2009 Ninth International Conference on Quality Software

Model-Driven Software Measurement Framework: a case study

Beatriz Mora

Indra Software Labs
Information Technology Company
Ciudad Real, Spain
bmorar@indra.es

Abstract—Measurement is an important factor in the
process life cycle since it controls issues and deficiencies
during software maintenance and development projects.
The model-driven engineering (MDE) paradigm may be
extremely useful in a software measurement process
owing to the considerable amount of entity types and
models involved, and a model-driven Software
Measurement Framework (SMF) has previously been
developed with this goal in mind. This framework
facilitates the measurement of any type of software entity.
This paper presents the use of SMF in an IT company, in
order to demonstrate the utility and importance of the
application of model-driven software measurement in the
real world.

Software Measurement,
MDA.

Model-driven Engineering,

I. INTRODUCTION

Measurement is an engineering activity that enables
us to obtain quantitative information with regard to the
engineering process or the systems which are being
developed, and is a key factor in the process life cycle
since it provides a support for the planning, monitoring,
control and evaluation of a software process.
Measurement has, in fact, become a fundamental aspect
of Software Engineering [1].

Software process improvement (SPI) programs
make it necessary for companies to measure a highly
heterogeneous set of software entities (processes,
projects, products, resources), and this diversity
highlights the importance of providing the means to
define the measurement models in companies in an
integrated and consistent manner [2].

Software measurement can therefore benefit from
the MDE (Model-Driven Engineering) paradigm [3].
This paradigm is becoming increasingly more
important due to the complex nature of business
landscapes in which there is a growing diversity of
systems and platforms. The underlying motivation for
MDE is to improve the productivity of software
companies, as new software artefacts can be generated
from (mostly technical) models, thereby supporting
developers in their productivity. MDE is based on the

1550-6002/09 $26.00 © 2009 IEEE
DOI 10.1109/QSIC.2009.39

239

. | . . 1,2 . . |
Felix Garcia ', Francisco Ruiz “, Mario Piattini

! Department of Information Technologies and Systems
University of Castilla-La Mancha
Ciudad Real, Spain

2Dep. of Mathematics, Statistic and Computing
{felix.garcia;francisco.ruizg;mario.piattini } @uclm.es

usage of models as primary artefacts, from which
validation, code, test and documentation are derived.
The significant role that models have recently taken on
in this scenario reinforces the importance of measuring
models as a previous and fundamental step towards
their later improvement. The Software Measurement
Framework (SMF) has been developed to provide a
reference framework for the measurement of any kind
of model [4]. SMF follows the MDE principles in
which software measurement models (SMM) and
domain models (models of the entities to be measured)
are the core artefacts of the measurement process. The
MDE paradigm is applied to support the measurement
of heterogeneous software entities, which implies: a)
the definition of measurement models which conform
to a Software Measurement Metamodel [2]; b) the
definition of reusable generic measurement methods
which must be applicable to any model; and c)
supporting the computation and storage of the defined
measures and later decision making processes. The
main goal of SMF is to ensure that the measurement
process is carried out in a consistent and more
productive manner by providing companies with the
necessary infrastructures and methodology.

This paper describes the application of SMF in a
real-world IT company. The potential benefits of the
synergic combination of MDE and measurement are
also illustrated. The company’s measurement process
was supported by SMF through the provision of a
homogenized framework into which the measurements
of the different kinds of entities considered
(requirements and databases among others) were
integrated. The paper also presents an enhanced version
of SMF functionality through a list of parameterized
measurement methods which increase support to the
definition of new generic base measures. The
remainder of the paper is organized as follows. Section
2 provides an overview of related works, and Section 3
summarizes the main characteristics of SMF. Section 4
describes the parameterized methods. The use case is
presented in Section 5 and conclusions and future
works are outlined in Section 6.

IEEE
@ computer
socle

ty

II.

Literature contains numerous publications dealing
with tools which are important success factors in
software measurement efforts [5], which supply work
environments and general approximations [6], or which
provide architectures with more specific solutions [7].
The work of [8] includes a list of tools which support
the creation, control and analysis of software
measurements, and that of [9] examines various
software measurement tools, such as MetricFlame,
MetricCenter, Estimate Professional, CostXPert and
ProjectConsole, in heterogeneous environments. Other
proposals through which to tackle software
measurement, which are more integrated and less
specific than in the aforementioned cases, also exist.
These include [10] which proposes the MMR tool,
based on the CMMI model for the evaluation of
software processes. Other tools can be found in [11-
13]. These proposals are, however, restricted to
concrete domains or to evaluation models of a specific
quality characteristic.

[2, 14] present the FMESP framework with the aim
of providing a more generic environment. FMESP
proposes the original idea of using metamodels to
manage the software measurement of any kind of
models.

