IGALT 2010 10th IEEE International Conference on

Advanced Learning Technologies

Conference Information Papers by Session Papers by Author Getting Started Search **Trademarks**

Sponsors:

Celebrating 125 Years of Engineering the Future **Published by**

Copyright © 2010 by The Institute of Electrical and Electronics Engineers, Inc.

All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and without change. Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer Society, or the Institute of Electrical and Electronics Engineers, Inc.

> IEEE Computer Society Order Number E4055 BMS Part Number: CFP10261-CDR ISBN 978-0-7695-4055-9

Additional copies may be ordered from:

IEEE Computer Society Customer Service Center 10662 Los Vaqueros Circle P.O. Box 3014 Los Alamitos, CA 90720-1314 Tel: + 1 800 272 6657 Fax: + 1 714 821 4641 http://computer.org/cspress csbooks@computer.org IEEE Service Center 445 Hoes Lane P.O. Box 1331 Piscataway, NJ 08855-1331 Tel: + 1 732 981 0060 Fax: + 1 732 981 9667 http://shop.ieee.org/store/ customer-service@ieee.org IEEE Computer Society Asia/Pacific Office Watanabe Bldg., 1-4-2 Minami-Aoyama Minato-ku, Tokyo 107-0062 JAPAN Tel: + 81 3 3408 3118 Fax: + 81 3 3408 3553 tokyo.ofc@computer.org

Individual paper REPRINTS may be ordered at: <reprints@computer.org>

Editorial production by Bob Werner Cover art production by Joe Daigle / Studio Productions

IEEE Computer Society Conference Publishing Services (CPS) http://www.computer.org/cps

Preface

The International Conference on Advanced Learning Technologies (ICALT) is an annual conference organized by IEEE Computer Society and IEEE Technical Committee on Learning Technology. It aims to bring together people who are working on the design, development, use and evaluation of technologies that will be the foundation of the next generation of e-learning systems and technology-enhanced learning environments. After its kick-off as IWALT in Palmerston North, New Zealand (2000), ICALT has been held in Madison, USA (2001), Kazan, Russia (2002), Athens, Greece (2003), Joensuu, Finland (2004), Kaohsiung, Taiwan (2005), Kerkrade, The Netherlands (2006), Niigata, Japan (2007), Santander, Spain (2008), and Riga, Latvia (2009). The 10th IEEE International Conference on Advanced Learning Technologies (ICALT2010) is held in Sousse, Tunisia, a city with rich culture and a long-standing tradition in computer-based learning.

The main topic of interest in ICALT2010 were: Learning Systems Platforms and Architectures, Rethinking Pedagogy in Technology-enhanced Learning, Adaptive and Personalized Technology-enhanced Learning, Intelligent Educational Systems, Computer Supported Collaborative Learning, Wireless, Mobile and Ubiquitous Technologies for Learning, Ambient Intelligence and Smart Environments for Learning, Digital Game and Intelligent Toy Enhanced Learning Systems, Affective and Pervasive Computing for Learning, Human-Centered Web Science and its Applications to Technology-enhanced Learning, Virtual Worlds for Academic, Organizational, and Life-Long Learning, e-Assessment and new Assessment Theories and Methodologies, Data Mining and Web Mining in Education, Knowledge and Competencies Management, Technology-Enhanced Language Learning, Advanced Learning Technologies for Disabled and Non-Disabled People, Technology-enhanced Science Education, International Alliance for Open Source, Open Standards, and federated repositories, School of the Future and Future Classrooms, and E-learning in the Workplace.

This year, the ICALT main conference received 302 papers from 48 countries (not counting the submissions received for various workshops). All submissions were peer-reviewed in a triple-blind review process by an international panel of at least three international expert referees and decisions were taken based on assessing research quality. We are very pleased to note that the quality of the submissions this year turned out to be very high. A total of 80 papers were accepted as full papers in the main ICALT conference, that is, a 26.49% acceptance rate. Furthermore, 81 papers were selected for presentation as short papers and 25 as posters.

We acknowledge the invaluable assistance of the program committee and the international referees, who are named on another page. Most reviewers opted to provide detailed comments to the authors, making it a valuable experience for the authors, even if their submission was not selected for the conference.

With all the effort that has gone into the process, by authors and reviewers, we are confident that this year's ICALT proceedings will immediately earn a place as an indispensable overview of the state of the art and will have significant archival value in the longer term.

Mohamed Jemni Kinshuk Demetrios Sampson J. Michael Spector

Editors July 2010

2010 10th IEEE International Conference on Advanced Learning Technologies

ICALT 2010 Table of Contents

Preface	xxi
Chairs / Committees	xxii
Reviewers	xxv

10th IEEE International Conference on Advanced Learning Technologies (ICALT 2010)

3D Digital Simulations in Participative Design of the Boulevard in Putrajaya:	
Implications on Academic, Organizational, and Informal Learning	1
Rashidah Ab. Rahman	
A 3D Educational Mobile Game to Enhance Student's Spatial Skills	6
Norena Martin-Dorta, Isabel Sanchez-Berriel, Miguel Bravo, Juan Hernandez,	
Jose Luis Saorin, and Manuel Contero	
A Chorus Learning Support System Based on the Tutoring Knowledge of	
the Chorus Leader	11
Mizue Kayama, Kazunori Itoh, Kazushi Asanuma, Masami Hashimoto, and Makoto Otani	
A Collaborative Mobile Virtual Campus System Based on Location-Based	
Dynamic Grouping	16
Qing Tan, Kinshuk, Yu-Lin Jeng, and Yueh-Min Huang	
A Conceptual Framework of Learning through Agent Negotiation	19
K. Robert Lai and Chung-Hsien Lan	
A Design for Integration of Web 2.0 and an Online Learning Community: A	
Pilot Study for IWiLL 2.0	22
I-Fan Liu, Meng Chang Chen, Yeali Sun, David Wible, and Chin-Hwa Kuo	
A Diversity-Enhanced Genetic Algorithm to Characterize the Questions of	
a Competitive e-Learning System	25
Elena Verdú, María Jesús Verdú, Luisa M. Regueras, and Juan Pablo de Castro	

