TR R e S

Page 1 of 1

GREGORIA ROMERO GRANDE

De: GREGORIA ROMERO GRANDE
Enviado el: jueves, 10 de septiembre de 2009 9:37
FPara: Aurora Vizcaino Barcelo

Asunto: RV un favor

Datos adjuntos: CSCWD09-3485-CWS_Rpalacic_etal[FinalPaper].pdf: -
CSIE0S_942_PiD796197_rpalacio_etal.pdf

Agrora,
‘Negcésito también las paginas‘de portada 'y contraportada, la del Copywrite y el indice, puedes localizarlas por
fawor?.

Gracias,

6oyi Romero Grande

UCLM - EST - Grupo ALARCOS

P de la Universidad, 4, 13071 Ciudad Real

TIF.: 926 295 300 Fax: 926 295 354, ext.: 3747
e-rnail: Gregoria.Romero@ucim.es

De: Aurora Vizcaino Barcelo [mailto:Aurora.Vizcaino@uclm.es]
Enviado el: martes, 01 de septiembre de 2009 14:46

Para: GREGORIA ROMERO GRANDE

Asunto: Re: un favor

Goyi; te'mando dos articulos con sus referencias para afiadir a la Alarnet. Gracias:
Aurora)

> Ramon R. Palacio, Alberto L. Moran, Victor M. Gonzélez, Aurora Vizcaino, / "Providing
Support for Starting Collaboration in Distributed Software Development: A Multi-agent
Approach,"/ csie, vol. 7, pp.397-401, 2009 WRI World Congress on Computer Science and
Information Engineering, 2009. Press ISBN: 978-0-7695-3507-4. Los Angeles, USA,
March 31 - April 2, 2009.

>

>

> Ramon R. Palacio, Alberto L. Moran, Victor M. Gonzalez, Aurora Vizcaino,
"/Col//laborative Working Spheres as support for starting collaboration in distributed
software development/,” cscwd, pp.636-641, 2009 13th International Conference on

Computer Supported Cooperative Work in Design, 2009. Press ISBN: 978-1-4244-3534-0.
Santtago, Chile April 22-April 24

Se certifico que el correo entrante no contiene virus.
Comprobada por AVG - www.avg.es

Version: 8.5.409 / Base de datos de virus: 270.13.76/2342 - Fecha de la version: 09/02/09 18:03:00

10/9/2009

S

Providing Support for Starting Collaboration in Distributed Software
Development: A Multi-Agent Approach

Ramén R, Pa]acio', Alberto L. Morainz, Victor M. Gonzélez3, Aurora Vizcaino®
! Facultad de Ingenieria Ensenada, UABC
? Facultad de Ciencias, UABC
' Manchester Business School, University of Manchester
* Alarcos Research Group, University of Castilla-La Mancha
{rpalacio, alberto_moran}@uabc.mx, vmgonz@manchester.ac.uk, Aurora.Vizcaino@uclm.es

Abstract

Developing a system to provide support for
distributed software developers (DSD} to get into
collaboration is very complicated. On the first hand, it
is necessary to know the characteristics of their daily
work activities. On the other hand, technical aspects
must be considered, such as obtaining information on
the context and on the data flow of their activities. This
requires information from the individual and group
work environment. Therefore, we propose a model to
help in the development of this type of system. Firstly,
owr work aims at modeling the information flow of
DSD workers based on a literature survey and on our
own experience. Secondly, we describe a projected
implementation scenario based on the multi-agent
proposed system.

1. Introduction

The organizations that are dedicated to software
development are facing an emerging paradigm shift
towards the distribution of processes and development
teams. This change is due, among other things, to the
desire to exploit the broader working day schedules, to
benefit from the distribution of resources, lower costs
and be demographically closer to the target consumer,
However, there are also negative aspects such as
increased risk of problems with communication [1] [8].

This new development paradigm poses several
challenges for software engineering. Among others: the
need for new techniques or extensions of existing ones,
to support the inclusion of third-party services; new
processes, mechanisms and tools to deal with the fact
that the development teams (e.g. requirement analysis,
design, management, etc.) are geographicaily
distributed. This has resulted in that some
organizations have had to alter the way they conduct
their processes. They were used to traditional software

development practices, and required to gather in one
place all those involved in these processes such as
customers, users, developers, testers, project managers,
etc.