SMF is an adaptation of FMESP to the MDE
paradigm by using MDA technology [4]. This idea has
been replicated in other technological environments
[15]. However, certain important aspects characterize
SMF as a complete environment with which to manage
software measurement in an MDA context, particularly,
among others, a robust Software Measurement
Metamodel (SMM) [2] for the definition of software
measurement models and a textual and graphical
concrete syntax to do so (the Software Measurement
Modeling Language, SMML [16]). A further added
value of SMF is that the Software Measurement
Ontology (SMO) [17, 18] was used as the basis for the
development of the SMM. The SMO states the
elements involved (concepts and relationships) in the
software measurement domain, and was built by
analysing the most relevant sources from both the
existing international standards (ISO, IEEE) and the
research proposals dealing with software measurement
concepts and terminology. The SMO therefore
provides a common vocabulary which has been used to
resolve the problems of completeness and consistency
identified in the aforementioned sources. The SMML
language also facilitates definition in a more usable and
intuitive variety of software measurement models,
which is the starting point of the generic software
measurement processes.

RELATED WORKS

240

III. SOFTWARE MEASUREMENT FRAMEWORK

The Software Measurement Framework (SMF) [4]
facilitates the measurement of any type of software
entity. In this framework, any software entity in any
domain which has a metamodel associated with it can
be measured with a common metamodel (SMM) and by
using QVT [19] transformations. SMF has three
fundamental elements: a conceptual architecture, a
technological environment and a methodology. These
elements have all been adapted to the MDE paradigm
and to MDA technology, taking advantage of their
benefits within the field of software measurement.

The following subsections briefly explain the
conceptual, technological and methodological elements
which are part of SMF. A more detailed description of
SMF can be found in [4].

A. Conceptual architecture

The need for a generic and homogeneous
environment for software measurement has led to the
inclusion of a conceptual architecture and a tool with
which to integrate software measurement into SMF.
The conceptual framework used to manage model-
driven software measurement is presented in Fig. 1.
Two new elements, namely the QVT Relations
metamodel and model, have been added in order to
fully adapt the FMESP conceptual architecture [20] to
MDA.

1.
Meta-Meta-Model M3
Level MOF
Meta-Model M Softm ar
oftware "
Level Measurement " "30"":"’" I Relations
Metamodel ctamodels | | | Metamodel
J?_[J?_[
Model
Software Qvt
Level Measurement ?‘::.:" Relations
Models els] Model

Figure 1. Conceptual framework with which to manage model-
driven software measurement.

The aim of this architecture is to achieve the
integrated management of modeling and measurement
through the representation of the elements which are
related in different abstraction levels. As Fig. 1 shows,
the architecture has been organized into the following
conceptual MOF-based metadata levels: Meta-
Metamodel Level (M3), Metamodel Level (M2) and
Model Level (M1).

B. Method

The steps necessary to carry out the software
measurement by using the SMF are explained below
(see Fig. 2):

1) Incorporation of domain metamodel: the
measurement is made in a specific domain. This

domain must be defined according to its metamodel.
For instance, if the aim is to measure UML diagrams,
then the UML metamodel must be included in the SMF
repository.

|

3. Creation of software } I 1. Incorporation of }
I measurement model | ‘L domain metamodel |

e _———— N
M3
MOF
M2 conforms to conmes to worms o
Software Qvt .
Measurement Relations Sonalis
Metamodel Metamodel Metamodel
i 3 i I
M1 /onforms t¢ confor/‘ns to conforms to
Mesa';urer:\:nt QVT Relations Domain
Models * —— 1 Model Model
Transformation -7 -
\-
Software
Measurement
Model (target)
Measurement Modé¢ling Domain Modeling and
Measurement process

-
Result of the | |
| measurement process | |
L L

Figure 2. Elements of SMF.

—

2. Creation of domain }

4. Measurement } |
! model |

Execution

2) Creation of domain model: this is defined
according to its corresponding domain metamodel
(created in the first step). The domain models are the
entities whose attributes are measured by calculating
the measurements defined in the corresponding
measurement models. For example, a UML model
which represents the analysis and design of a bank
application is a domain model.

3) Creation of measurement model: the
measurement model is created according to the SMM
(a key integrated part of SMF). This constitutes the
source model. The results of the measurement are
stored as an instance of the “Measurement Action”
package. The packages which are included in the SMM
are: Software Measurement Characterization and
Objectives, Software = Measures, Measurement
Approaches and Measurement Action (a full
description of these can be found in [2]).

