Report N° 047.99
http://www.iese.fhg.de/Publications/|ese_reports/ Fraunhofer
IESE., (1999).

[2] Chalupsky, H.: OntoMorph: A Translation System for
Symbolic Knowledge. KR'00, USA (2002).

[3] Deridder, D.: A Concept-Oriented Approach to Support
Software Maintenance and Reuse Activities. Workshop on
Knowledge-Based Object-Oriented Software Engineering at
16th European Conference on Object-Oriented Programming
(ECOOP 2002), Méd aga Spain (2002).

[4] Dias, M.G., Anquetil, N., et al.: Organizing the
Knowledge Used in Software Maintenance. Journal of
Universal Computer Science, Vol. 9 (2003) 641-658.

[5] Doan, A., Madhavan, J., et al.: Learning to Map Between
Ontologies on the Semantic Web. Eleventh Intenational
WWW Conference, Hawaii USA (2002).

[6] Falbo, R.A., Menezes, C.S, et d.: Using Ontologies to
Improve Knowledge Integration in Software Engineering
Environments. 4th International Conference on Information
Systems Analysis and Synthesis (ISAS98), Oraldo Florida
(1998).

[71GOmez-Pérez, A., Ferndndez-Lépez, M., et a.:
Ontological Engineering. (2004).

VI Jor nadas Iberoamericanas de Ingenieria del So fiware e Ingenieria del Conocimiento
Lima, Peru

[8] IEEE: 1219 - Standard for Software Maintenance. |EEE -
Institute of Electrical and Electronics Engineers (1998).

[9] ISO/IEC: 15504-2: Information Technology - Software
Process Assessment - Part 2. A Reference Model for
Processes and Process Capability. (1998).
[10]ISO/IEC: FDIS 14764: Software
Maintenance (draft), Dec-1998. (1998).
[11]Jacobson, 1., Booch, G., Rumbaugh, J.: The Unified
Software Development Process. Addison-Wesley (1999)
[12]Kako-Mattsson, M.. Common Concept Apparatus
within Corrective Software Maintenance. |EEE International
Conference on Software Maintenance (ICSM'99), Oxford
UK (1999).

[13]Kajko-Mattsson, M.: Towards a Business Maintenance
Model. IEEE International Conference on Software
Maintenance (ICSM), Florence Italy (2001).

[14]Kitchenham, B.A., Travassos, G. H., et al.: Towards an
Ontology of Software Maintenance. Journa of Software
Maintenance: Research and Practice, Vol.11 (1999) 365-389
[15]McGuinness, D.L., Fikes, R., et a.: An Environment for
Merging and Testing Large Ontologies. (2000)

[16]Noy, N., Musen, M.: An Algorithm for Merging and
Aligning Ontologies. Automation and Tool Support.
Workshop on Ontology Management, WS-99-13. AAAI
Press, (1999)

[17]Noy, N., Musen, M.: PROMPT: Algotithm and Tools for
Automated Ontology Merging and Alignment. Workshop on
Ontologies and Information Sharing, Seattle Washington
(2000).

[18]Pfleeger, S.L.. Software Engineering: Theory and
Practice. Prentice-Hall (2001).

[19]Pigoski, T.M.: Practical Software Maintenance: Best
Practice for Managing Y our Investment. Jhon Wiley & Sons,
New York USA (1997).

[20]Polo, M., Piattini, M., et a.: MANTEMA: A Complete
Rigorous Methodology for Supporting Maintenance Based
on the ISO/IEC 12207 Standard. Third Euromicro
Conference on Software Maintenance and Reengineering
(CSMR'99). IEEE Computer Society, Amsterdam
Netherlands (1999).

[21]Pressman, R.S.: Software Engineering: A Practitioner's
Approach, 5th edition. (2001).

[22]Ruiz, F., Vizcaino, A., et a.: An Ontology for the
Management of Software Maintenance Projects.
International Journal of Software Engineering and
Knowledge Engineering, Vol.14 (2004) 323-349.

[23]Steve, G., Gangemi, A., et a.. Integrating Medical
Terminologies with ONIONS Methodology. Information
Modeling and Knowledge Bases V11I. 10S Press (1998).
[24]Stumme, G., Meadche, A: FCA-MERGE: Bottom-Up
Merging of Ontologies. Seventeenth International Joint
Conference on Artificia Intelligence (IJCAI 2001). Morgan
Kaufmann Publishers, Seattle, Washington (2001).

Engineering