This new development paradigm that allows that
those involved in the process be distributed in remote
sites, is known as Distributed Sofiware Development
(DSD) [1]. There are a number of characteristics that
define scenarios for DSD. One of these is the distance
between individual members or teams, which can vary
from a few meters (when the teams working on
separate but adjacent buildings) up to tens, hundreds or
thousands of kilometers {(when they are in different
cities). A special case of DSD is where the distances
are among cities from different countries, even
continents (global software development or GSD) [1].

As a result, people who are not co-located search
for ways to be in contact with their colleagues in an
informal and rapid way (e.g. to ask for clarification or
help, to get others’ point of view, etc.) [16], similarly
as when they are co-located. The phone and instant
messaging tools are typical examples of technologies
that are used to try to solve these problems. However,
even when these tools are easy to use, and usually
ubiquitously distributed in work environments, they
can have negative results [11]. This is mainly due to
their lack of mechanisms that allow for a batanced way
to decide whether the time for starting an interaction is
suitable both for the one making contact, and for the
one being contacted. A typical example of this problem
is what we called “selective availability”, i.e. the
ability to establish one’s availability according to a
criterion, such as "I am available only for people who
are related to the task I am dealing with and not
available for other people”. This problem typically
presents itself in distributed work environments, where
users usually do not have their partners in sight, and
therefore do not know what activity is being conducted

to determine whether the time is right to start an
interaction,

Thus, we propose to integrate a perspective of
personnel activity management of the workers in DSD
with an approach to potential collaboration awareness
[14] to identify suitable and appropriate moments to
start collaboration, not only for the person making
contact, but also for the person who is contacted in
DSD processes.

The rest of this paper is organized as follows.
Section 2 describes some of the characteristics of DSD.
Section 3 describes a multi-agent model proposed as
support for starting collaboration in an appropriate
manner. Section 4 describes a projected application
scenario using the proposed multi-agent system.
Related work is described in Section 5. Finally, Section
6 presents some conclusions, and some directions for
future work.

2. Features of DSD

DSD, as a new work paradigm, provides the
following benefits: i) software companies require
highly skilled human resources and seek to meet this
need by employing programmers in different cities and
countries [2], ii) to be closer to the target markets and
to have a shorter response time, many companies have
established development groups closer to the location
of their client [3], iil) virtual development groups need
to be created quickly to expleit opportunities in this
new market [4], iv) by working in different time zones,
development groups can work continuously (24/7) in
critical projects [5], and v) the reduction of costs by
hiring human resources in places where labor is
cheaper [6].

However, DSD also faces interesting challenges,
such as: i) cultural differences can affect projects in
different ways, including the effectiveness of
communication and coordination, the decision-making
processes of a group and the performance of a team [5]
[7], ii) time differences between working groups affect
in activities where there is a need for intensive
collaboration between the groups involved, so the
synchronous communication is difficult to establish
within the normal working day {8] iii) inadequate
communication hampers coordination or management
due to factors such as those previously mentioned, and
to the fact that processes are conducted in a distributed
manner, and require people to be responsible for
coordinating the various involved tasks, activities and
people [3], iv) DSD workers need to share a lot of
information (e.g. business model, requirements, etc.)
coming from different sources (e.g. customers,
suppliers, requirements and system analysts, etc.) and

who are at distant sites [5], and v} the greater the
distance between individuals or groups, it becomes
increasingly difficult to maintain relationships of trust
because of the lack of an informal and spontaneous
communication [9].

It is worth mentioning that work in software
development environments is characterized by the
existence of a high level of communication and
coordination among participants [10]. This is due to
the need of achieving consensus for the group’s
decisions (e.g. approval of requests between customers
and analysts), decisions must be made known to others
accurately and expeditiously (e.g. notification and
delivery of new versions of a design document),
interaction is regular and frequent among team
members {e.g. request and delivery of information on
task progression), and work is cooperative and
collaborative (e.g. pair-programming). However,
dealing with these characteristics is very different
depending on how the development process is
performed. On the one hand, in the case of co-located
development project members are at sight or easily
accessible, making it possible to effortlessly see or
know with a simple glance what they are doing. You
can even know or intuit whether a time it is appropriate
to interrupt what others are doing in order to maintain
communication and coordination. On the other hand, in
the case of DSD, participants are located at remote
sites, so that the contextual information that is readily
available in the co-located case is not accessible,
making difficult the processes of communication,
coordination and production.