4) Measurement execution: the automatic
measurement execution is carried out through a QVT
transformation in which the target measurement model
is obtained from the two source models (the

241

measurement model and the domain model) in which
the results are defined, i.e. the “Measurement Action”
package is instantiated. The target measurement model
is obtained by extending the source measurement
model with the results of the measurements. These
results are calculated by running OCL queries on the
domain model.

The QVT Relations model, denominated as the
extended or final QVT Relations model (see Fig. 2), is
the transformation which is needed to perform the
measurement. Since the proposal concerns generic
measurement, it is very important that this QVT model
be obtained in a generic manner, i.e., that it can be used
in several domains. The MDE paradigm and MDA
technology are applied for this reason. The final QVT
Relations model, in which there are two source models,
is obtained from a QVT transformation. These source
models are: the basic or initial QVT Relations model
(which conforms to the QVT Relations metamodel) and
the Software Measurement model (previously defined)

[4].
C. Technological Environment

This section provides a brief presentation of the

technological elements of SMF:

e Adaptation to MDA: in Fig. 2 the SMF
elements which are necessary to carry out a
software measurement process are presented
according to MOF levels. The QVT Relations
Model is obtained automatically through a
transformation from a Measurement model. It
contains all the information that is necessary to
carry out the QVT transformation of the SMF
proposal, i.e. transformations for the
measurement of software entities.

e Software Measurement Model Definition
tool: the tool selected to define the software
measurement model is MetaEdit+ [21] from
MetaCase. MetaEdit+ offers significantly
different approaches towards the definition of
Domain Specific Modelling (DSM) support. It
provides the support necessary to develop
graphic editors such as SMML. The software
measurement models defined by MetaEdit+,
can be exported to ECORE by means of the
MetaEdit+ Generator System [22]. The
MetaEdit+ Generator System uses MERL (a
domain-specific =~ language for creating
generators) to produce code/text from models
and integrate them into Ecore. The software
measurement model exported in ECORE can
be used in SMF.

e QVT support tools: two tools have been
selected to support the transformation
definition and execution in SMF: MEDINI
QVT [23] and MOMENT (MOdel

manageMENT) [24]. These model
management environments implement the
OMG's QVT Relations specification in a
powerful QVT engine and are integrated into
the Eclipse platform. The Ecore language has
been selected from these environments because
it is a common language based on EMOF (the
part of the MOF 2.0 specification that is used
to define simple metamodels by using simple
concepts).

Iv.

Until very recently a large quantity of base
measures (a measure of an attribute that does not
depend upon any other measure, and whose
measurement approach is a measurement method)
defined in the Software Measurement Process in SMF
were obtained by applying the count measurement
method. This measurement method permits us to define
a large quantity of base measures [25] in multiple
software measurement domains, and these base
measures can be used to define a considerable amount
of derived measures and indicators in a software
measurement process. A selection of base measures
obtained by applying the count measurement method in
different domains is shown in the Table I.

PARAMETRIZED MEASUREMENT METHODS

TABLE 1. A SELECTION OF MEASURES OBTAINED WITH THE COUNT
MEASUREMENT METHOD

TABLE II. A SELECTION OF PROPERTIES WITH WHICH TO DEFINE THE
PARAMETRIZED MEASUREMENT METHOD

Metamodel e
Element
attributell operation valuel
operator attributel2 operation
Classl value2 operator .. attributelN
operation valueN operator
MetamodelElement.allInstances () ->
select (m:MetamodelElement |
OCL m.attributel operation valuel
Constraint operator m.attribute2 operation

value2 operator. m.attributeN

operation valueN

Attribute2l operation valuel

references of operator Attribute22 operation

Classl value2 operator .. Attribute2N
operation valueN operator
MetamodelElement.allInstances() .r
eferenceName->
select (r:RefMetamodelElement |

OCL . .

. r.attributel operation valuel

Constraint

operator r.attribute2 operation
value2 operator r.attributeN
operation valueN

Measure Measurement Approach
Base measure: NOM Measurement Method: to count the
(UML Class Diagrams) | number of local methods.
Base measure: NOP Measurement Method: to count the
(Java Code) number of packages
Base measure: NT Measurement Method: to count the tables
(Relational Databases | in the schema
schema)
Base measure: NE Measurement Method: to count the
(Entity Relationship) entities in the model

Since our objective is to obtain new base measures
in the Software measurement process, it is of interest to
consider the wuse of parameterized measurement
methods. The definition of parameterized methods
increases the power of the definition of base measures
by adding restrictions or conditions that the
measurement method must satisfy at the domain
metamodel level to obtain the measures. These
conditions are included in the measurement method by
using a declarative language, such as OCL.