A Flexible Mechanism for Providing Adaptivity Based on Learning Styles	
in Learning Management Systems	
Sabine Graf, Kinshuk, and Cindy Ives	
A Formative eAssessment Co-Design Case Study	35
D.A. Bacigalupo, W.I. Warburton, E.A. Draffan, P. Zhang, L. Gilbert, and G.B. Wills	
A Framework for Learning Through Mobile Qualitative Research	
Jorge Torres, César Cárdenas, Eduardo Juárez, Benjamín Valdés,	
and Juan Manuel Dodero	
A Game Based Learning Content for Tutoring in Simplifying Boolean	
Functions	43
Yong Suk Choi	
A Mobile Learning System for Syndromic Surveillance and Diagnosis	48
Jingyu Zhang, David Levy, and Shiping Chen	
A New Approach Based on Modelled Traces to Compute Collaborative	
and Individual Indicators Human Interaction	53
Tarek Djouad, Alain Mille, Christophe Reffay, and Mohammed Benmohammed	
A Perspective on Listening Comprehension: How ICT Enable a Chinese as	
a Foreign Language (CFL) Learner to Achieve Learning Metacognition	55
Mei Jen Audrey Shih and Jie Chi Yang	
A Portal-Based Gradebook - DAG-Based Definition of Assessment Criteria	
in Higher Education	58
Patrick Stalljohann and Ulrik Schroeder	
A Preliminary Study on Learners Physiological Measurements in Educational	
Hypermedia	61
Nikos Tsianos, Panagiotis Germanakos, Zacharias Lekkas, Anna Saliarou,	
Costas Mourlas, and George Samaras	
A Proposal to Improve the Simple Query Interface (SQI) of Learning Objects	
Repositories	64
Salvador Otón, José R. Hilera, Eva García, Antonio García, Luis de-Marcos,	
Antonio Ortíz, José A. Gutiérrez, José J. Martínez, José M. Gutiérrez, and Roberto Barchino	
A Set of Software Tools to Build an Author Assessment Package on Moodle:	
Implementing the AEEA Proposal	67
Beatriz E. Florián G., Silvia M. Baldiris, Ramón Fabregat, and Alexis De la Hoz Manotas	
A Social Network Analysis Perspective on Student Interaction within	
the Twitter Microblogging Environment	70
Karen Stepanyan, Kerstin Borau, and Carsten Ullrich	
A Trace-Based Learner Modelling Framework for Technology-Enhanced	
Learning Systems	73
Lemya Settouti, Nathalie Guin, Alain Mille, and Vanda Luengo	

Active Sharing of Contextual Learning Experiences among Users in Personal	
Learning Environments Using a Peer-to-Peer Network	
Amel Bouzeghoub and Ngoc-Kien Do	
ALGOWEB: A Web-Based Environment for Learning Introductory	
Programming	
Ricardo Vargas Dorneles, Delcino Picinin Jr., and André Gustavo Adami	
An Adaptive Method for Selecting Question Pools Using C4.5	
Ahmad Mustafa Seet and Imran A. Zualkernan	
An Approach for the Personalization of Exercises Based on Contextualized	
Attention Metadata and Semantic Web technologies	
Pedro J. Muñoz-Merino, Carlos Delgado Kloos, Martin Wolpers, Martin Friedrich,	
and Mario Muñoz-Organero	
An Architecture for Layering and Integration of Learning Ontologies, Applied	
to Personal Learning Environments and Cloud Learning Environments	
Alexander Mikroyannidis, Paul Lefrere, and Peter Scott	
An Audio Book Platform for Early EFL Oral Reading Fluency	94
Kuo-Ping Liu, Cheng-Chung Liu, Chih-Hsin Huang, Kuo-Chun Hung,	
and Chia-Jung Chang	
An Educational Environment for Training Skills for Global Software	
Development	
Miguel J. Monasor, Aurora Vizcaíno, and Mario Piattini	
An Evaluation of Diagnosis in a Learning Environment for Object-Oriented	
Modeling	
Ludovic Auxepaules and Dominique Py	
An Integrated Approach to Learning Object Sequencing	
Battur Tugsgerel, Rachid Anane, and Georgios Theodoropoulos	
An Integrated Model of Synchronous Cyber Assessment and Blended	
Learning Environment for Foreign Language Learners	
Sabrina Leone, Tommaso Leo, and Nian-Shing Chen	
An Investigation of the Enhancement and the Formal Description of IMS/QTI	
Specification for Programming Courses	
Ahlem Harchay, Lilia Cheniti-Belcadhi, and Rafik Braham	
An Online Arabic Learning Environment Based on IMS-QTI	116
Abdelkader Abdelkarim, Dalila Souilem Boumisa, and Rafik Braham	
An Online Collaborative Learning Platform with Annotation on Figures	119
Ping-Lin Fan, Hsueh-Wu Wang, Wei-Hsien Wu, Su-ju Lu, Min-Chung Ke,	
and Han-Jang Wu	
Analysis of the Advantages of Using Tablet PC in e-Learning	
Masahiro Ando and Maomi Ueno	

Analyzing Contextualized Attention Metadata with Rough Set Methodologies	
to Support Self-regulated Learning	
Maren Scheffel, Martin Wolpers, and Frank Beer	
Applying and Reusing Knowledge in a Repository	
I. Azevedo, A. Ortiz, C. Vaz de Carvalho, Rui Seiça, and E. Carrapatoso	
AR_Dehaes: An Educational Toolkit Based on Augmented Reality	
Technology for Learning Engineering Graphics	
Jorge Martín-Gutiérrez, Jose Luis Saorín, Manuel Contero, and Mariano Alcañiz	
ASK-LOM-AP: A Web-Based Tool for Development and Management	
of IEEE LOM Application Profiles	138
George Chloros, Panagiotis Zervas, and Demetrios G. Sampson	
Automarking: Automatic Assessment of Open Questions	143
Laurie Ane Cutrone and Maiga Chang	
Bringing the Social Semantic Web to the Personal Learning Environment	
Vlad Posea and Stefan Trausan-Matu	
Browsing E-Lecture Libraries on Mobile Devices: A Spatial Interaction	
Concept	
Jochen Huber, Jürgen Steimle, Simon Olberding, Roman Lissermann, and Max Mühlhäuser	
CARDS: A Metamodel Approach to Aggregate Outcomes of Learning Tools	
Emilio Julio Lorenzo and María Felisa Verdejo	
Case-Based Medical E-assessment System	
Rozemary Scarlat, Liana Stanescu, Elvira Popescu, and Dumitru Dan Burdescu	
Checking Semantic Consistency of SCORM like Learning Objects	
Ramzi Farhat, Bruno Defude, and Mohamed Jemni	
Children's Interactive Behavior and Strategy in a Multi-robots' Collaborative	
Environment	
Wu-Yuin Hwang, Sheng-Yi Wu, and Te-Yuan Yang	
Collaborative Development of an Augmented Reality Application	
for Digestive and Circulatory Systems Teaching	
David Pérez-López, Manuel Contero, and Marianno Alcañiz	
Combining Dialogue and Semantics for Learning and Knowledge Maturing:	
Developing Collaborative Understanding in the Web 2.0 Workplace	176
Andrew Ravenscroft, Simone Braun, and Tobias Nelkner	
Communication Patterns in Component-Based Intelligent Tutoring Systems	
Géraldine Ruddeck and Alke Martens	
Comparing Social Virtual Worlds for Educational Purposes	
Rosa Reis, Paula Escudeiro, and Nuno Escudeiro	
Computerized Adaptive Testing Based on Decision Tree	
Maomi Ueno and Pokpong Songmuang	