The characteristics of the activities that DSD
workers perform, as detailed in [13], led us to adopt a
practical work unit that allows first to understand the
management of individual developer’s work activities.
This umit is the Working Sphere [12]. However, the
working sphere concept is limited to a focus on the
individual work. In contrast, the DSD context demands
a focus on the work of the team or group. Nonetheless,
a focus on the individual activities of collaborators is
still needed.

We therefore propose to introduce the concept of
Collaborative Working Spheres (CWS), which extends
the concept of Working Spheres considering the work
characteristics of DSD, and the design insights
previously identified [13]. Some of the motivations to
create this concept came from the integration of
personal activity management of individual developers
with the concept of potential collaboration spaces,
which allow collaborators to obtain a partial and
personal view of the information related to the work
units which are shared with other collaborators. Thus, a
CWS allows workers to detect, identify or create
opportunities for collaboration between them based on

the information managed from their individual work
wits. In addition, this allows identifying an
ppropriate moment to initiate collaboration in a more
nformed way. Also, a CWS will allow collaborators to
tave a meeting point with their potential collaborators,
where they are actually offered with a way to start
wlequate interaction and from where to begin a
working meeting with the collaborators and the work
units involved to consistently trigger group work
{actual collaboration) [14].

Therefore, the technological solution must allow
that the involved collaborators and work units display
the required information (e.g. presence and status).
fuch information must be accessed through a monitor
{technological tool) that shows information on the
context of users and from the same previously shared
work units. To solve this problem in the next section
we propose a multi-agent model designed to facilitate
communication among distributed team members. The
model helps to detect when it is appropriate or less
fisruptive to interrupt someone, thus promoting

Edentitying the |dentifying the suilahle Starting
information of activity mameant collaboration

Fig. 1. Conceptual model of the CWS

socially appropriate communications.

To achieve this, Figure 1 depicts a conceptual
model of a CWS, It includes three main tasks: (1)
ldentifying the required information of the activity of
those invelved, (2) Identifying a suitable moment to
interrupt other collaborators, and (3) Entering into
collaboration if the moment is right. This requires
being able to monitor the activities of the collaborators,
identifying specific information from the common
work unit (e.g WS) so that information on the currently
shared activity could become known to the group, and
based on the obtained information whether the moment
is adequate for starting an interaction attempt.

3. A Multi-agent model to provide support
for starting collaboration

For the technological solution proposed in Figure 1,
we included the following phases: i) Monitoring: be
alert to identify the work units in which collaborators
are working. ii) Identification: link the files that are
being manipulated by the user with the work units that
were assigned to him/her. iii) Request: Perform
requests for information of the current state of one or
more users, based on the current state of the activity
that occurs at a given moment. iv) Formalization:
receive the requests from the previous phase to
formalize it through the interpretation of the data that

such a request brings. It must be verified whether the
request is valid. v) Processing: carry out the necessary
consultations to the organizational repository based on
valid requests, and vi) Notification: publicize the
results of the petition.

To satisfactorily address the previously mentioned
phases we propose a multi-agent model (see Figure 2).
Agents are involved in the following manner: i)
Monitor Agent, it provides support in the monitering
phase. It is responsible for knowing the information
(e.g. name, type, date, etc.) of the artifacts (e.g. files)
manipulated by the user during his/her work. This
requires the implementation of a proactive monitoring
process to capture the information generated during the
interaction between the user and the computer
applications (e.g. text editors, programming languages,
design applications, etc.). ii) Identifier Agent, it
provides support in the identification phase. This agent
is responsible for identifying whether the file that is
being manipulated by the user has to do with any
activity and/or task of the organization’s projects. To
achieve this, the implementation of a proactive search
process to identify and link the information generated
during the menitoring phase is required. iti) Requester
Agent, it provides support in the request phase. This
agent is devoted to request information by executing a
process to send data to the project instance through the
use of a communication channel. iv) Manager Agent, it
provides support in the formalization phase. This agent
will be aware of valid projects. For this, a search
process on the organization’s project repositories is
requested to help deciding whether the petition
proceeds or not. If the request proceeds the process
goes to the next phase. On the contrary, the reason for
request rejection should be notified to the Interface
Agent. v) Project Agent, it provides support for the
processing phase. It is an agent responsible for the
information of a specific project. It will request a

/_ USER AGENCY T,
<™ Monitor
F—
Monitaring
Identiflar
Y
eguent e nitrication
Interface
SHARED ONTOLOGY
PROJECT AGENCY
o Manages
-
Formalization
Notifler Froject
P oy
hoting atian Prodessing

Fig. 2. Distribution of agents.

search process for a particular project of the

k

organization and the result will be sent to the Notifier
Agent. vi), Notifier Agent, it provides support for the
notification phase. It is responsible for reporting the
request results to the Inmterface Agent (mediator
between the user and agents).