242

Logical operators: Operations:
and, or, xor, not =2, @D, D, | = >
An illustration of how the conditions and

restrictions are specified at the metamodel domain level
can be provided by considering the basic elements of a
metamodel which has been defined as an instance of
MOF or Ecore: a metamodel is built with classes which
have attributes and operations and binary associations
(implemented with references between classes). This
basic schema is illustrated in Fig. 3a. In order to define
parameterized measurement methods, it is necessary to
specify conditions on the classes, their attributes and/or
references. One example of a metamodel element that
permits us to parameterize the values of the attributes is
the Enumeration element, in which the
parameterization is restricted to values that are
bounded by enumeration. Table II shows the general
conditions that can be added to a measurement method.
These conditions or properties, which are added to the
measurement method, are composed of a set of
operations between the class attributes, and the values
for these attributes and these operations are joined
through logical operators. The declarative expression
has also been defined with OCL to provide greater
understanding.

The benefits of the parameterized measures can be
illustrated by considering the example of the relational
database measurement. The domain metamodel and the
domain model have been defined as is shown in Fig.
3b.

Class1 Class2
-attribute11 -references |-attribute21
-attribute12 -attribute22
attribute N 1 * |attribute2N -
TypePK DataType
+SINGLE +INTEGER a)
+COMPOSED | [+DOUBLE
-VARCHAR
-VARCHAR2
-CHAR Key
-name : string Student Teachel\\ Class: Table
PK |i PK<lld
A “ =
i | . ‘ name name ~_ _Class:
ForeignKey PrimaryKey degree office PrimaryKey
type :TYPePK | | FK1 | course FK1 | course
-table 1 FK2_] department
* Class:
-fk - .
Table s pk 0.1 ForeignKey
— -table N
-name : string -columns 1. Course Department
-1columns .
T Column PK | name PK |id
-name : string Class.
* |isNull : Boolean name< -
-dataType : DataType degree URL Column
course
Relational Databases Metamodel Relational Databases Model b)

Figure 3. Relational Databases Metamodel and Model.

Table III shows the parameterized measurement
methods defined on the domain relational database.
These methods have been defined by adding
parameters to the basic COUNT measurement method.
According to our general approach, the COUNT
measurement method allows us to obtain the number of
instances of a specific Class. With the parameterized
methods, the number of instances returned can be
restricted solely to those which satisfy certain
conditions specified by means of a declarative
expression.

As Table III shows, if a measurement engineer
wishes to define a measurement method s/he must
specify or select the following elements:

e Method: the kind of measurement approach
which is applied in the software measurement,
for instance “count”.

e Metamodel element: the element to which the
measurement method is applied (primary key,
column, table, etc.).

243

e Attributes: the attributes used to define the
condition for the base measure. The values of
the attributes must be defined in the metamodel
by means of Enumerations, such as TypePK
and DataType (Fig. 3b).

e Condition: the condition
parameterize the base measure.

The measurement results are obtained by executing

the measurement method with the conditions from the
metamodel element. For example, in the relational
schema in Fig. 3b, there are 4 “primary keys” whose
“type” is single.

necessary to

TABLE III. A SELECTION OF COUNT MEASUREMENT METHODS

Method Metamodel Element Attribute/s Condition Result

Count PrimaryKey | Type Type = SINGLE | 4
1 | OCL PrimaryKey.allInstances () ->select (PK:PrimaryKey

Expression PK.type= ‘SINGLE’) ->size()

Count Column isNull, dataType isNull=false and dataType=Integer 3
2 OCL Column.allInstances () ->select (C: Column|

Expression C.1isNull= false and C.dataType=Integer) ->size()

Count Table | No parameterized attributes to measure | Without condition | 4
3 | OCL --This is not a parameterized measurement method

Expression Table.allInstances () ->size()

Count columns on Table isNull, dataType isNull=false or dataType<>Integer 15
4 OCL Table.allInstances () .columns->select (c:Column |

Expression c.isNull=false or c.dataType<>Integer)->size()

V. CASE STUDY

In order to illustrate the benefits of using SMF, let
us consider a case study in the INDRA IT company, in
a real project denominated as Health 2.0. Indra is the
premier IT company in Spain and is a leading IT
multinational in Europe and Latin America. It is ranked
as the second FEuropean company in its sector
according to stock market capitalisation, and it is one
of the three Spanish companies with the highest
investment in R&D. INDRA has received formal level-
3 CMMi certification from the Software Engineering
Institute, which implies, among other things, that
INDRA projects are carried out in the context of
quality support processes in which software
measurement is a fundamental area. At present, the
company has specific methods with which to carry out
software measurement in the various domains involved.
Moreover, due to the necessities of technological
improvement, the tools used are diverse and are in a
continuous state of change. It is, therefore, in the
company’s interest to homogenize the software
measurement process and to use a framework based on
a common software measurement metamodel which
permits the definition of software measurement models
and the execution of a software measurement process in
any domain.

