2009 IEEE Conference on Commerce and Enterprise Computing

CEC 2009

Table of Contents

Message from the CEC 2009 General and Program Co-Chairs	xii
CEC 2009 Organizing Committee	xiv
CEC 2009 Program Committee	XV
Message from the Business Process Modeling Notation	
(BPMN 2009) Workshop Chairs	xvii
BPMN 2009 Workshop Organizing Committee	xviii
Message from the DEECS 2009 Chairs	xix
DEECS 2009 Organizing Committee	XX
Message from the Real-Time SOA Chairs	xxi
Real-Time SOA Organizing Committee	xxii
Message from the 1st International Workshop on E-mails	
in E-commerce and Enterprise Context (E3C) Chairs	xxiii
E3C Workshop Organizing Committee	xxv

CEC 2009 CONFERENCE REGULAR PAPERS

Best Papers I: Economic Issues

Bidding Languages and Supplier Selection for Procurement Markets	
with Economies of Scale and Scope	
Stefan Schneider, Martin Bichler, Kemal Guler, and Mehmet Sayal	
Evaluation of Prioritization in Performance Models of DTP Systems	;
Christian Markl and Oliver Hühn	
Evolution of Cooperativeness in a Business Game Relying on Acquaintance	
Based Trustworthiness Assessment	ý
Sanat Kumar Bista, Keshav Dahal, Peter Cowling, and Bhadra Man Tuladhar	

Best Papers II: Technology

SARI-SQL: Event Query Language for Event Analysis	
Szabolcs Rozsnyai, Josef Schiefer, and Heinz Roth	
CHAOS: A Data Stream Analysis Architecture for Enterprise Applications	
Chetan Gupta, Song Wang, Ismail Ari, Ming Hao, Umeshwar Dayal, Abhay Mehta,	
Manish Marwah, and Ratnesh Sharma	
Modelling Flexible Processes with Business Objects	41
Guy Redding, Marlon Dumas, Arthur H. M. ter Hofstede, and Adrian Iordachescu	
Recommender and Contracting	
Collaborative Feature-Combination Recommender Exploiting Explicit	
and Implicit User Feedback	49
Markus Zanker and Markus Jessenitschnig	
Asymmetric Dominance- and Compromise Effects in the Financial Services	
Domain	57
Erich Christian Teppan and Alexander Felfernig	
Exception Handling in Electronic Contracting	65
Carlos Molina-Jimenez, Santosh Shrivastava, and Massimo Strano	
Auctions	
Optimal Multi-unit Combinatorial Auctions with Single Minded Bidders	74
Sujit Gujar and Y. Narahari	
A Business Intelligence Methodology for E-government Reverse Auctions	82
Rafael Souza and Adriano Pereira	
A Heuristic Approach for Capacity Control in Clouds	90
Arun Anandasivam, Stefan Buschek, and Rajkumar Buyya	
Business Process Management	
Guaranteeing Soundness of Configurable Process Variants in Provop	
Alena Hallerbach, Thomas Bauer, and Manfred Reichert	
Decision-Support for Optimizing Supply Chain Formation Based on CSET	
Model	
Yang Hang, Simon Fong, and Zhuang Yan	
Key Issues in EA-Implementation: Case Study of Two Finnish Government	
Agencies	
Ville Seppänen, Jukka Heikkilä, and Katja Liimatainen	

Semantics

Wikipedia-Graph Based Key Concept Extraction towards News Analysis	
Baoyao Zhou, Ping Luo, Yuhong Xiong, and Wei Liu	
Ontology-Driven Decision Support in Dynamic Supply-Chains	
Andrew Nelson, Dickens Nyabuti, John Collins, Wolfgang Ketter, and Maria Gini	
A Semantic Based Framework for Supporting Negotiation in Service Oriented	
Architectures	
Marco Comuzzi, Kyriakos Kritikos, and Pierluigi Plebani	
Services	
An Efficient Approach for Service Process Reconfiguration in SOA	
with End-to-End QoS Constraints	
Kwei-Jay Lin, Jing Zhang, and Yanlong Zhai	
Bridging the Gap between User Attributes and Service Policies with Attribute	
Mapping	
Davide Cerri and Francesco Corcoglioniti	
A Negotiation Protocol Description Language for Automated Service Level	
Agreement Negotiations	
Sebastian Hudert, Torsten Eymann, Heiko Ludwig, and Guido Wirtz	

CEC 2009 CONFERENCE SHORT PAPERS

Economic Issues

Nash Bargaining Based Ad Networks for Sponsored Search Auctions	
Ramakrishnan Kannan, Dinesh Garg, Karthik Subbian, and Y. Narahari	
Online Auctions: There Can Be Only One	
Charu C. Aggarwal and Philip S. Yu	
Approximately Efficient Iterative Mechanisms for Combinatorial Exchanges	
Shantanu Biswas and Y. Narahari	
Stability and Efficiency of Social Networks with Strategic, Resource	
Constrained Nodes	
Ramasuri Narayanam and Y. Narahari	
Business Services	
Service Value Networks	
Benjamin Blau, Jan Krämer, Tobias Conte, and Clemens van Dinther	
From e3-value to REA: Modeling Multi-party E-business Collaborations	

6		
Rainer Schuster and Thomas Motal		
Relation Based Service Networks for Rel	iable Service Selection	1
Yi Wang and Jian Yang		