Agents are structured in two agencies: the User
Agency and the Project Agency (see Figure 2). The
User agency is responsible for providing support to
requests for information by the interested user. It is
composed of the Monitor, Requester and Identifier
agents. It is worth mentioning that there is an assistant
agent in this agency, which is called Interface Agent.
On the other hand, the Project Agency aims to provide
the information of the context of work based on
information obtained from projects and users
repositories of the organization. This agency comprises
the Manager, Project and Notifier agents.

In addition to Apgencies, Figure 2 shows a shared
component ontology. This is necessary so that there is
a consistent communication way between the agents of
the different agencies.

4. Application scenario

An example of application scenario is as follows: in
a DSD organization a system designer accesses a UML
file through a diagramming application. This file was
sent to him/her as part of an interface design task.

In the actual scenario whenever the designer has a
doubt about the contents of the UML file, he/she
usually tries to contact the responsible analyst by any
means of communication {e.g. telephone or an instant
messenging application). In this way, the designer
usually interrupts the activity of the analyst.

For the projected scenario we present a scenario
diagram (sec Figure 3), based on the INGENIAS
methodology [15].

ApplicationEvent Informationt lser
s
A Conmumess ——
34 =
«AFCannar s
ForpsatizeRequest <SR erlasEXeCItion.
/
E IformationAcouirs
~WFSper fiesExocution. y
N
Kformationeroject ' v
80
Soon Infoodsation ¢
Appucanontverl Resooe Task rteraction
s v = A

Fig. 3. Scenario Diagram

In the projected scenario, at the time when the UML
file is accessed (ApplicationEvent), the Monitor Agent
observes the event (MonitoringFiles) and records it in
its log (e.z. file name, document type, time, date,
state). Then the Identifier Agent verifies whether that
file is related to a project. In this case, it verifies
whether the file is associated to a task of project “X”
and updates the log by marking the file as valid to
make a request for information. Such a request is
detected by the Requester Agent (InformationUser).
After the interactions between agents of the User
Agency, the Requester Agent makes a request to the
Manager Agent, which formalizes the request
validating that the Project Agent that corresponds to
Project "X" is active (FormalizeRequest). In this case
the project is active and the Manager Agent sends the
information processing order to the Project Agent of
the project in question (MnformationProject). Upon
receiving the order, the Project Agent searches in the
repository (ProjectRepositories) updated information
on the projects and users associated to this task (e.g.
developers involved, the state of developers, state of
the task, etc.). On finding the information, it is
packaged and sent (Informationdcquire) to the
Interface Agent (InformationUser), which s
responsible for updating the user interface with the
received infotmation.

In this case, the designer obtains information
regarding the file in a rapid and scamless manner
through the user interface of the CWS. The presented
information refers to which collaborators were
involved, and in which documents related to a project
they were working. In turn, this information also
allows the user to interpret the current state of
collaborators (e.g. busy, available, not connected, etc.).

5. Related Work

Several research works have been identified from
the literature that address three main tasks to start
collaboration in a proper way in DSD. These tasks
include: 1) Identifying the right time to enter into
collaboration, Potential Collaboration [14] represents a
complementary moment to Actual Collaboration. It
refers to the possibility of collaboration, and as such it
occurs while people are working on an individual
basis, not necessarily in relation to a collaborative
effort, mostly outside of a shared space representation
and usually in asynchronous communication mode.
Doc2U [14], offers an extended instant messaging
service that provides support for potential coliaboration
through the presence of users, documents and
specialized services. These works provide elements to
create services of user, task and resource presence. ii)

Identifving information of the activity of DSD
workers. Working Spheres (WS) propose a way to
manage personal activities in the presence of
interruptions [12]. Although it only contains
information about individual activities, WS from
multiple users can be grouped in a manner that they
may be useful for group work. For example, they
might allow to know in which “shared” activity and/or
task of the WS several collaborators of the same
project are working. iii) Entering into collaboration.
Project-View [16] suggests modifications to the Ul of a
traditional instant messaging application considering
three specific characteristics: awareness, user
information and reminders.

However, these studies were developed for purposes
other than starting collaboration in DSD.