Continuous Use of Authoring for Adaptive Educational Hypermedia: A	
Long-term Case Study	194
Jonathan G.K. Foss, Alexandra I. Cristea, and Maurice Hendrix	
Course Ranking and Automated Suggestions through Web Mining	
Stavros Valsamidis, Ioannis Kazanidis, Sotirios Kontogiannis, and Alexandros Karakos	
Deepthink: A Second Life Environment for Part-time Research Students at	
a Distance	
L. Rapanotti, L. Barroca, M. Vargas-Vera, and A.J. Reeves	
Design and Evaluation of an Affective Interface of the E-learning Systems	
Hui-Chun Chuang, Chin-Yeh Wang, Gwo-Dong Chen, Chen-Chung Liu,	
and Baw-Jhiune Liu	
Design for Off-task Interaction - Rethinking Pedagogy in Technology	
Enhanced Learning	204
Agneta Gulz, Annika Silvervarg, and Björn Sjödén	
Design Study of OER-CC Ontology - A Semantic Web Approach to Describe	
Open Educational Resources	
Nelson Piedra, Janneth Chicaiza, Jorge López, Edmundo Tovar, and Oscar Martínez	
Designing a Collaborative Learning Activity in Second Life - An Exploratory	
Study in Physics	
Ioannis Vrellis, Nikiforos M. Papachristos, Joan Bellou, Nikolaos Avouris,	
and Tassos A. Mikropoulos	
Designing Game-Based Learning Framework - A Motivation-Driven	
Approach	
Kuo-chen Li, Jia-Chi Huang, Jia-Sheng Heh, Cheng-Ting Chen, Hui-Chih Wang,	
and Shiou-Wen Yeh	
Designing Tutoring Activity - An Extension of Two EMLs, Based on	
an Organizational Model of Tutoring	
Patricia Gounon and Pascal Leroux	
Developing a Collaborative E-Learning Environment Based upon Semantic	
Wiki: From Design Models to Application Scenarios	
Yanyan Li, Mingkai Dong, and Ronghuai Huang	
Development and Evaluation of Learning Support System Based on Automatic	
Classification of Students' Programs According to Difference from Standard	
Algorithm	
Satoru Kogure, Hiroyasu Takatsu, Tatsuhiro Konishi, and Yukihiro Itoh	
Digital Design Learning Patterns in Ambient Learning Environments	
Yacine Atif	
dinsEditor: A Browser Extension for QTI-Compliant Assessment Item	
Authoring	
Sungjae Han, Jinjoo Kim, Youngseok Lee, Jaehyuk Cha, and Byung-Uk Choi	

Educational Tool Based on Topology and Evolution of Hyperlinks in	
the Wikipedia	
Lauri Lahti	
Educational Webportals Augmented by Mobile Devices with	
iFrimousse Architecture	
Florent Carlier and Valérie Renault	
Effects of Adaptive Reflection Teaching Strategies on Learners' Reflection	
Levels in a Web-Based Learning Environment	
Nian-Shing Chen, Chun-Wang Wei, and Chia-Chi Liu	
E-learning Authoring with Docbook and SMIL	
Alberto González Téllez	
Emotional Strategies for Vocabulary Learning	
Ramla Ghali and Claude Frasson	
Enabling Communication and Feedback in Mass Lectures	
Mostafa Akbari, Georg Böhm, and Ulrik Schroeder	
Enabling the Use of Real World Objects to Improve Learning	
Katja Niemann and Martin Wolpers	
Engineering of Open Learning Scenarios - The Case of Hop3x Learning	
Scenarios	
El Amine Ouraiba, Christophe Choquet, Philippe Cottier, Christophe Despres, and Pierre Jacoboni	
Enhancing Educational Metadata with Mobile Assisted Language Learning	
Information	
Panagiotis Zervas and Demetrios G. Sampson	
Enhancing the Learning Experience by Addressing the Needs of the Learner	
Through Customization and Personalization in the Learning by Doing	
Methodology	
Surya Kiran Reddy K. and Sandhya Kode	
Evaluating a Brain-Computer Interface to Categorise Human Emotional	
Response	
Katie Crowley, Aidan Sliney, Ian Pitt, and Dave Murphy	
Evaluating Student Response Driven Feedback in a Programming Course	
José Luis Fernández Alemán, Dominic Palmer-Brown, and Chrisina Draganova	
Evaluating the Effectiveness and Motivational Impact of Replacing a Human	
Instructor by Mobile Devices for Teaching Network Services Configuration	
to Telecommunication Engineering Students	
Mario Muñoz-Organero, Gustavo Ramirez-Gonzalez, Pedro J. Muñoz-Merino, and Carlos Delgado Kloos	
Examining Learning Object Repositories from a Knowledge Management	
Perspective	
Pavlos Kallonis and Demetrios G. Sampson	

Examining the Effects of the Simultaneous Display of Students' Responses	
Using a Digital Pen System on Class Activity - A Case Study of an Early	
Elementary School in Japan	
Taro Sugihara, Takumi Miura, Motoki Miura, and Susumu Kunifuji	
Exploiting Semantic and Social Technologies for Competency Management	
Giovanni Acampora, Matteo Gaeta, Francesco Orciuoli, and Pierluigi Ritrovato	
Exploiting the Semantic Web for Interactive Relationship Discovery	
in Technology Enhanced Learning	
Steffen Lohmann, Philipp Heim, and Paloma Díaz	
Exploring the Development of Adaptable Learning Objects. A Practical	
Approach	
Voula Gkatzidou and Elaine Pearson	
Extending LMS with Collaborative Remote Lab Features	
Mario A. Bochicchio and Antonella Longo	
Extending Open Space Technology for Blended Learning	
Isabel Pereira and Antonio Dias Figueiredo	
Extending the IMS LD standard with Adaptability	
Valérie Monfort, Maha Khemaja, and Slimane Hammoudi	
Facilitating Learning Interests Through Mobile Information Visualization	
Yuan Xun Gu, Raymond Koon Chuan Koh, Vivian Hsueh-Hua Chen,	
and Henry Been-Lirn Duh	
Fade-out and Peer Monitor Techniques in Tools for Scripted Argumentation:	
Evaluation Results from a Case Study	
Yannis N. Bouyias, Stavros N. Demetriadis, and Anastasios Karakostas	
From a Personal Learning Environment to an Adaptable Personal Learning	
Environment: Meeting the Needs and Preferences of Disabled Learners	
Elaine Pearson, Voula Gkatzidou, and Steve Green	
From Mini Rover Programs to Algebraic Expressions	
G. Barbara Demo	
Helping Students Understand Courses through Written Syntheses: An	
LSA-Based Online Advisor	
Emmanuelle Villiot-Leclercq, Sonia Mandin, Philippe Dessus, and Virginie Zampa	
How to Instrument a Community of Practice Dedicated to Project Based	
Pedagogy Tutors: A Solution Based on Case Based Reasoning	
Céline Quénu-Joiron and Dominique Leclet	
How to See Training Paths in Learning Management Systems?	
Philippe Teutsch and Jean-Francois Bourdet	
iCALT: Intelligent Context-Aware Learning and Teaching Environment	
Shonali Krishnaswamy, Selby Markham, John Hurst, Steven Cunningham,	
Cyrill Labbe, Behrang Saeedzadeh, and Brett Gillick	