Gap Analysis Methodology for Business Service Engineering Dinh Khoa Nguyen, Willem-Jan van den Heuvel, Mike P. Papazoglou,	215
Valeria de Castro, and Esperanza Marcos	
Management Issues	
The Factors Affecting Institutionalisation of Enterprise Architecture in	
the Organisation <i>Tiko Iyamu</i>	221
Management Framework for Business Integration Projects	
Thomas Keller and Thomas Marko	
Profitability Analysis of Workflow Management Systems	
Horst Gruber and Christian Huemer	
Compliance and Company Value: How Markets React to Reported Lapses	
in Corporate Governance	
Amy McDonough and Stefan Sackmann	
Business Issues	
Everyone Abandons - Eventually: Understanding the Online Shopping	
Experience	245
Karen Renaud, Tunde Cockshott, and Mario Hair	
A Business Model for Mobile Ad-Hoc Communities	252
Stefan Stieglitz, Christoph Fuchß, and Christoph Lattemann	
Customer Situations as a Clue to Information Needs	
Susanne Robra-Bissantz	
Introducing Zones to a Web Site: A Test Based Evaluation on Semantics,	
Content, and Business Goals	
Natascha Hoebel, Naveed Mushtaq, Clemens Schefels, Karsten Tolle,	
and Roberto V. Zicari	
Designing Social Commerce Experience in 3D Virtual World	
Zhi-Cong Fang and Hong Cai	
E-commerce Technologies	
DySCon: Dynamic Sharing Control for Distributed Team Collaboration	
in Networked Enterprises	
Ahmad Kamran Malik, Hong-Linh Truong, and Schahram Dustdar	
Process Mining of RFID-Based Supply Chains	
Kerstin Gerke, Alexander Claus, and Jan Mendling	
Introducing an Agile Method for Enterprise Mash-Up Component	
Development	
Wolfgang Ketter, Marko Banjanin, Rob Guikers, and Alfred Kayser	
SADP: Site Architecture Driven by Personalization	
Juliano Z. Blanco and Antonio Francisco do Prado	

Industry Track Papers

Evaluation of Workflow Management Systems	
Horst Gruber	
Web-Based Process Portals: Powering Business Process Management	
within Large Organisations	
Robert Strobl, Thomas Müllner, and Tobias Rausch	
Service Innovation in Spare Parts Logistics in the Business Aviation Industry	
R. Klueber, H. McCann, R. Wehrle, and T. Knopf	
Privacy Application Infrastructure: Confidential Data Masking	
B. Liver and K. Tice	
Case Study on Utilizing Mobile Applications in Industrial Field Service	
Markus Aleksy, Bernd Stieger, and Gerhard Vollmar	
A Generic User Modeling Component for Hybrid Recommendation Strategies	
Markus Jessenitschnig and Markus Zanker	

CEC 2009 WORKSHOP PAPERS

BPMN Workshop

Realising Dead Path Elimination in BPMN	
Matthias Weidlich, Alexander Grosskopf, and Alistair Barros	
Modeling and Validating BPMN Diagrams	
Michele Chinosi and Alberto Trombetta	
Time-BPMN	
Denis Gagné and André Trudel	
Extending BPMN with Submit/Response-Style User Interaction Modeling	
Dagmar Auer, Verena Geist, and Dirk Draheim	
Structural Aspects of Business Process Diagram Abstraction	
Sergey Smirnov	
Prediction Models for BPMN Usability and Maintainability	
Elvira Rolón, Laura Sánchez, Félix García, Francisco Ruiz, Mario Piattini,	
Danilo Caivano, and Giuseppe Visaggio	
A Simple Algorithm for Automatic Layout of BPMN Processes	
Ingo Kitzmann, Christoph König, Daniel Lübke, and Leif Singer	
An Interactive Layout Tool for BPMN	
Philip Effinger, Martin Siebenhaller, and Michael Kaufmann	
DEECS Workshop	
Business Rules for Concurrent E-commerce Transactions	407

Business Rules for Concurrent E-commerce Transaction	s40
Hendrik Decker	

Towards an Approach for Estimating Impact of Changes on Business	
Processes	415
Mohamed Boukhebouze, Youssef Amghar, Aïcha-Nabila Benharkat, and Zakaria Maamar	
Context-Aware Recommendation by Aggregating User Context	
Dongmin Shin, Jae-won Lee, Jongheum Yeon, and Sang-goo Lee	
An Electronic Economic Mechanism Based on Interpersonal Relationship	
RT-SOA Workshop	
Monitoring Appliances Sensor Data in Home Environment: Issues	
and Challanges	
Nazaraf Shah, Chen-Fang Tsai, and Kuo-Ming Chao	
Ontology-Based Service Composition Framework for Syndicating Building	
Intelligence	
Wei-Tek Tsai, Yann-Hang Lee, Avi Wiezel, Xin Sun, and Wu Li	
A System for Web-Based Interactive Real-Time Data Visualization	
and Analysis	
Tao Yu, Qiming Chen, Qinghu Li, Rui Liu, Weihong Wang, and Wei Liu	
A Framework for Real-Time Service-Oriented Architecture	460
Mark Panahi, Weiran Nie, and Kwei-Jay Lin	
E3C Workshop	
E-mail in Semantic Task Management	
Uwe V. Riss, Marlen Jurisch, and Viktor Kaufman	
Motivating Intelligent E-mail in Business: An Investigation into Current	
Trends for E-mail Processing and Communication Research	
Michal Laclavík and Diana Maynard	
Semanta - Supporting E-mail Workflows in Business Processes	
Simon Scerri, Brian Davis, and Siegfried Handschuh	
Community-Based Interoperability Utility for SMEs - An Introduction of	
the Commius Prototype	
Thomas Burkhart, Dirk Werth, and Peter Loos	
Web Services Challenges	
WSC-2009: A Quality of Service-Oriented Web Services Challenge	
Srividya Kona, Ajay Bansal, M. Brian Blake, Steffen Bleul, and Thomas Weise	
Optimal QoS-Aware Web Service Composition	491
Marco Aiello, Elie el Khoury, Alexander Lazovik, and Patrick Ratelband	
Semantic Web Service Composition Framework Based on Parallel Processing	
Peter Bartalos and Mária Bieliková	
Business Process Composition with QoS Optimization	
Jing Zhang, Weiran Nie, Mark Panahi, Yichin Chang, and Kwei-Jay Lin	