The satisfaction of Indra’s necessities with regard to
quality led us to consider the use of the MDA
compliant SMF in order to carry out automatic software
measurements of any software entity types or domains.
We therefore decided to apply the proposal to the
Health 2.0 project, which advocates a global,
innovative version of healthcare. This requires both the
creation of new information systems, designed to be
used by healthcare professionals, managers and
citizens, and a rapid, ubiquitous and simple interaction.
This proposal can be illustrated by considering two of

244

the software domains to which SMF was applied:
requirements and database.

A. Measurement of Requirements Stability

The first software domain evaluated by our
measurement framework was in the “Requirements
analysis” within “Software development activities”.

1 BusinessProjec
-projectName : string
-moduleName : string
* -baselines
BaseLin
-index : int
-name : string [@—————
-date : Date 1 .
* -requirements
State Requirement
+CANCELLED -id : String
+ADDED -name : String
+MODIFIED -descripcion : String
+APPROVED -state : String

Figure 4. Requirements metamodel.

The requirements analysis is a critical activity in the
creation of a software product, and it is for this reason
that a good quality requirements process must be
carried out. The idea is to determine the stability of one
base line’s requirements with regard to another
previous base line, i.e. how stable the requirements are
upon passing from one version to another. This
necessitates discovering the percentage of requirements
that have been -cancelled, approved, added and
modified in one version with regard to the previous
one.

= Eg platform: fresource/FMESP_INDRAmodel/IndraSahed, xmi
B4 ROOT
B4 ausinessprmect IndraSalud
- < Base Line ISADM_HOS_AD1_MO1
< Requirement 501_01_ADM - ADMISION
' Requirement A01_01_01_ADM - HOSPITALIZACION
* Requirement Circuito de Hospitalizacion
* Requirement Ingreso
» Requirement Informacion del ingreso
 Requirement Informacion anexa &l ingreso
#-< Base Line ISADM_HOS_AO1_NO02
4 Base Line ISADM_HOS_A01_NO3
% < Base Line ISADM_HOS_AD1_N04
* Base Line ISADM_HOS_AD1_NOS
4 Requirement S01_01_A0M - ADMISION
4 Requirement AD1_01_01_ADM - HOSPITALIZACION
* Requirement Circuito de Hospitalizacidn
< Requirement Solickud de Preingreso
+ Requirement Ingreso
<+ Requirement Informacidn del ingreso
U Requirement Paciente en transito
¥ Requirement Traslado
* Requirement Intercambio
* Requirement alta
< Requirement Gestion de kstados
Sl equirement Gestion de ubicaciones
[# 1 platform: fresource/FMESP_INDRAmodel/BusinessRequirements. ecore

Figure 5. Requirements model.

Fig. 4 shows the Requirements Metamodel, which
is the metamodel that characterizes the type of entity to
be measured. An example of an instance of this
metamodel (a specific requirements document from the
Health 2.0 project) is shown in Fig. 5. Parameterized
count methods have been used to define the base
measures in the Requirements Metamodel, since it is
necessary to evaluate the state of a requirement with
regard to its previous version.

TABLE IV. INSTANCES OF “CHARACTERIZATION AND OBJECTIVES”
PACKAGE

methods have been defined with the exception of the
TOR base measure.

TABLE V. INSTANCES OF “SOFTWARE MEASURES AND SOFTWARE
APPROACHES” PACKAGE FOR BASE MEASURES

Base Measure Measurement method

NCR (Number of cancelled | To count the cancelled requirements
requirements) (state=cancelled)

NAR (Number of approved | To count the approved requirements
requirements) (state=approved)

NADR (Number of added | To count the added requirements
requirements) (state=added)

NMR (Number of modified | To count the modified requirements
requirements) (state=modified)

TOR (Total of requirements) | To count the requirements

Element Measurement model (instances M2)
Attribute Size
Entity class Project requirement (Baseline 1 to 5)
Measurable concept Stability
Quality model ISO 9126
Information need To _ _dlscover the project requirements
stability

In accordance with the SMF method, the following
four steps were followed to carry out the measurement:

7) Incorporation of Requirements metamodel (Fig.
4).

2) Creation of model conforms to Requirements
metamodel. In this case, the model is a set of project
requirements, from baseline one to baseline five (see
Fig. 5). The model is stored in XMI.

3) Creation of measurement model which conforms
to SMM. In order to evaluate the requirements stability,
it was necessary to define a software measurement
model, which is detailed in Table IV and Table V and
Table VI. As Table V shows, parameterized count

In Table V the value of scale and unit for every base
measure is the same, i.e., the value of Scale is “Ratio:
integers from zero to infinite” and the value for the
Unit is “Requirement”.

