
Capturing Data Quality Requirements for Web
Applications by means of DQ_WebRE

César Guerra-García
Department of Information

Technologies, UPSLP.
Urbano Villalón 500

78363, San Luis Potosí, México
Cesar.Guerra@upslp.edu.mx

Ismael Caballero
Department of Information

Technologies and Systems, UCLM.
Paseo de la Universidad 4
13071, Ciudad Real, Spain

Ismael.Caballero@uclm.es

Mario Piattini
Department of Information

Technologies and Systems, UCLM.
Paseo de la Universidad 4
13071, Ciudad Real, Spain
Mario.Piattini@uclm.es

ABSTRACT
The number and complexity of Web applications which are part of
Business Intelligence (BI) applications had grown exponentially
in recent years. The amount of data used in these applications has
consequently also grown. Managing data with an acceptable level
of quality is paramount to success in any organizational business
process. In order to raise and maintain the adequate levels of Data
Quality (DQ) it is indispensable for Web applications to be able to
satisfy specific DQ requirements. In order to achieve this goal,
DQ requirements should be captured and introduced into the
development process together with the other software
requirements needed in the applications. However, in the field of
Web application development, and to the best of our knowledge,
no proposals exist with regard to the way in which to manage
specific DQ software requirements. This paper considers the
MDA (Model Driven Architecture) approach and, principally, the
benefits provided by Model Driven Web Engineering (MDWE) in
order to put forward a proposal for two artifacts. These two
artifacts are a metamodel and a UML profile for the management
of Data Quality Software Requirements for Web Applications
(DQ_WebRE).

Keywords
Data Quality, Web Engineering, Requirements Engineering,
Model Driven Web Engineering, Requirements Modeling.

1. INTRODUCTION
Many companies currently manage a large amount of their
business intelligence data through Web applications. The use of
these applications has created new ways for enterprises to benefit
from the vast potential of client relationships, which has never
previously been exploited [1]. However, problems caused by
inadequate levels of quality in the data which flows through these
Web applications arise more commonly than expected [2, 3].
Batini et al. in [4] mention some examples of common situations
in which Information Systems that use data with inadequate levels
of quality have negatively affected the work of employees, and
consequently the organization’s performance.

It can be proven that these problems provoke different kinds of
damage within organizations [5-9]. This damage is transformed
into higher and higher costs in both economical and social terms
[10-12], but it is only when organizations become aware of the
situation that they are willing to eradicate this kind of problems.

As a first possible solution, organization consider the adoption of
specific Data Quality Software (e.g. data cleansing,
standardization, matching, merging, enrichment and data
profiling), as proposed in [13]. Although useful, this can only be
used as a “post-mortem” solution, and does not avoid problems in
the long term since an Information System is continuously living
[14]. In addition, this solution is not focused on specific users´
data quality requirements. This implies that some kind of
customization of the Information System aimed at preventing DQ
problems is necessary.

We shall commence by briefly describing the concept of data
quality. The most widely accepted definition of the term Data
Quality is based on Deming’s “fitness for use” [15]. This signifies
that a user can only assess the level of quality of a set of data for a
particular task to be executed in a specific context, according to a
set of criteria, thus determining whether or not these data can be
used for that purpose [16]. It is essential to point out here that this
set of criteria is typically denominated as a DQ Model. A DQ
Model is composed of several DQ dimensions or characteristics.
A user would therefore desire that a set of data would comply
with the requirements specified by a DQ Model, namely with a
DQ Requirement.

In order to obtain a better understanding of the concept of “DQ
requirement”, we decided to use the definition coined in [14]:
“ the specification of a set of dimensions or characteristics of DQ
that a set of data should meet for a specific task performed by a
determined user”. Our objective is to help to identify those DQ
Requirements which will be translated into specific DQ software
requirements. The latter will be introduced in the earliest stages of
Web application development, thus complementing the Software
Requirements Specification. The researching question was how to
introduce the specific DQ requirements into the development of
Web applications. In order to seek an answer to this question, we
have deliberated the possibility of considering the paradigm of
Model Driven Web Engineering (MDWE) as a suitable layout to
support the solution. MDWE proposes representing concepts by
supporting the development process by means of a set of models,
transformations and relations between models, which leads to
agile developments and assures consistency between models [17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
BEWEB 2011, March 25, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0610-2/11/03 ...$10.00.