MOVE: A Generic Service Composition Framework for Service Oriented	
Architectures	
Albert Rainer and Jürgen Dorn	
QoS-Driven Web Service Composition Using Learning-Based Depth First	
Search	
Wonhong Nam, Hyunyoung Kil, and Jungjae Lee	
Large-Scale Network Decomposition and Mathematical Programming Based	
Web Service Composition	
Li Ying Cui, Soundar Kumara, John Jung-Woon Yoo, and Fatih Cavdur	
WSPR*: Web-Service Planner Augmented with A* Algorithm	
Seog-Chan Oh, Ju-Yeon Lee, Seon-Hwa Cheong, Soo-Min Lim, Min-Woo Kim,	
Sang-Seok Lee, Jin-Bum Park, Sang-Do Noh, and Mye M. Sohn	
Effective Pruning Algorithm for QoS-Aware Service Composition	
Zhenqiu Huang, Wei Jiang, Songlin Hu, and Zhiyong Liu	
A QoS-Driven Approach for Semantic Service Composition	
Yixin Yan, Bin Xu, Zhifeng Gu, and Sen Luo	
Author Index	

Prediction Models for BPMN Usability and Maintainability

Elvira Rolón Autonomous University of Tamaulipas University Centre Tampico-Madero S/N, 89336, Tampico, Tamps. México erolon@uat.edu.mx Laura Sánchez¹, Félix García¹, Francisco Ruiz^{1,2}, Mario Piattini¹ ¹Alarcos Research Group, University of Castilla-La Mancha Paseo de la Universidad N° 4, 13071 Ciudad Real, Spain {Laura.Sanchez, Felix.Garcia, Francisco.RuizG, Mario.Piattini}@uclm.es

²University of Cantabria, Department of Mathematics, Statistic and Computing Santander, Spain Danilo Caivano, Giuseppe Visaggio University of Bari, Department of Computer Science Via Orabona, 4 – 70125, Bari, Italy {caivano, visaggio}@di.uniba.it

Abstract

The measurement of a business process in the early stages of the lifecycle, such as the design and modelling stages, could reduce costs and effort in future maintenance tasks. In this paper we present a set of measures for assessing the structural complexity of business processes models at a conceptual level. The aim is to obtain useful information about process maintenance and to estimate the quality of the process model in the early stages. Empirical validation of the measures was carried out along with a linear regression analysis aimed at estimating process model quality in terms of modifiability and understandability.

Keywords :business process models; measurement; regression model;

1. Introduction

Measurement has a long tradition and is a fundamental discipline in any type of engineering. Engineers need to be skilled in estimation and measurement [1] which implies: a) understanding the activities and risks involved in a development process, b) predicting and controlling the activities involved, c) managing the risks, d) a reliable delivery, and e) proactive risk management in order to avoid crises.

The management of measurement and derived information makes it possible to learn from the past in order to improve performance and achieve better predictability over time. Measurement helps engineers to track and estimate effort, improve artefacts and processes, plan, set goals and to convey reasons for improvement [2]. Thus, one of the objectives of a measurement process is to collect quantitative indicators of entities, where an entity is an element to which it is possible to apply a measurement process and which is characterized by a series of attributes [3]. Measures are therefore applied to these attributes and entities, and objective information concerning the state of processes and products is eventually obtained. the indications of the Following Software Measurement Ontology [3] we choose the term 'measure' rather than 'metric'. In our case, measurable entities are business processes since they generate most of the cost of any business, so improving the efficiency in any organization generally necessitates improving its processes.

Business processes also strongly influence the quality of the product and customer satisfaction, both of which are of fundamental importance in the marketplace. Any well engineered business process is in which management establishes one the measurements of process performance, and influences process performance in a desired direction by using these measurements to control the process [4]. These measurements are essential in organizations which intend to attain a high level of maturity in their processes, so it is important to integrate measurement as a fundamental part of their business objectives in order to obtain more mature organizations [5].

In this work we present the empirical validation results of a set of measures defined to evaluate the structural complexity of BPMN models. The paper is organized as follows: section 2 presents related works. In sections 3, 4 and 5 the results of an empirical study and a linear regression analysis are described respectively. Our main objective is to identify those measures that may be useful in predicting different aspects of the understandability and modifiability of business process models at the time of carrying out future maintenance tasks of the models, thus making models easier to understand and to modify for all stakeholders.

2. Related Works

The interest in measurement for business processes has increased in recent years, particularly with regard to design measures in business process models. One reason for this might be that the scientific community is aware of the importance of carrying out these activities in the early stages of the process lifecycle to avoid errors, since eliminating them in later stages is more costly.

In 2001, the author of [6] adapted software complexity metrics to business processes, which were represented with graphs, since graphs are a general means of representation which do not have the restrictions that specific notations usually have. However, other authors use EPC or a simplification of Petri nets as the notation for their research. In [7] the author describes understandability and modifiability metrics as coupling and cohesion; these are software adapted metrics for business process models represented with a graph notation. The proposal of [8] also shows error probability metrics in business process models with EPC notation.

On the other hand, validity is also an important aspect of defining a measure to confirm utility, so these measures should be validated by following theoretical or empirical frameworks. In [11] the author describes the goodness measure for business process models, which is used to obtain the most adequate model extracted from a log file. This measure has not yet been validated, but this process is under way. A proposal concerning complexity measures for business process models is described in [12], and these are validated by following the Perry framework [13] and using experiments to obtain real data. Once the data are obtained they are evaluated with statistical correlation techniques to validate the initial hypothesis. The understandability measures of [14] are also validated, and are based on the idea of the mental effort involved in understanding the structural relationships between

elements in a business process model. This is an empirically validated measure using experiments, and the authors conclude that the lower the value of the measure, the lower the probability of finding errors in process models. The cognitive complexity of business process models was used to define the measure of [15], in which mental states are analyzed to understand models, i.e., to quantify the level of understandability or maintainability of business process models. Its validity has not yet been published. Another measure concerning understandability is described by [16], whose documentation shows different characteristics for understanding models. This measure is empirically validated with experimental techniques. A further validation technique is used in [17], specifically a case study technique. This proposal describes execution measures regarding the efficiency and effectiveness of business processes. The most recent proposals with regard to business process measures are described in [18] and [19], which in each case describe variability or uncertainty of the execution and the time of execution or costs of resources. Both measures have vet to be validated.