Identifying Animals with Dynamic Location-aware and Semantic	
Hierarchy-Based Image Browsing for Different Cognitive Style Learners	
Dunwei Wen, Ming-Chi Liu, Yueh-Min Huang, Kinshuk, and Pi-Hsia Hung	
Implementation of a Remote Analog and Digital Communications Laboratory	
for e-Learning	
Akram Abu-aisheh and Farid Farahmand	
Implementation of Web-Based Dynamic Assessment System and	
its Application on Science Learning	
Ah-Fur Lai, Chih-Hung Chen, and Horng-Yih Lai	
Implementing Psychological Parameters in a Web-Based Appraisal System	
Zacharias Lekkas, Nikos Tsianos, Costas Mourlas, Panagiotis Germanakos, and George Samaras	
Improve the Output from a MCQ Test Item Generator Using Statistical NLP	
Robert Michael Foster	
Increasing Motivation in a Multicultural Learning Setting	
S. Ortiz de Arri, M. Retegi, I. Calvo, A. Arruarte, J.A. Elorriaga, M. Larrañaga, and U. Rueda	
Increasing Students In-Class Engagement through Public Commenting: An	
Exploratory Study	
Honglu Du, Hao Jiang, Mary Beth Rosson, and John M. Carroll	
Indicators for Supporting the Regulation Process of Learners' Activities	
and the Teachers' Self-regulation Process	
Aina Lekira, Christophe Després, and Pierre Jacoboni	
Injecting Pedagogical Constraints into Sequential Learning Pattern Mining Mingming Zhou and Yabo Xu	
Instant Seat Mapping for Student Note Sharing Process	
Motoki Miura, Taro Sugihara, and Susumu Kunifuji	
Integration of External Tools in Virtual Learning Environments: Main Design	
Issues and Alternatives	
Carlos Alario-Hoyos, Juan I. Asensio-Pérez, Miguel L. Bote-Lorenzo,	
Eduardo Gómez-Sánchez, Guillermo Vega-Gorgojo, and Adolfo Ruiz-Calleja	
Interactive Search Interfaces for Young Children - The PuppyIR Approach	
Andreas Lingnau, Ian Ruthven, Monica Landoni, and Frans van der Sluis	
Interactive Widgets for Regualtion in Learning Games	
Thibault Carron, Jean-Charles Marty, and Stéphane Talbot	
Inter-University Co-operation by Using ViCaDiS Virtual Campus	
Radu Vasiu and Diana Andone	
Introducing Students to Aerospace Board Information Systems Using	
an Embedded Graphics System Simulator	
Pavel Paces and Martin Šipos	

Kernel for a Semantic Learning Platform with Adapted Suggestions	
Ioan Szilagyi, Radu Balog-Crisan, and Ioan Roxin	
Lab VIEW-Based Integrated Virtual Learning Platform	403
Learner Centrel on Ecodhook: A New Extension to Adaptive Learning?	406
Mishe Venderungtene und Kelle Wentene	
Mieke Vanaewaetere and Kelly Wauters	
Learning Biology with the Animated Agent in Game Based Learning	100
HSIN I TUNG	
Learning by Pet-training Competition: Alleviating Negative Influences	
of Direction Competition by Training Pets to Compete in Game-Based	
Environments	411
Zhi-Hong Chen, Calvin C.Y. Liao, and Tak-Wai Chan	
Learning Styles and Teaching Strategies to Improve the SCORM Learning	
Objects Quality	
Javier Enrique Rojas Moreno and Bruno Defude	
Learning Technology Standards Adoption Process Improvement and Output	
Legitimacy	417
Paul A. Hollins and Tore Hoel	
Learning Words Using Augmented Reality	
Carmen M. Juan, Edith Llop, Francisco Abad, and Javier Lluch	
Managing the Production and Evolution of e-learning Tools with Attribute	
Grammars	
Bryan Temprado-Battad, Antonio Sarasa-Cabezuelo, and José Luis Sierra	
Model-Driven Development of Context-aware Adaptive Learning Systems	
Jihen Malek, Mona Laroussi, Alain Derycke, and Henda Ben Ghezala	
Modeling Adaptive Situations According with Context and Learning Scenarios	
Ana Marilza Pernas, José Palazzo M. de Oliveira, and Amel Bouzeghoub	
Modelling Affect in Learning Environments - Motivation and Methods	
Shazia Afzal and Peter Robinson	
Modelling Computer Game Based Educational Experience for Teaching	
Children about Emergencies	
Mario Rafael Ruiz Vargas, Telmo Zarraonandia, Paloma Díaz, and Ignacio Aedo	
Monitoring Learning Experiences and Styles: The Socio-emotional Level	
Chiara Spadavecchia and Carlo Giovannella	
Multi-Object Oriented Augmented Reality for Location-Based Adaptive	
Mobile Learning	
William Chang, Qing Tan, and Fang Wei Tao	
Multiple Usability Evaluations of a Program Animation Tool	
Antonio Pérez Carrasco, J. Ángel Velázquez Iturbide, and Jaime Urquiza Fuentes	