TABLE VI. INSTANCES OF “SOFTWARE MEASURES AND SOFTWARE
APPROACHES” PACKAGE FOR INDICATORS

Indicator
Analysis Model
Scale & Unit

Decision Criteria

RCI: Requirements
Cancellation Index

Analysis Model:
RCI=NCR/TOR

Scale: Ratio: Real from zero to
infinite.

Unit: Percentage

If RCI> 75 > ‘Very High’
If 50 <RCI< 75 - ‘High’
If 25 <RCI<50-> ‘Medium’
If0 <RCI<25 > ‘Low’

RAI: Requirements

Approbation Index IFRAI> 75 > *Very High’

ﬁi?iyﬁify%’gg : If 50 <RAI< 75 > ‘High’
Scale: Ratio: Real fi ¢ If 25 <RAI< 50 2 ‘Medium’
. e: Ratio: Real from zero to 10 < RAI<25 5 ‘Low’
infinite.

Unit: Percentage

RADI: Requirements Addition

Index If RADI > 75 - RADI = ‘Very

. High’
Analysis Model : _
RADI=NADR/TOR I;Sl(g)h< RADI<75 - RADI=

Scale: Ratio: Real from zero to
infinite.
Unit: Percentage

If 25 <RADI<50-> ‘Medium’
If 0 <RADI<25 - ‘Low’

RMI: Requirements
Modification Index

Analysis Model : IFRMI > 75 > “Very High

If 50 <RMI <75 - ‘High’

TR o | 1F25 <RMI=50>Medium'
Scale: Rafio: Real Trom zero lo- | 1r) < RMI<25 > ‘Low’
infinite.

Unit: Percentage

245

One important feature of SMF is the Software
Measurement Modeling Language, which supports the
metamodel with a graphical notation. This helps to
build unambiguous and more comprehensive software
measurement models than, for example, the use of
tables or text. To illustrate this feature, the
measurement model represented with the above tables

has been represented by using the SMML language Fig.
6). The NR, NMR and PMR measures have been
omitted due to space limitations. The models are stored
in XMI (XML Metadata Interchange) which facilitates
their automatic management by the tools in the SMF
framework.

4) Measurement execution: the source models used
to carry out the measurement are: the measurement
model (2nd step), the domain model (3rd step) and the
extended QVT Relations model. The target model
obtained is the measurement model with the defined

Measurement Result. This process is completely
transparent to the user. The results obtained are
presented in the following table:

TABLE VII. RESULTS OF THE SOFTWARE MEASUREMENT PROCESS
(REQUIREMENTS STABILITY)

Cancelled 0 0.0%
Added 29 55.77%
Modified 23 44.23%
Approved 0 0.0%
Total 52

J?,

Stability

To know the project
requirements

stability

Ratio:” ()
Integers from
ero to Infinit

Percentage

Requirements Modification
Index|(RMI)

T

If RMI > 75 - RMI= 'Very High’
If 50 < RMI< 75 > RMI="High'
If 25 < RMI< 50 > RMI= ‘Medium’
If 0 < RMIs 25 > RMI= ‘Low’

cl

Integers from zero|

1ISO 9126

Ratio:
Integers from zero|
to Infinite

Number of fnodified
requirements (NMR)

g

Project
requirements

Requirement

Total of reqiirements

Ratio:

to Infinite

To count the

To count the requirements

modified
requirements

g

Figure 6. Software Measurement Model by using SMML (Requirements Stability).

B. Measurement of Database Complexity

The second software domain evaluated in the
Health 2.0 project was that of “database development”.
One of the INDRA company’s outstanding business
goals is to support the evolution of their databases by
providing the necessary means to facilitate the
improvement (and consequently maintenance) of
conceptual and logical database models. To achieve
this, INDRA needs to know the maintainability (ease of
maintenance) of its database conceptual schemas,
represented with E/R notation, and the maintainability
of its relational schemas. The measures proposed in
[26] have therefore been applied. The database selected
was ISHOS, which is used to manage the following
aspects: information with regard to the patients
admitted; the events and movements associated with
the admitted patients; the situation with regard to

246

hospital beds; the nurses’ shifts; and the patients’
records. As illustrated in the previous subsection, the
following four steps were followed to carry out the
measurement:

1) Incorporation Databases

metamodel.

of Relational

2) Creation of model conforms to Relational
Database metamodel. In this case, the model (relational
schema) is the hospital management domain which is
composed of 29 tables with their corresponding
primary keys, foreign keys and attributes (the model
has not been represented due to space limitations).

3) Creation of measurement model conforms to
SMM. A software measurement model, which includes
the measures defined in [26] to evaluate the

maintainability of relational schemas, has been
represented by using SMML language. This model is
not illustrated in this paper owing to space limitations.