3. Empirical Validation of Measures for Business Process Models

In previous works [20] a set of measures for business process models (BPMs) represented in BPMN [21] was defined with the aim of evaluating the complexity of business processes by starting from the model which represents them at a conceptual level. These measures were placed in two categories: a) Base Measures, which consist principally of counting the process model's significant elements, and b) Derived Measures, defined by starting from the base measures. The latter allow us to discover the proportions that exist between different elements in the model. An advantage of these measures is their simplicity, which is considered as a desirable property in metrics [27] [30]. Moreover, we proposed a numerous set of measures to evaluate complexity. As suggested in [29] it is not realistic to measure complexity with a unique measure.

The usefulness of these measures was demonstrated with theoretical and empirical validation. Initially, these measures were theoretically validated according to the Briand et al. framework [22]. As a result, it was possible to group them according to the different properties of structural complexity they evaluate such as size, coupling and so on. These characteristics are related to internal quality. However, we believe that the structural properties of a business process model affect two characteristics of its external quality (according to ISO 9126): usability and maintainability, and therefore their subcharacteristics understandability and modifiability, respectively.

In order to validate the defined measures two families of experiments were carried out. The main objective was to corroborate that a correlation exists between the process models complexity and the understandability and modifiability, which allowed us to discover which of the measures defined could provide useful and objective information about the external quality of BPMs. The results obtained in the empirical validation of the first family are presented in [23]. These results were considered as preliminary, as they were not conclusive enough, given the high number of measures initially proposed and evaluated (60 in total). Anyway, these results were very useful in the second family of experiments planning, where those measures which were considered to be most meaningful with regard to the structural complexity of BPMs in the first family were selected. This was done by carrying out both correlation and a principal components analysis which made it possible to select and group the proposed measures according to their relevance. With regard to the Base Measures, three main groups were created with a total of 18 measures (Table 1): Group A included measures involving control-flows and gateways. Group B was composed of measures involving pools, lanes, message-flows and data objects. Group C included measures involving activities, events and sequence flows. A set of 11 Derived Measures was also identified.

In order to validate the 29 selected measures, a second family composed of five experiments was carried out, in which the understandability and modifiability aspects were investigated. The difference between the first and the second family was that in the latter, separate experiments were designed in order to investigate each aspect. Five experiments were planned in the second family: the first three were carried out to analyze the understandability (und) of the models; modifiability (mod) was evaluated in the last two experiments. The experimental plan for the experiments in the second family was the same as that used for the first family. However, only the main characteristics of the second family experimental plan are described in this paper owing to space limitation. Reader is referred to [24] for a detailed description of the design and the material used in the second family of experiments.

	Base N	leasures	Derived Measures			
	NEDDB	Number of Exclusive Data Based Decision	TNG	Total Number of Gateways TNG = NEDDB+NEDEB+NID+NCD+NPF		
	NEDEB	Number of Exclusive Event Based Decision		Concentration local bacterian Destriction of		
Group A: Control-Flow	NID	Number of Inclusive Decision	CLP	Connectivity level between Participants $CLP = \frac{NMF}{NP}$		
Gateways	NCD	Number of Complex Decision		INF		
	NPF	Number of Parallel Forking		Proportion of Pools/Lanes and Activities of the Model		
	NSFG	Number of Sequence Flows from Gateways	PLT	$\frac{PLT}{TNT} = \frac{NL}{TNT}$		
Group B: Bools/Lapos	NP	Number of Pools	TNDO	Total Number of Data Objects of the Model TNDO = NDOIn + NDOOut		
F 0015/ Lanes	NL	Number of Lanes		Proportion of Data Objects as incoming products and Total Data Objects of		
Messages	NMF	Number of Message Flows between Participants	PDOPIn	the model <i>PDOPIn</i> = <u>NDOIn</u> <i>TNDO</i>		
Data Obianta	NDOIn	Number of Data Objects of Input to activities	PDOPOut	Proportion of Data Objects as Outgoing Products and total Data Objects $PDOPOut = \frac{NDOOut}{TNDO}$		
Data Objects	NDOOut	Number of Data Objects of Output to activities	PDOTOut	Proportion of Data Objects as Outgoing Product of Activities of the model $PDOTOut = \frac{NDOOut}{TNT}$		
	TNSE	Total Number of Start Events	TNE	Total Number of Events of the Model		
Group C:	TNIE	Total Number of Intermediate Events	INE	TNE = NTSE + NTIE + TNEE		
Events	TNEE	Total Number of End Events	TNA	Total Number of Activities TNA = TNT + TNCS		
	NSFE	Number of Sequence Flows from events		Connectivity Level between Activities		
	TNT	Total Number of Tasks	CLA	$CLA = \underline{TNA}$		
Activities	TNCS	Total Number of Collapsed Subprocess		NSFA		
	NSFA	Number of Sequence Flows between Activities	TNSF	Total Number of Sequence Flows of the model TNSF = NSFG + NSFE + NSFA		

Table 1. Structural complexity measures for business process models

Subjects. The participant subjects in each experiment of the second family were students from differents universities (Table 2).

Exp.	Group	N⁰ Sub.	Profiles
1	UCLM	22	PhD students and students
(Und)	(Spain)	22	in Computer Engineering.
2	UCLM	40	Students of 4 th year in
(Und)	(Spain)	40	Computer Engineering.
3	UCLM	0	PhD students and students
(Und)	(Spain)	9	in Computer Engineering.
4	University of	20	Students in Computer
(Mod)	Bari (Italy)	29	Engineering
5	UAT –	15	Master's students in
(Mod)	(Mexico)	15	Information Systems.