Multi-User 3D Virtual Environment for Spanish Learning: A Wonderland	
Experience	455
María Blanca Ibáñez, José Jesús García, Sergio Galán, David Maroto, Diego Morillo,	
and Carlos Delgado Kloos	
Offering Early Success Experiences in Software Construction: Experiences	
Teaching Dynamic Website Development to High School Girls	458
Mary Beth Rosson, Hansa Sinha, Tisha Hansford, and Jan Mahar	
On Improving Learning Outcomes Through Sharing of Learning Experiences	461
Au Thien Wan, Shazia Sadiq, and Xue Li	
On the Design of Learning Objects Classifiers	464
Marcelo Mendoza and Carlos Becerra	
Ontology-Based Solution for Personalized Recommendations in E-Learning	
Systems. Methodological Aspects and Evaluation Criterias	469
Mihaela Brut and Florence Sèdes	
OPENET4VE: A Platform for the Execution of IMS LD Units of Learning	
in Virtual Environments	472
Beatriz Fernández-Gallego, Manuel Lama, Juan Carlos Vidal, Eduardo Sánchez,	
and Alberto Bugarín	
Pedagogical Deigns and Principles in Vocational Training: The Case	
of ELEVATE	
Iraklis Paraskakis, Andreas Konstantinidis, and Ikaros Tsantekidis	
Perceptions and Illusions about Adaptivity and Their Effects on Learning	
Outcomes	
Mieke Vandewaetere and Geraldine Clarebout	
Personalized Game Based Mobile Learning to Assist High School Students	
with Mathematics	
Vani Kalloo, Kinshuk, and Permanand Mohan	
Personalizing Learning Processes by Data Mining	
Rainer Knauf, Yoshitaka Sakurai, Kohei Takada, and Setsuo Tsuruta	
Playing Games on the Screen: Adapting Mouse Interaction at Early Ages	
J. Enrique Agudo, Héctor Sánchez, and Mercedes Rico	
Prediction of Players Motivational States Using Electrophysiological Measures	
during Serious Game Play	
Lotfi Derbali and Claude Frasson	
Read/Write Lectures: Fostering Active Participation and Increasing Student	
Engagement in the Lecture Hall	
Kai Michael Höver and Michael Hartle	
Re-engineering of Pedagogical Scenarios Using the Data Combination	
Language and Usage Tracking Language	
Diem Pham Thi Ngoc, Sébastien Iksal, and Christophe Choquet	

Re-engineering of the Apprenticeship Electronic Booklet: Adaptation to New	
Users Requirements	511
Lahcen Oubahssi, Pierre Laforcade, and Philippe Cottier	
Relationships between E-Learning Systems and Learning Outcomes: A Path	
Analysis Model	516
Sean Eom	
Remote Permission Management in Third-Party Tools and e-Learning Systems	
Jorge Fontenla González, Manuel Caeiro Rodríguez, and Martín Llamas Nistal	
Re-thinking the Forum	
Andrea Camusi and Carlo Giovannella	
Retrieval Information Model for Moodle Data Visualization	
D.A. Gómez-Aguilar, M.Á. Conde-González, R. Therón, and F.J. García-Peñalvo	
Reusing Adaptation Strategies in Adaptive Educational Hypermedia Systems	
Joshua Scotton and Alexandra I. Cristea	
Scripted Collaborative Learning Based on Collaborative Learning Flow	
Patterns: A Case Study Using COLLAGE Editor	533
Nikos P. Michailidis, Stavros N. Demetriadis, and Yannis A. Dimitriadis	
SeGAE: A Serious Game Authoring Environment	538
Amel Yessad, Jean-Marc Labat, and François Kermorvant	
Self-Esteem Conditioning for Learning Conditioning	
Imène Jraidi, Maher Chaouachi, and Claude Frasson	
Similarity Contents Selection Mechanism for Learner's Device Using Delivery	
Context Ontology and Rules	
Yoonsoo Lee, Hyunoh Doh, Haanwoong Choi, and Jaehyuk Cha	
Simple Learning Design 2.0	549
Guillaume Durand, Luc Belliveau, and Benjamin Craig	
Smart Timetable Plate for Classroom	
Yuan-Chih Yu, Shing-chern D. You, and Dwen-Ren Tsai	
Spatializing Social Practices in Mobile Game-Based Learning	555
Susan Gwee, Yam-San Chee, and Ek-Ming Tan	
Students Attitude and Learning Effectiveness of Emotional Agents	558
K. Chatzara, C. Karagiannidis, and D. Stamatis	
Student-Produced Vodcasts as Active Metacognitive Learning	
Andrew Litchfield, Laurel Evelyn Dyson, Marijke Wright, Sojen Pradhan,	
and Barbara Courtille	
Students' Perceptions of the Factors Leading to Unsuccessful Group	
Collaboration	
Shuangyan Liu, Mike Joy, and Nathan Griffiths	
Students' Competitive Preferences on Multiuser Wireless Sensor Classroom	
Interactive Environment	
Ben Chang and Chien Wen Chen	

Supporting Cognitive Competence Development in Virtual Classrooms -	
Personal Learning Management and Evaluation Using Pedagogical Agents	
Stefan Weinbrenner, H. Ulrich Hoppe, Linda Leal, Milcon Montenegro,	
William Vargas, and Luis Maldonado	
Supporting Collaborative Learning Processes in CVEs by Augmenting Student	
Avatars, with Nonverbal Communication Features	
Thrasyvoulos Tsiatsos and Theodouli Terzidou	
Supporting Exception Handling in Scripted Collaborative Courses	
Roberto Perez-Rodriguez, Manuel Caeiro-Rodriguez, and Luis Anido-Rifon	
Supporting High-quality Early Childhood Education Services throught ICTs	
Rubén Míguez, Juan M. Santos, and Luis Anido	
Supporting Instructors in Designing Tablet PC-Based Courses	
José-Vicente Benlloch-Dualde, Félix Buendía, and Juan-Carlos Cano	
Supporting Partially Distributed, Case-Based Learning in an Advanced	
Undergraduate Course in Usability Engineering	
Hao Jiang, John M. Carroll, Marcela Borge, and Craig Ganoe	
Taking Advantage of Web 2.0 and Video Resources for Developing a Social	
Service: Babelium Project, the Web Community for Foreign Language	
Speaking Practice	
Silvia Sanz Santamaría, Juan Antonio Pereira Varela, and Juilán Gutiérrez Serrano	
Tangible Cubes Used as the User Interface in an Augmented Reality Game	
for Edutainment	
Carmen M. Juan, Giacomo Toffetti, Francisco Abad, and Juan Cano	
The CAE-L Cultural Framework: Definition, Instances and Web Service	604
Craig Stewart, Tim Brailsford, Krishna Chandramouli, and Alexandra I. Cristea	
The Design and Application of an Automatic Course Generation System	
for Large-Scale Education	607
Xiaohong Tan, Carsten Ullrich, Yan Wang, and Ruimin Shen	
The Effects of Prior Computer Experience and Gender on High School	
Students' Learning of Computer Science Concepts from Instructional	
Simulations	610
Ming-Puu Chen	
The Emotional Machine: A Machine Learning Approach to Online Prediction	
of User's Emotion and Intensity	
Amine Trabelsi and Claude Frasson	
The Integrated Lab: An Assessment to Combining Classroom Curriculum	
and Lab Experiments to Teach Information Systems Development Course	618
Khalid A. Nafjan	
The STELLAR Science 2.0 Mash-Up Infrastructure	
Fridolin Wild, Thomas Daniel Ullmann, and Peter Scott	