TABLE VIII. RESULT OF THE SOFTWARE MEASUREMENT PROCESS
(DATABASE MAINTAINABILITY)

NT (Number of tables) 29
NA (Number of attributes) 290
TMI (Tables Maintenance Index) 290/29 = 10% (Medium)
NFK (Number of Foreign Key) 40
SCI (Scheme Connectivity Index) 40/29 = 1,37 % (Medium)
RFK (Ratio of Foreign Key) 40/290 =0,14

4) Measurement execution: The results obtained in
order to execute the software measurement process are
presented in Table VIII. This step is automatic and
therefore completely transparent to the user.

VL

In this paper, a generic framework for the definition
of measurement models based on a common
metamodel, denominated as SMF, has been applied to
carry out the software measurement process in the
INDRA Company. The benefits of the SMF (which
follows the MDE paradigm to support model
measurement) discovered have been confirmed in two
main aspects:

e The software measurement process was
homogenized by using a common reference
framework. The company has perceived the
benefits of using a flexible framework to
measure any kind of model, regardless of the
type of entity it characterizes. At present,
diverse software tools are used to support
measurement activities in the company. These
tools are restricted to specific entities, are rigid
(no new measures can be defined) and store
results in highly heterogeneous formats which
make the decision making process more
difficult. With SMF, the measurement process
is completely user-transparent, and the user
task consists of selecting the domain
metamodel (the domain to be measured) and
defining the source models.

e Measurements can be modeled in the same way
as that in which the company builds models for
its software products (UML, databases, etc.).
SMF supports this key aspect by means of a
consistent metamodel and the SMML graphical
notation The measurement models contain all
the information necessary to support
measurement activities and therefore facilitate
the decision making process. These models are
automatically managed by the framework in

CONCLUSIONS AND FUTURE WORK

247

order to calculate the measures in the
corresponding attributes of the entities.

Among related future works, one important effort is
the realization of an Eclipse plug-in which will guide
the user in the application of the SMF methods and will
provide a smoother integration of the tools of which the
SMF technological environment is composed. This
plug-in will enable users to instantiate measurement
models in an easy and intuitive manner. A further
future work will be to align our metamodel with the
Software Metrics Meta-Model (SMM) OMG proposal
[27], which is at present in its development phase.
Finally, we shall apply SMF with parameterized
measurement methods to other real contexts to obtain

further refinements and validation.

ACKNOWLEDGEMENT

This work has been partially financed by the
following projects: INGENIO (Junta de Comunidades
de Castilla la Mancha, PAC08-0154-9262), ESFINGE
(Ministerio de Educacion y Ciencia, TIN2006-15175-
C05-05), ALTAMIRA (Junta de Comunidades de
Castilla-La Mancha, Fondo Social Europeo, PII2109-
0106-2463) and MEDUSAS (Centro para el Desarrollo
Tecnologico Industrial. Ministerio de Ciencia e
Innovacion, IDI-20090557).

REFERENCES

N. Fenton and S. L. Pfleeger, "Software Metrics: A Rigorous &
Practical Approach, Second Edition": PWS Publishing
Company, 1997.

(1]

[2] F. Garcia, M. Serrano, J. Cruz-Lemus, F. Ruiz, and M. Piattini,
"Managing Software Process Measurement: A Metamodel-
Based Approach", Information Sciences, vol. 177, pp. 2570—

2586, 2007.

J. Bézivin, F. Jouault, and D. Touzet, "Principles, standards
and tools for model engineering", in Proceedings of the 10th
IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS’2005), pp. 28-29, 2005.

B. Mora, F. Garcia, F. Ruiz, M. Piattini, A. Boronat, A.
Gomez, J. A. Carsi, and I. Ramos, "Software Measurement by
using QVT Transformation in an MDA context", in
Proceedings of the 10th International Conference on Enterprise
Information Systems - ICEIS 2008, vol. DISI, pp. 117-124,
Barcelona (Spain), 2008.

[5] S. Komi-Sirvio, P. Parviainen, and J. Ronkainen,
"Measurement Automation: Methodological Background and
Practical Solutions-A Multiple Case Study", in Proceedings of
the Seventh International Software Metrics Symposium
(METRICS'01), London, 2001.

R. Kempkens, P. Rosch, L. Scott, and J. Zettel, "Instrumenting
Measurement Programs with Tools", in Proceedings of the
PROFES 2000, Oulu, Finland, 2000.

T. Jokikyyny and C. Lassenius, "Using the internet to
comunicate software metrics in a large organization", in
Proceedings of the Proceedings of GlobeCom'99, 1999.