Table 2. Groups of participants in the second family

Material. The experimental material used to analyze understandability consisted of fifteen BPMN models with different structural characteristics and degrees of complexity. A questionnaire with three questions related to the understandability of the process model was produced for each model. In order to analyze the modifiability, twelve BPMN models and a questionnaire with two modification requirements for each model were provided. Moreover, in all cases the experimental subjects answered a question regarding the perceived complexity of the process model. The answers were given on a subjective base.

The hypotheses proposed with regard to the research objective in the first three experiments were:

- Null hypothesis, H_{0m}: There is no significant correlation between the structural complexity measures and understandability.
- Alternative hypothesis, H_{1m}: There is a significant correlation between the structural complexity measures and understandability.

The hypotheses in the last two experiments were:

- Null hypothesis, H0m: There is no significant correlation between the structural complexity measures and modifiability.
- Alternative hypothesis, H1m: There is a significant correlation between the structural complexity measures and modifiability.

The experiment variables defined were:

- Independent variables: the 29 structural complexity measures shown in Table 1.
- Dependent variables: business process model understandability and modifiability as defined in Table 3.

Table 3. Dependent variables

Dependent variable	Measures of the dependent variables
	Answer Time: Time required by the subjects to solve the understandability tasks
The ease with which the model	Success rate : Number of correct answers related to understandability
can be understood	Efficiency: the ratio between the number of correct answers and the time
by the user.	Subjective evaluation: The subjective rating with regard to the complexity of required tasks
Modifiability: The ease with	Answer Time : Time required by the subjects to solve the modifiability tasks.
which the model can be modified, by	Success rate : Number of correct answers related to modifiability
possible errors, by requesting a	Efficiency: the ratio between the number of correct answers and the time
specific modification or by new requirements.	Subjective evaluation: The subjective rating with regard to the complexity of required tasks

4. Data Analysis and Interpretation

This section shows the results obtained from the empirical validation carried out for the experiments in the second family. In order to validate the results, a summary with the descriptive data was initially made. This summary included both the values of the 29 measures for each business process model, and the mean values of the marks given by the subjects for the sub-characteristics analysed and the average time of understandability and modifiability. Only the average time observed for understandability and modifiability is provided here for reasons of space (Table 4). The highlighted data in the table indicate the process models in which the subjects spent more effort when carrying out the requested tasks. After data summary was carried out, and in order to prove whether the distribution of the data obtained was normal, the Kolmogorov-Smirnov test (K-S test) [28] was applied.

Table 4. Values of answer times

D	Second Family							
Process	Underst	tandabilit	Modifiability Times					
model	Exp1	Exp2	Exp3	Exp4	Exp5			
1	135	137	178	308	137			
2	137	124	137	331	124			
3	238	245	331	253	245			
4	135	137	205					
5	52	53	63	181	53			
6	120	122	163					
7	102	114	142	242	114			
8	101	96	108	180	96			
9	92	97	159	294	97			
10	56	53	57	171	53			
11	123	126	178					
12	94	97	122	144	97			
13	174	161	262	312	161			
14	111	112	192	184	112			
15	49	53	116	162	53			

As a result of this it was obtained that the distribution was not normal, and we therefore decided to use a non-parametrical statistical test such as the Spearman correlation coefficient with a level of significance of $\alpha = 0.05$ which indicates the probability of rejecting the null hypothesis when it is certain (type I error). That is to say, a confidence level of 95% exists.

The Spearman correlation coefficient [31] was used to separately correlate each of the 29 structural complexity measures (Table 1) with the dependent variables as regards each of the aspects evaluated in the descriptive analysis (Table 3). Tables 5 and 6 shows the results obtained from the correlation analysis.

 Table 5. Results of correlation analysis for understandability

					nuers	lanuau	inty					
Moasuro	Answer Times			Corr	ect Ans	wers	E	fficienc	:y	Subj. Evaluation		
Weasure	Exp-1	Exp-2	Exp-3	Exp-1	Exp-2	Exp-3	Exp-1	Exp-2	Exp-3	Exp-1	Exp-2	Exp-3
NEDDB	✓	✓	1		✓		1	1	✓	1	1	✓
NEDEB	1	1	1		1		1	1	1		1	<
NID	1	1	1		1		>	1	1		1	1
NCD	1	1	1		1		•	1	1	1	1	1
NPF	1	1	1		1		1	1	1		1	1
NSFG	1	*	1		1		1	>	1	1	1	<
TNG	1	1	1		1		1	1	1	1	1	1
NP	1	1	1	1	1		1	1	1	1	1	1
NL		1	1		1			1	1		1	1
NMF	1			1	1		>			>	1	1
NDOIn		1	1		1			1	1		1	1
NDOOut		1	1					1	1		1	<
CLP		1	1	1	1	1		1	1	*	1	1
PLT		*	1		1			>	1		1	<
TNDO		1	1		<	1		<	1		1	<
PDOPIn		1	1		1			1	1		1	1
PDOPOut	1	1	1		1		>	1	1		1	1
PDOTOut		*	1		*			•	*		1	<
TNSE		1	1		1			1	1	1	1	1
TNIE		1	1		1			1	1		1	1
TNEE	1			1	1		>			>	1	1
NSFE		*	1					1	1		1	<
TNT	1			1			1			1		
TNCS		*	1		1			>	1		1	1
NSFA	v			1			1			1	1	 Image: A set of the set of the
TNE	1	1	1	1	~		1	1	1	1	1	1
TNA	1	1	1	1	1		1	1	1	1	1	1
CLA						 Image: A set of the set of the						
TNSF	1	1	1	1	~		1	1	1	1	1	1

The measures for each aspect related to the dependent variable indicate, as a result of the analysis carried out, that there is a correlation with a level of significance greater than 0.05 between the structural complexity measures, Answer Time and the Correct Answers sub-characteristics of understandability (Table 5). Thus the null hypothesis can be rejected.