T-learning in Telecommunication Engineering: The Value of Interactive	
Digital TV in the European Higher Education Area	624
Martín López-Nores, Yolanda Blanco-Fernández, José J. Pazos-Arias,	
and Jorge García-Duque	
Tool for Generation IMS-QTI v2.1 Files with Java Server Faces	627
Antonio García, Roberto Barchino, Luis de Marcos, Eva García, José-Ramón Hilera,	
José-María Gutiérrez, Salvador Otón, José-Javier Martínez, and José-Antonio Gutiérrez	
Towards a Competence Based System for Recommending Study Materials	
(CBSR)	
Athitaya Nitchot, Lester Gilbert, and Gary B. Wills	
Towards a Distributed Architecture for Adaptive E-Learning System	
Sarab Al Muhaideb, Salah Hammami, and Hassan Mathkour	
Towards an Enhanced Approach for Peer-Assessment Activities	637
Mohammad AL-Smadi, Christian Gütl, and Frank Kappe	
Towards Intelligent Collaborative Learning Simulations: Extending the IMS	
LD Standard by Web Semantic Based ITSs	642
Maha Khemaja, Sameh Ghallabi, and Valérie Monfort	
Towards the Generalization of Game-Based Learning: Integrating Educational	
Video Games in LAMS	644
Ángel del Blanco, Javier Torrente, Pablo Moreno-Ger, and Baltasar Fernández-Manjón	
Toys++ AR Embodied Agents as Tools to Learn by Building	649
Luca Simeone and Salvatore Iaconesi	
Transfer of Educational Methods through Open Sourcing of Learning	
Management Systems	651
Imed Hammouda, Rami Laine, and Jari Peltonen	
Using Feedback Tags and Sentiment Analysis to Generate Sharable Learning	
Resources Investigating Automated Sentiment Analysis of Feedback Tags in	
a Programming Course	653
Stephen Cummins, Liz Burd, and Andrew Hatch	
Using Interactive Videoconference to Promote Active Learning in a Blended	
Learning Environment	658
Covadonga Rodrigo, José Luis Delgado, and Jorge Vega	
Using SaaS and Cloud Computing for "On Demand" E Learning Services	
Application to Navigation and Fishing Simulator	
Valérie Monfort, Maha Khemaja, Nouha Ammari, and Fayssal Fehli	
Using Semantic Documents and Social Networking in Authoring of Course	
Material: An Empirical Study	666
Saša Nešic, Mehdi Jazayeri, Monica Landoni, and Dragan Gaševic	
Using Tangible Learning Companions in English Education	671
Yi Hsuan Wang, Shelley S.C. Young, and Jyh-Shing Roger Jang	

Web-Based Intelligent Tutoring Systems Using the SCORM 2004	
Specification - A Conceptual Framework for Implementing SCORM	
Compliant Intelligent Web-Based Learning Environments	676
Gustavo Santos and Álvaro Figueira	
Web Tests in LMS Using Fingerprint Identification	679
Charo Gil, Manuel Castro, Mudasser F. Wyne, and Russ Meier	
What You Check is What You Get: Authoring with jEditOQMath	
Paul Libbrecht	
Winkball for Schools: An Advanced Video Modelling Technology	
for Learning Visual and Oral Communication Skills	
WOntoVLab: A Virtual Laboratory Authorship Process Based on Workflow	
and Ontologies	690
Daniel C. Cugler, Cristiane A. Yaguinuma, and Marilde T.P. Santos	
Doctoral Consortium	
Appropriating Technology-rich Learning Spaces	695
Naala Panilal Change Management and Social Networks: The Engling Role of a Learning	607
Sara Sterlocchi and Aurelio Rayarini	
Developing Adaptive and Personalized Distributed Learning Systems	
with Semantic Web Supported Multi Agent Technology	600
Rirol Ciloglugil and Mustafa Murat Inceoglu	
Model-Driven Development in the Production of Customizable Learning	
Objects	
Maria de Fátima C. de Souza, José A. de Castro Filho, and Rossana M.C. Andrade	
Offline Mobile Learning: Open Platforms for ICT4D	
Sujan Shrestha, John P.T. Moore, and Jose Abdelnour-Nocera	
Self-and Co-Regulation in a Computer Supported Collaborative Learning	
Environment among Key Stage Three Students	705
Eunice Eyitayo Olakanmi	
Advanced Learning Technologies for Disabled and Non-Disabled Peop	le (WALTD)
An Approach for Designing and Implementing a Computerized Adaptive	
Testing Tool for Applicants with Disabilities	708
Monjia Balloumi, Mohsen Laâbidi, and Mohamed Jemni	
How to Support Disabled and Non-disabled Learners with the ACCLIP	
Information Model	710
Kalthoum Rezgui	
Personalizing Accessibility to E-Learning Environments	712
Mohsen Laabidi and Mohamed Jemni	

Representing Contextual Features of Subtitles in an Educational Context	714
Marion Hersh and James Ohene-Djan	
Synote: Designed for all Advanced Learning Technology for Disabled	
and Non-Disabled People	716
Mike Wald	
Technology-enhanced Training for All: Evaluation Results from the Use of	
the e-Access2Learn Framework	718
Demetrios G. Sampson and Panagiotis Zervas	
User Centered Model to Provide Accessible e-Learning Systems	
Halima Hebiri, Mohsen Laabidi, and Mohamed Jemni	

Design Centered and Personalized Learning in Liquid and Ubiquitous Learning Places (DULP) Future Visions and Practical Implementations

An Innovative Approach to Improve the Performances of the Research	
Community	
Claudia Grieco, Giuseppina Rita Mangione, Francesco Orciuoli, and Anna Pierri	
An Ontology Based Approach for Selection of Appropriate E-learning	
Personalization Strategy	724
Fathi Essalmi, Leila Jemni Ben Ayed, and Mohamed Jemni	
A Collaborative Ubiquitous Learning Approach for Conducting Personal	
Computer-Assembling Activities	
Judy C.R. Tseng, Chih-Hsiang Wu, and Gwo-Jen Hwang	
DULP Perspectives in a Learning Management System	
Francesco Di Cerbo, Gabriella Dodero, and Paola Forcheri	
Expanding the Learning Environment: Combining Physicality and Virtuality -	
The Internet of Things for eLearning	730
Muriel Garreta Domingo and Juan Antonio Mangas Forner	
From Learning Styles to Experience Styles	
Carlo Giovannella, Andrea Camusi, and Chiara Spadavecchia	
Implementation of Affective States and Learning Styles Tactics in Web-Based	
Learning Management Systems	734
Farman Ali Khan, Sabine Graf, Edgar R. Weippl, and A Min Tjoa	
Instructional Design with PoEML in a E-learning-as-a-Service Model. Mixing	
Web and IPTV Learning Experiencies	736
Manuel Caeiro-Rodriguez, Jorge Fontenla-González, Roberto Pérez-Rodríguez,	
and Luis Anido-Rifón	
Mobile Learning & Commuting: Contextual Inquiry and Design of Mobile	
Scenarios	
Eva Patricia Gil-Rodríguez and Pablo Rebaque-Rivas	
Prete-a-apprendre+: Towards Ubiquitous Wearable Learning	740
Imran A. Zualkernan, Nihal Al-Khunaizi, Sara Najar, and Nour Nour	