6. Conclusions and Future Work

Currently there is a great tendency to develop
software in a distributed manner, and this in order to
take benefit of the advantages that this kind of
development brings. However, distributed
development also implies that people does not have the
same opportunities for face to face interaction, which
in turn introduces the possibility of coordination
problems, disruptions at unwanted times, and the lack
of informal communication. All of this can have an
impact on the trust and quality of team member
communications, and on the project results [10].

As current and future work, a prototype is being
built using the following technologies as support for
the multi-agent system: Web Services are being used
and the SOAP protocol (Simple Object Access
Protocol) is being used for the exchange of messages.
An XML-based ontelogy is also under development,
the main idea is to provide a single representation for
the communication and understanding between agents.

7. Acknowledgements

This work is partially supported by FABRUM,
project, Ministerio de Ciencia e Innovacion, Spain
{grant PPT-430000-2008-063), and by UABC under
grant 0191 of the XI Convocatoria Interna de
Proyectos de Investigacién. The first author is
supported by scholarship PROMEP/103.5/06/3244,

8. References

{1} Layman L., Williams L, Damian D. y Bures H.
“Essential communication practices for Extreme
Programming in a global software development team”,
Information and sofiware technology , 48(%), 781-794, 2006.

[2] Ebert C. and De Neve P., “Surviving Global Software
Development”™, IEEE Software. 18(2). 62-69, 2001.

[3] Damian, D. and Moitra D., “Guest editors’ Introductior:
Global Software Development: How far have we come?”.
IEEE Software, 23(5), 17-19, 2006.

[4] Lloyd W., Rosson M., and Arthur I. “Effectiveness of
elicitation ~ technigues in distributed requeriments
engineering”. Paper presented at the 10th anniversary IEEE
Joint International Conference on Requeriments Engineering,
RE’02, Essen, Germany, 2002.

{5] Herbsleb J. and Moitra D., “Guest editors” Introduction:
Global Software Development”. IEEE Software, 18(2), 16-
20, 2001.

[6] Conchiir E., Holmstrom H., Agerfalk P., Fitzgerald B,
“Exploring the assumed benefits of global software
development”, Paper presented at the IEEE International
Conference on Global Software Engineering, 2006.

[7] Damidn D. “Stakeholders in global requeriments
engineering: Lessons learned from practice ”. IEEE
Software, 24(2), 21-27, 2007.

[8] Damian D. and Zowghi D., “The impact of stakeholders
geopraphical distribution on managing requeriments in a
multi-site organization”, Paper presented at the IEEE Joint
International Conference on Requeriments Engineering
(RE’02), Los Alamitos, CA, USA, 2002,

[9] Babar M., Verner J., Nguyen P., “Establishing and
maintaining trust in sofiware outsourcing relationships: An
empirical investigation”, The Journal of Systems and
Software, 80(9), 1438-1449, 2007.

[10] Kraut, R. E. and Streeter, L. A, “Coordination in
software development”. Commun. ACM 38, 3, 69-81. 1995.
[11] Czerwinski M., Horvitz E., Wilhite S. “A diary study
of task switching and interruptions”, Proceedings of the
SIGCHI conference on Human factors in computing systems,
175-182, ACM Press. 2004,

[t2] Gonzalez V. and Mark G. “Constant, Constant, Multi-
tasking Craziness™ Managing Multipie Working Spheres.
Proceedings of CHI 2004, ACM Press. 2004.

[13] Palacio R, Morin A., Gonzalez V., “Sopotte para la
entrada en colaboracién en el desarrollo distribuido de
software: implicaciones de disefio”, ENC-SIS 2008;
Mexicali, BC, submitted for publication.

[14] Moran A., Favela J., Romero R., Natsu H., Perez C.,
Robles O., Martinez A, “Potential and actual collaboration
support for distributed Pair-Programming”, Computacion y
sistemas Vol. 11 No, 3 pp 211-229. ISSN 1405-5546, 2008.
[15] Pavon J. and Goémez-Sanz I J, "Agent Oriented
Software Engineering with INGENIAS." In proceedings of
the Multi-Agent Systems and Applications TIl: CEEMAS
2003 (LNAI), Prage, Czech Republic, pp. 394-403, 2003.
[16] Fusselt, S. R., Kiesler, S., Setlock, L. D., and Scupelli,
P., “Effects of Instant Messaging on the management of

multiple project trajectories”. In Proceedings of the SIGCHI
CHI '04. ACM, New York, NY, 191-198. 2004.