The analysis concerning the Efficiency and Subjective Evaluation also indicate a significant correlation between all the structural complexity measures and Understandability, except in the CLA measure.

Table 6 shows the results obtained with regard to the correlations between the measures and Modifiability. In particular, with regard to the fourth experiment, the results show a widespread correlation, while in the fifth experiment only a small number of measures (NEDDB, NEDEB, NID, NSFG, TNG and PDOTOut) are correlated with Modifiability sub-characteristics.

Table 6. Results of correlation analysis for modifiability

Modifiability								
Maggura	Answe	r Times	Correct Answers		Effici	iency	Sub. Evaluation	
weasure	Exp-4	Exp-5	Exp-4	Exp-5	Exp-4	Exp-5	Exp-4	Exp-5
NEDDB	✓	✓			✓		1	✓
NEDEB	1	1			1		1	
NID	1	✓			1		1	
NCD	1				1		1	
NPF	1				1		1	
NSFG	1	✓			1		1	~
TNG	1	1			1		1	~
NP								
NL	1		1		1		1	
NMF								
NDOIn								
NDOOut	1				~		1	✓
CLP								
PLT	~		✓		~		1	
TNDO					~		1	
PDOPIn				✓				
PDOPOut	~	1			~		1	✓
PDOTOut			✓		~		1	
TNSE	✓		 ✓ 		1		1	
TNIE	~		✓					
TNEE							1	
NSFE								
TNT	1				1			✓
TNCS			✓					
NSFA	✓				✓			✓
TNE	~							
TNA	✓				✓			✓
CLA	~		✓		1		1	
TNSF	✓				✓		✓	✓

These measures refer to sequence flows and decision nodes. The difference in the results between experiments can be explained by the differences in the sample size (about 50%). Moreover, the measures validated in both experiments may be useful for carrying out improvements or for choosing functional models, and thus simplifying the models' modifiability tasks.

5. Regression Analysis

Once the correlation analysis had been carried out, the following step consisted of determining the existing relation between the variables. In order to obtain the functional models that allow us to carry out predictions with regard to the understandability and modifiability of BPMs, we carried out a Principal Component Analysis (PCA) to detect measures that could be related to one another when measuring a common aspect of the structural complexity of BPMs. PCA is a useful statistical technique which supports the reduction of a complex data set to a lower dimension [32].

As a result, for both dependent variables (understandability and modifiability) the factorial analysis identified a set of 17 measures from a total of 29 independent variables. In particular, for Understandability, the set of 17 variables was obtained from 6 main components which explain 91.59% of the total variance, while for Modifiability, the 6 components identified explain 93.91% of the variance. The results are presented in Table 7.

 Table 7. Summary of PCA results – family 2.

Dependent Variable	Independents Variables (Measures)	% of Accumulated Variance
Understandability	NEDDB, NCD, NPF, NSFG, TNG, NL, NMF, NDOIn, NDOOut, CLP, TNDO, PDOPOut, PDOTOut, TNSF, NSFE, TNE y CLA	91,59 %
Modifiability	NEDEB, NIC, NCD, NSFG, TNG, NL, NMF, NDOIn, NDOOut, CLP, TNDO, PDOTOut, TNIE, TNEE, NSFA, TNA y CLA.	93,91 %

We next used a multiple linear regression analysis to analyze the relationship between the dependent and independent variables, i.e. the relation between Understandability and Modifiability and the set of identified measures by developing a linear equation with predictive aims.

5.1 Building a Regression Model

We first took into account the results obtained from the Principal Component Analysis carried out in order to select the independent variables with high loadings in the rotated components. We then estimated models for each dependent variable by following the stepwise forward selection of the independent variable. The criterion used to select the models was simple: the lower the p-value of the F-test, the better the goodness of fit (\mathbf{R}^2) , where F-test is used to demonstrate hypotheses [33] and goodness of fit is a coefficient of determination to provide a measure of how well future outcomes are likely to be predicted by the model [34]. When building the regression equation, 80% of the data collected in the empirical study were used with regard to the following three dependent variables related to Modifiability and Understandability: the Answer Times, number of Correct Answers and Efficiency. Table 8, Table 9 and Table 10 show the obtained equations.

After building the regression models, the remaining 20% of the collected data was used to validate the precision of the model. Two criteria widely used in Software Engineering to evaluate prediction models are: 1) Mean Magnitude of Relative Error (MMRE) and 2) the Prediction Level ($Pred_n$), which represents the proportion of the foretold values with an MRE smaller or equal to a specified value (generally 0.25 or 0,30) [25]. The MMRE and Pred (n) measures are used to select the best model from two or more alternative models. The model with the lowest MMRE or \bullet 0,25 and/or Pred (0,25) \bullet 0,75 or Pred (0,30) \bullet 0,70 is deemed to be the best [26]. Table 8, Table 9 and Table 10 show the obtained values of MMRE and Pred (n).

In Table 8, although the resulting models are not within the desired rank, they obtain values near these intervals. In particular, given the values of MMRE and Pred, the best predictive linear model for the Understandability time is that obtained from the data of experiment 1.

Table 8. Linear regression analysis - times.