Towards a More Fluid Learning Environment Based on Virtual Communities Luigi Colazzo, Andrea Molinari, and Nicola Villa	.742
The Trend and Development of Game and Toy Enhanced Learning	
An Analysis of Students' Intention to Use Ubiquitous Video Game-Based	
Learning System	.744
Chun-Yi Shen, Han-Bin Chang, Wen-Chih Chang, and Te-Hua Wang	
Game-play as Knowledge Transformation Process for Learning	.746
Ming-Puu Chen and Chun-Yi Shen	
Pilot Study of Past Decade Game-Based Learning Journal Papers Survey	
from the Technology Perspective	.748
Ben Chang	
Using Game Quests to Incorporate Learning Tasks within a Virtual World	.750
Zhi-Hong Chen and Tak-Wai Chan	
Tutorial	
Learning Math and Statistics on the Cloud, Towards an EC2-Based Google	
Docs-like Portal for Teaching / Learning Collaboratively with R and Scilab	.752
Karim Chine	
Author Index	.754

An Educational Environment for Training Skills for Global Software Development

Miguel J. Monasor University of Castilla-La Mancha Campus Universitario s/n, 02071, Albacete, Spain MiguelJ.Monasor@gmail.com Aurora Vizcaíno, Mario Piattini Alarcos Research Group, Institute of Information Technologies & Systems Escuela Superior de Informática University of Castilla-La Mancha Paseo de la Universidad 4, 13071, Ciudad Real, Spain {Aurora.Vizcaino, Mario.Piattini}@uclm.es

Abstract— Global Software Development (GSD) is a recent trend that allows team members to be located on different remote sites, thus forming a network of virtual teams working on the same projects which confront the typical problems caused by distance. The stakeholders involved in the project must be trained to deal with communication difficulties such as those related to cultural and language differences or the appropriate use of groupware tools when English is used as the lingua franca.

We present a simulator which allows universities and companies to train students or inexpert engineers in the new challenges introduced by GSD, thus avoiding the problems that this activity entails in real settings. Our proposal places nonnative English speakers in predefined virtual GSD scenarios in which they will interact with virtual agents of different cultures that play different roles in the project.

Keywords- Global Software Development; Teaching Model; Educational Environment; Simulators; Software Engineering Education; Global Requirements Elicitation; Virtual Agents

I. INTRODUCTION

Global Software Development (GSD) [1] is an emerging trend of the software industry whose main objective is to take advantage of the wider availability of a skilled workforce in decentralized zones, thus allowing team members to be located on various remote sites and forming a network of virtual teams that interact by using collaborative tools.

Problems, caused mainly by distance, frequently appear in these environments: inadequate communications, language and cultural differences, time differences and knowledge management complexity [2]. Communication is less fluid than in co-localized settings because of the high response delays, lack of face-to-face contact and misunderstandings, which may cause frustration and a lack of motivation. One of the main challenges in GSD is to achieve a common understanding and trust between multicultural and multilingual teams [2]. Frequently, engineers are not prepared to confront these new challenges which are not part of their conventional education. In addition, training these skills is a complex task, as it requires preparing learners to deal with people who have different customs, languages, beliefs, skills and ways of interacting [3]. In this sense, learner must know the different cultures involved in the communication in order to avoid conflicts that can appear as a consequence of an inappropriate interaction [4]. The knowledge of a common language and the use of a common terminology are essentials to reach an understanding. However, engineers must also learn to manage uncertainty and ambiguity present in GSD environments. Finally, they must also have experience in the use of knowledge management tools and develop leadership, time management and cognitive skills [4].

The interaction between distributed members requires the use of technology such as e-mail, video conference, wiki and instant messaging [2]. Groupware skills are therefore a key requirement in GSD. However, recently graduated professionals generally lack these skills since they have seldom been involved in real projects [3]. Many strategies found in literature address the teaching and training of students and software engineers in GSD through academic courses [5] or learning environments [6]. However, reproducing the complexity of real environments in universities is difficult since it requires a great deal of coordination between different universities [3]. Furthermore, companies are not always willing to invest time and resources in training programs, which might be too risky in real scenarios.

In this work, we present a simulator that permits active training, with which students can learn by interacting with Virtual Agents (VAs) and can confront typical language and cultural problems, thus avoiding the impact of mistakes in real settings. VAs are characterized by a particular culture and will place learners in GSD scenarios specifically designed to improve their capabilities with regard to cultural and language differences. This will permit self-sufficient training at any time without requiring coordination with other members.

II. GSD SIMULATOR

Our simulator uses VAs that behave like people from different nationalities in order to train learners to confront cultural and language differences through the use of textual dialogues. The VAs have personalities and display emotions, and use text-to-speech capabilities, appearing to care about the students' actions in order to increase their motivation.

VAs can play any role in a GSD project, such as customer, requirements analyst, developer, project manager, etc., thus allowing the student to be placed in a wide range of realistic scenarios. We have, moreover, also designed a VA which always plays the role of Virtual Colleague (VC) or team mate [7] which will help learners to cope with the scenario by guiding them through certain steps.

Our simulator has been based on a client-server architecture. Both the instructors and learners have an interface with which to access the services provided by the central server.

The **instructors' interface** allows managing learners' information and tasks, validating automatic corrections and examining students' actions. It also allows existing training scenarios to be edited and new ones to be created, along with defining new VAs with specific cultures and personalities, thus providing a customizable environment.

The **learners' interface** allows them to execute the available scenarios. Firstly, the VC will present the scenario in which the learner will have a simulated meeting to both the learners and the VAs involved. The VC will guide the users through the scenario and will correct any inappropriate interventions with the goal of allowing the learners to realize what is or is not correct and to learn from their mistakes. After the scenario has been executed, the learners will normally have to fill in certain documents, pass an exam or fill in a questionnaire that can be automatically or semi-automatically evaluated.

The server side provides all the services required by the clients and will manage all the administrative information associated with instructors and learners (exams, grades, learners' status, etc.) as well as the GSD scenarios containing all the information required for their execution and the conversational, cultural and language knowledge associated containing general purpose rules and best practices.