M. Brown and G. Dennis, "Measurement and Analysis: What
Can and Does Go Wrong?" 10th IEEE International
Symposium on Software Metrics (METRICS'04), pp. 131-138,
2004.

(3]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

(21]

[22]

[23
[24]

[}

M. Auer, B. Graser, and S. Biffl, "A Survey on the Fitness of
Commercial ~Software Metric Tools for Service in
Heterogeneous Environments: Common Pitfalls ", in
Proceedings of the Ninth International Software Metrics
Symposium. (Metrics '03), pp. 144, 2003.

E. Palza, C. Fuhrman, and A. Abran, "Establishing a Generic
and Multidimensional Measurement Repository in CMMI
context ", in Proceedings of the 28th Annual NASA Goddard
Software Engineering Workshop (SEW'03), pp. 12-22,
Greenbelt (Maryland, USA), 2003.

W. Harrison, "A flexible method for maintaining software
metrics data: a universal metrics repository”, Journal of
Systems and Software vol. 72, pp. 225-234 2004.

L. Lavazza and A. Agostini, "Automated Measurement of
UML Models: an open toolset approach", Object Technology,
vol. 4(4), pp. 115-134, 2005.

M. Scotto, A. Sillitti, G. Succi, and T. Vernazza, "A relational
approach to software metrics", in Proceedings of the
Proceedings of the 2004 ACM symposium on Applied
computing (SAC2004), pp. 1536-1540, Nicosia, Cyprus,
2004.

F. Garcia, F. Ruiz, J. Cruz, and M. Piattini, "Integrated
measurement for the evaluation and improvement of software
processes", in Proceedings of the Proceedings of the 9th
European Workshop on Software Process Technology
(EWSPT'9), Lecture Notes in Computer Science, vol. 2786, pp.
94-111, 2003.

M. Monperrus, J.-M. Jéezéquel, J. Champeau, Brigitte, and
Hoeltzener, "A Model-Driven Measurement Approach", in
Proceedings of the Proceedings of the ACM/IEEE 11th
International Conference on Model Driven Engineering
Languages and Systems (MODELS'2008), vol. 5301/2008, pp.
505-519, Nantes (France), 2008.

B. Mora, F. Garcia, F. Ruiz, and M. Piattini, "SMML: Software
Measurement Modeling Language", in Proceedings of the The
8th OOPSLA Workshop on Domain-Specific Modeling,
Nashville (Tennessee) EU, 2008.

F. Garcia, M. F. Bertoa, C. Calero, A. Vallecillo, F. Ruiz, M.
Piattini, and M. Genero, "Towards a consistent terminology for
software measurement", Information and Software Technology
vol. 48 (8), pp. 631-644 2006.

F. Garcia, F. Ruiz, C. Calero, M. F. Bertoa, A. Vallecillo, B.
Mora, and M. Piattini, "On the Effective Use of Ontologies in
Software Measurement", The Knowledge Engineering Review
(in press), vol. 0, pp. 1-24, 2008.

OMG, "QVT Standard Specification", 2005.

F. Garcia, M. Piattini, F. Ruiz, G. Canfora, and C. A. Visaggio,
"FMESP: Framework for the modeling and evaluation of
software processes", Journal of Systems Architecture - Agile
Methodologies for Software Production, vol. 52, pp. 627-639,
2006.

K. Smolander, K. Lyytinen, V.-P. Tahvanainen, and P.
Marttiin, "MetaEdit: A flexible graphical environment for
methodology modelling", in Proceedings of the CAiSE'91, 3rd
Intl. Conference on Advanced Information Systems
Engineering, vol. 498/1991, pp. 168-193, 1991.

J.-P. Tolvanen, R. Pohjonen, and S. Kelly, "Advanced Tooling
for Domain-Specific Modeling: MetaEdit+", in Proceedings of
the The 7th OOPSLA Workshop on Domain-Specific
Modeling, 2007.

"Medini QVT Home Page", 2009.
A. Boronat and J. Meseguer, "Algebraic Semantics of
EMOF/OCL Metamodels", CS Dept., University of Illinois at

Urbana-Champaign Technical Report UIUCDCS-R-2007-
2904, 2007.

248

[25] M. Genero, M. Piattini, and C. Calero, "A Survey of Metrics
for UML Class Diagrams", Journal of Object Technology vol.
4(9,), pp- 59-92, 2005.

[26] C. Calero, M. Piattini, and M. Genero, "Empirical validation of
referential integrity metrics", Information & Software
Technology. Special Issue on Controlled Experiments in
Software Technology, vol. 43(15), pp. 949-957, 2001.

[27] OMG, "Architecture-Driven Modernization (ADM): Software
Metrics Meta-Model (SMM). OMG Document: dmtf/2007-03-
02", Object Management Group 02-03-2007 2007.