Exp.	Regression Models for Times	MMRE	Pred (0,25)	Pred (0,30)
Exp-1 (Und)	40,622343-0,205153*TNSF+ 9,562413*TNE-8,387718*NSFE+ 5,411965*TNG+1,973189*NMF	0,27	0,60	0,68
Exp-2 (Und)	48,104707+0,012743*TNSF+ 3,836635*NMF+8,588339*TNG- 10,555917*NEDDB+3,228044*TNE	0,35	0,49	0,58
Exp-3 (Und)	47,673868+1,647713*TNSF+ 7,014526*TNE	0,32	0,47	0,53
Exp-4 (Mod)	158,073512+3,467248*NSFG+ 31,664625*NL-7,905191*NMF+ 3,379862*TNA	0,85	0,26	0,29
Exp-5 (Mod)	All the variables were eliminated			

This model can be used to predict Understandability based on the total number of sequence flows (TNSF), the total number of events (TNE), the number of sequence flows coming from an event (NSFE), the total number of gateways (TNG), the number of message flows (NMF) and the number of exclusive nodes data based (NEDDB) of a business process model. Analogously, we can predict the Modifiability times starting from: the number of lanes (NL), number of message flows (NMF) and the total number of activities (TNA) of a business process model.

 Table 9. Linear regression analysis – correct answers.

Exp.	Regression Models for Correct Answers	MMRE	Pred (0,25)	Pred (0,30)
Exp-1 (Und)	2,968785-0,078781*CLP	0,15	0,85	0,89
Exp-2 (Und)	2,922682+0,003581*TNSF- 0,026920*NMF+0,062145*NL- 0,012397*NSFG	0,13	0,82	0,85
Exp-3 (Und)	All the variables were eliminated			
Exp-4 (Mod)	0,774070-0,244445*NL+ 0,962727*CLA	0,26	0,72	0,72
Exp-5 (Mod)	All the variables were eliminated			

Table 9 shows that for both Understandability and Modifiability, the obtained models are very good predictive models. According to the Understandability regression models, if we know the connectivity level between pools (CLP), the total number of sequence flows (TNSF), the number of sequence flows coming from a gateway (NSFG) and the number of lanes (NL) of a business process model, we can predict the number of Correct Answers. As regards Modifiability, if we know the number of lanes (NL) and the connectivity level between activities (CLA) of a business process model, we can predict the number of Correct Answers in the modifiability tasks.

Finally, Table 10 shows the regression models for Efficiency with regard to Understandability and Modifiability. In general, the regression models do not seem to be very good since they are very distant from the rank of desired values, with the exception of the prediction model of Experiment 2.

Table '	10.	Linear	rearession	analysis	s - efficiency.
		Lincal	10910001011	anaryon	<i>s</i> onnonono <i>y</i> .

Exp.	Regression Models for Efficiency	MMRE	Pred (0,25)	Pred (0,30)
Exp-1 (Und)	0,060523-0,000381*TNSF- 0,009979*NDOOut- 0,003511*CLP+0,004177*TNDO	0,43	0,43	0,51
Exp-2 (Und)	0,063530-0,000431*TNSF- 0,008013*CLP-0,008838* NDOOut+0,005739*NDOIn- 0,003917*NSFE+0,001941*NMF +0,003726*NL+0,001604*TNE	0,33	0,48	0,58
Exp-3 (Und)	0,058983-0,000598*TNSF- 0,002226*NDOOut	0,62	0,27	0,33
Exp-4 (Und)	0,003386-0,000222*NSFG- 0,002153*NL+0,014281*CLA+ 0,00064*CLP	0,62	0,25	0,25
Exp-5 (Und)	All the variables were eliminated			

Therefore, if we know the total number of sequence flows (TNSF), the number of data objects of output (NDOOut), the connectivity level between participants (CLP), the total number of data objects (TNDO), the number of data objects of input (NDOIn), the number of sequence flows coming from an event (NSFE), the number of message flows (NMF), the number of lanes (NL) and the total number of events (TNE) of a business process model, we can predict the Efficiency for Understandability.

Finally, for Modifiability, we must know the number of sequence flows coming from a gateway (NSFG), the number of lanes (NL), the connectivity level between activities (CLA) and the connectivity level between participants (CLP).

6. Conclusions

As a result of carrying out a correlation and a multiple linear regression analysis from the data collected in a family of experiments, it has been possible to identify a reduced group of measures that may be useful in predicting aspects such as Answer Times, Correct Answers and Efficiency when evaluating the Understandability and Modifiability of business process models expressed with BPMN. Of the 29 measures analyzed, and after carrying out a correlation and a principal components analysis of the variables, we know that 12 of the measures (TNSF, TNE, NSFE, TNG, NMF, NEDDB, CLP, NL, NSFG, NDOOut, TNDO, NDOIn and NSFE) are extremely useful for predicting the three aspects of Understandability of a business process model.

With regard to Modifiability, only 6 measures (NSFG, NL, NMF, TNA, CLA and CLP) were identified as good predicting variables. By crossing the data obtained we can see that the measures NSFG, NL, NMF and CLP can be considered as good predictors for both dependent variables.

The regression models obtained represent a very good guideline for defining understandable and modifiable processes or for predicting such characteristics in those which already exist. They are also useful for guiding process improvement initiatives.

Future works will be focused on refining the regression models built by carrying out new experiments and building indicators from the validated measures by means of the definition of decision criteria.

Acknowledgments. This work has been partially financed by the INGENIO Project (Junta de Comunidades de Castilla-La Mancha, Consejería de Educación y Ciencia, PAC 08-0154-9262); ALTAMIRA (Junta de Comunidades de Castilla-La Mancha, Fondo Social Europeo, PII2I09-0106-2463) and ESFINGE Project (Ministerio de Educación y Ciencia, Dirección General de Investigación/Fondos Europeos de Desarrollo Regional (FEDER), TIN2006-15175-C05-05.

References

[1] Laird, L.M. and Brennan, M.C. Software Measurement and Estimation: A Practical Approach. Wiley-IEEE Computer Society Press: 280 pp. (2006).

[2] Park, R.E., Goethert, W.B., and Florac, W.A. Goal-Driven Software Measurement, A Guidebook, (1996), Software Engineering Institute, Carnegie Mellon University Pittsburgh, P.A.