In this sense, **cultural knowledge** is based on the existing literature of Hall [8] and Hosfstede [9] and deals with cultural dimensions for each pair of cultures considering: the use of titles, presentations and greetings, starting and finishing a conversation, motivation and rewards, requests, negotiations, conflicts resolution, etc. The **language knowledge** base contains the rules for all the language pairs that the VC will use in order to correct learners' mistakes, such as those that take place when English is used as a lingua franca [10]: the incorrect use of "false friends", incorrect plural formations, avoidance of passive forms, the absence of the third person, the use of high semantic generality, etc.

A. Scenarios definition

Our scenarios are defined by a VC and one of more VAs (shown Figure 1), that will interact with students by using a chatbot system [11] which will answer the students' questions in the context of a GSD problem, using natural language by simulating stakeholders of different nationalities with different appearances, cultures, gestures and voices.

Both the VAs and the VC guide the scenario by concentrating on the *Meeting Workflow* in order to follow a logical sequence during the conversation, in which each phase of the workflow matches a concrete part of the conversation. We also employ decision points that send learners in different directions based on their responses or actions. In this way, we immerse learners in a story in which they can influence its outcome. The information is placed in a context and revealed in a linear fashion, prompting the student to choose between several responses that influence the execution of the scenario. This architecture makes it possible to simulate profound and insightful conversations, avoiding speech repetitions and out of context interventions.

Each phase of the workflow has a concrete *conversational knowledge* and also a context specific *language* and *cultural knowledge*. The phase also contains information about its priority in those cases in which learners can choose a path, and this serves to evaluate their actions.

While interacting with the learner, the VC detects cultural problems and the inappropriate use of language by using these knowledge bases, and proposes a more correct manner in which to construct the sentence for that culture. If the learner chooses a wrong path in the scenario, the VC can also help him/her by providing immediate feedback. This helps to reduce the loss of time on incorrect paths, removes unnecessary complexity in the scenario design and prevents the learner from returning to a previous conversation.

III. TEACHING REQUIREMENTS ELICITATION

Since GSD is a highly extensive area, we have focused our initial efforts on the Requirements Elicitation (RE) stage, since this *is a highly communicative process* particularly affected by poor communication, and difficulties regarding cultural and time differences.

We propose a scenario for our simulator in which the learner, playing the role of interviewer, will interact with VAs through several simulated elicitation meetings using English as the lingua franca in order to elicit a set of software requirements. For this purpose, we have prepared the culture and language knowledge of the scenario to include the typical problems that Spanish people have when using English.

In this case, the VC will explain the context of the problem and will introduce the VAs and their culture and role in the project. The scenario continues with the interview, according to our Meeting Workflow which is oriented to the elicitation of a set of functional requirements as well as a set of storage requirements. As we show in the example in Figure 2, a Meeting Workflow can contain sub-flow charts that guide the scenario in the context of that phase. In this example, the main workflow contains the sub-workflow "identify storage requirements". Each simple phase contains the context-specific conversational knowledge and language and cultural problems that can appear during the interaction. Concretely in the "security policy" phase of the example we see the patters that will use the chatbot for the VA and the VC, and also how we deal with a typical false-friend mistake and how the VC will correct the learner when he/she improperly refers to a person. After completing all the meetings, learners will fill in a requirements document with the requirements detected.

Figure 2. Meeting workflow example

IV. CONCLUSIONS AND FUTURE WORK

In this work we have presented a training simulator that introduces learners to GSD activities. The usage of VAs implies many advantages, since they are always available so trainers can work with them at any moment. VAs can simulate the behavior of people from many countries, playing different personalities and thus giving users the opportunity to train in many different scenarios. This simulator helps the students to develop the skills needed when working in GSD, especially regarding to cultural and language differences.

In a preliminary phase we have focused our research on RE meetings. However, in the future we hope to deal with other stages of GSD in which other types of meeting might take place and language and cultural problems might appear (e.g. tracking meetings, negotiation meetings, project initiation meetings, etc.). This will allow us to provide a wide variety of training scenarios dealing with several of the typical situations in GSD, in order to obtain a complete and autonomous training environment that will require a minimum effort on the part of the instructor, thus allowing learners to train at any moment without depending on the availability of other partners or colleagues.

ACKNOWLEDGMENT

This work has been funded by the PEGASO/MAGO project (Ministerio de Ciencia e Innovación MICINN and Fondo Europeo de Desarrollo Regional FEDER, TIN2009-13718-C02-01). It is also supported by the ENGLOBAS (PII2I09-0147-8235) and MELISA (PAC08-0142-3315) projects, Junta de Comunidades de Castilla-La Mancha, Consejería de Educación y Ciencia, in Spain, and also by the FABRUM project (PPT-430000-2008-063), Ministerio de Ciencia e Innovación, in Spain.

REFERENCES

- [1] J. D. Herbsleb, "Global Software Engineering: The Future of Socio-technical Coordination," presented at the Future of Software Engineering (FOSE 07), 2007.
- [2] D. Damian, *et al.*, "Addressing the Challenges of Software Industry Globalization: The Workshop on Global Software Development," *ICSE*, pp. 793-794, 2003.
- [3] D. Damian, et al., "Instructional design and assessment strategies for teaching global software development: A framework," presented at the Proceedings of the 28th international conference on Software engineering, Shanghai, China, 2006.
- [4] A. Aken and M. D. Michalisin, "The impact of the Skills Gap on the Recruitment of MIS Graduates," in *SIGMIS-CPR'07*, St. Luis, Missouri, USA., 2007.
- [5] C. Murphy, *et al.*, "A distance learning approach to teaching eXtreme programming," *SIGCSE Bull.*, vol. 40, pp. 199-203, 2008.
- [6] T. Schümmer, *et al.*, "Teaching distributed software development with the project method," presented at the Proceedings of th 2005 conference on Computer support for collaborative learning: learning 2005: the next 10 years!, Taipei, Taiwan, 2005.
- [7] C.-Y. Chou, et al., "Redefining the learning companion: the past, present, and future of educational agents," *Comput. Educ.*, vol. 40, pp. 255-269, 2003.
- [8] E. T. Hall, Beyond Culture: Anchor Press, 1976.
- [9] G. Hofstede and G. J. Hofstede, *Cultures and organizations: software of the mind*, 2nd ed. New York, NY, USA, 2005.
- [10] J. Grzega, "Reflection on Concepts of English for Europe: British English, American English, Euro-English, Global English," *Journal for EuroLinguistiX* 2, pp. 44-64, 2005.
- [11] R. S. Wallace, "The Anatomy of A.L.I.C.E," in *Parsing the Turing Test*, S. Netherlands, Ed., ed, 2008, pp. 181-210.