[3] Garcia, F., Bertoa, M.F., Calero, C., et al. Towards a Consistent Terminology for Software Measurement. Information and Software Technology. 48(8): 631-644. (2006).

[4] Powell, S.G., Schwaninger, M., and Trimble, C. Measurement and Control of Business Processes. Systems Dynamics Review. 17(1): 63-91. (2001).

[5] Sanchez, L., Delgado, A., Ruiz, F., and García, F. Measurement and maturity of business process, in Handbook of Research on Business process Modeling, J. Cardoso and W.M.P. van der Aalst, Editors. IGI Global.(2009).

[6] Latva-Koivisto, A.M. Finding a complexity measure for business process models, Research Report, (2001), Systems Analysis Laboratory, Helsinki University of Technology [7] Vanderfeesten, I., Reijers, H.A., and van der Aalst, W.M.P. Evaluating wokflow process designs using cohesion and coupling metrics. Computers in Industry, Science Direct-Elsevier. 59: 420-437. (2007).

[8] Mendling, J. and Neumann, G. Error Metrics for Business Process Models. 19th Internationa Conference on Advanced Information Systems Engineering (CAISE'07). Trondheim, Norway(2007), 53-56

[9] Cardoso, J. Complexity analysis of BPEL Web processes, in Software Process: Improvement and Practice. John Wiley & Sons, Ltd. pp 35-49.(2007).

[10] Petre, M. Why looking is not always seeing: redership skills and graphical programming. ACM. 38: 33-44. (1995).

[11] Huang, Z. and Kumar, A. New Quality Metrics for Evaluating Process Models. 4th International Workshop on Business Process Intelligence (BPI'08) at 6th International Conference on Business Process Management (BPM'08). Milan, Italy(2008),

[12] Cardoso, J. Process control-flow complexity metric: An empirical validation. IEEE International Conference on Service Computing (SCC'06). Chicago, USA: IEEE Computer Society. September 18-22, (2006),

[13] Perry, D., Porte, A., and Votta, L. Empirical Studies of Software Engineering: A Roadmap. Future of Software Engineering: 345-355. (2000).

[14] Vanderfeesten, I., Reijers, H.A., Mendling, J., et al. On a Quest for Good Process Models: The Cross-Connectivity Metric. 20th International Conference on Advanced Information Systems Engineeing (CAISE 2008): Springer Verlag, Berlin(2008), 480-494

[15] Gruhn, V. and Laue, R. Adopting the Cognitive Complexity Measure for Business Process Models. Proceedings of 5th IEEE International Conference on Cognitive Informatics (ICCI'06). Beijing, China. July 17-19,, (2006), ISBN 1-4244-475-4. 236-241

[16] Mendling, J., Reijers, H.A., and Cardoso, J. What Makes Process Models Understandable? International Conference on Business Process Management (BPM 2007): Lecture Notes in Computer Science, Springer-Verlag(2007), 48-63

[17] Aversano, L., Bodhuin, T., Cantone, G., and Tortorella, M. A Framework for Measuring Business Processes based on GQM. Proceedings of the 37th Hawaii International Conference on Systems Sciences (HICSS'04)(2004),

[18] Jung, J.-Y. Measuring Entropy in Business Process Models. 3rd International Conference on Innovative Computing Information and Control (ICICIC'08). Dalian, China: IEEE(2008), ISBN: 978-0-7695-3161-8. 246-249

[19] Korherr, B. and Beate, L. Extending the EPC with Performance Measures. ACM Symposium on Applied Computing, TRack on Organizational Engineering. Seoul, Korea: ACM New York, N.Y., USA(2007), ISBN: 1-59593-480-4. pp 1265-1266

[20] Rolón, E., Ruiz, F., Garcia, F., and Piattini, M. Applying Software Metrics to evaluate Business Process Models. CLEI-Electronic Journal. Vol. 9(1, Paper 5). (2006).

[21] OMG. Business Process Modeling Notation (BPMN) Specification, February 2006. (2006), Object Management Group

[22] Briand, L., Morasca, S., and Basili, V. Property-Based Software Engineering Measurement. IEEE Transactions on Software Engineering. 22(1): 68-86. (1996).

[23] Rolón, E., Garcia, F., Ruiz, F., et al. Evaluation of BPMN Models Quality: a Family of Experiments. 3rd International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE'08). Funchal, Madeira. 4-7 May, (2008), 978-989-8111-28-9. 56-63

[24] http://alarcos.inf-cr.uclm.es/bpmnexperiments/

[25] Briand, L. and Wieczorek, I. Resource Modeling in Software Engineering. Enciclopedia of Software Engineering, Second edition ed, ed. J. Marciniak: Wiley.(2002).

[26] Conte, S.D., Dunsmore, H.E., and Shen, V.Y. Software Engineering Metrics and Models, ed. Benjamin/Cummings. California: Menlo Park.(1986).

[27] Stevens, D.F. Attributes of Good Measures. The Software Practitioner. Wiley.(2002), 11-13.

[28] Lilliefors, H.W. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association, vol.62, No.318 (1967), 399-402.

[29] Fenton, N. Software Measurement: a Necessary Scientific Basis. IEEE Transactios on Software Engineering. 20:199-206. (1994).

[30] Fenton, N. y Neil, M. (2000). Software Metrics: a Roadmap. Future of Software Engineering, Ed. Anthony Finkelstein, ACM, pp. 359-370. (2000).

[31] Spearman, C., The proof and Measurment of association between two things. American Journal of Psychology, (1904). 15: p. 72-101.

[32] Jolliffe, I.T. Principal Component Analysis. Springer Series in Statistics. (2002).

[33] Fisher, F.M. Test of equality between Sets of Coefficient in Two Linear Regressions: an Expository Note. Econometric. (1970).

[34] N. Nagelkerke, "A Note on a General Definition of the Coefficient of Determination," Biometrika, vol. 78, no. 3, pp. 691-692.(1991)