Much research in MDWE is principally concerned with the
analysis and design phases. In this respect, different languages,
methods and tools for Web modeling have been proposed and
released, almost all of which offer specific processes to support
the systematic and semiautomatic development of these
applications. This therefore makes MDWE a good starting point
for the insertion of new features, such as DQ issues. Moreover, as
previously stated, there are no works that partially cover the
various corresponding issues related to the management of DQ
software requirements at the moment of modeling and developing
Web applications, as is concluded in [14]. The lack of
methodologies and proposals for these DQ software requirement
specification initiatives leads to the need to consider such
requirements throughout the software development process, and
in a more specific sense, in the initial requirements specification
phase [18]. More precisely, the main contribution of this work
towards both the area of Requirements Engineering and to
MDWE is the proposal of an extended metamodel and a UML
profile which will allow developers to incorporate aspects of DQ
software requirements. These artifacts will permit DQ issues to be
introduced into the various diagrams (use case and activity), thus
collaborating in the design of Data Quality-aware Web
applications.

The remainder of the paper is structured as follows: Section Two
provides a brief description of the model’s foundations on DQ, on
Web Engineering and on the metamodel (WebRE). The extended
metamodel with DQ and the proposed UML profile for
specification and modeling of Data Quality software requirements
(DQ_WebRE) are introduced in Section Three. Section Four
shows an illustrated example using the DQ_WebRE profile, and
finally, some conclusions and future work are presented in
Section Five.

2. RELATED WORK
2.1 Data Quality
Various definitions of the concept of Data Quality exist [19].
However, most authors agree that a piece of data has an adequate
level of quality if it is valid for the purpose to which a user wishes
to put it as regards a particular task in an specific context [16].
One of the most interesting strategies for the study of DQ for a
specific context is to divide it into smaller pieces known as data
quality dimensions [20].

Amongst the various data quality models considered as standards,
we have considered that of ISO/IEC 25012 [21] for our research,
since it is the “de jure” model. It provides a Data Quality model
for data managed in information systems, and considers fifteen
dimensions or characteristics which are grouped in two groups:

- Inherent: this refers to the extent to which quality
characteristics of data have the intrinsic potential to satisfy
stated and implied needs when data is used under specified
conditions.

- System dependent: this refers to the extent to which data
quality is obtained and preserved within a computer system
when data is used under specified conditions.

Table 1 shows the definitions for each of the data quality
dimensions proposed by the ISO/IEC 25012 standard [21]. It is
worth mentioning that these dimensions or characteristics should
be reinterpreted and redefined to better represent how to measure
the level of data quality of a piece of data in a context. These
dimensions or characteristics should be considered when
specifying a data quality requirement. More importantly, a
reinterpretation of the definition provided in Table 1 must be
carried out in order to customize the idea of data quality to the
user’s perception of it.

Table 1. Data Quality dimensions proposed by ISO/IEC 25012 standard.

Dimension Description
Inherent

Accuracy
The degree to which data have attributes that correctly represent the true value of the intended attribute of a concept or event in a specific
context of use.

Completeness
The degree to which subject data associated with an entity have values for all expected attributes and related entity instances in a specific
context of use.

Consistency The degree to which data have attributes that are free from contradiction and are coherent with other data in a specific context of use.
Credibility The degree to which data have attributes that are regarded as true and believable by users in a specific context of use.
Currentness The degree to which data have attributes that are of the right age in a specific context of use.

Inherent and system dependent

Accessibility
The degree to which data can be accessed in a specific context of use, particularly by people who need supporting technology or special
configuration because of some disability.

Compliance
The degree to which data have attributes that adhere to standards, conventions or regulations in force and similar rules relating to data
quality in a specific context of use.

Confidentiality
The degree to which data have attributes that ensure that they are only accessible and interpretable by authorized users in a specific
context of use.

Efficiency
The degree to which data have attributes that can be processed and provide the expected levels of performance by using the appropriate
amounts and types of resources in a specific context of use.

Precision The degree to which data have attributes that are exact or that provide discrimination in a specific context of use.

Traceability
The degree to which data have attributes that provide an audit trail of access to the data and of any changes made to the data in a specific
context of use.

Understandability
The degree to which data have attributes that enable it to be read and interpreted by users, and are expressed in appropriate languages,
symbols and units in a specific context of use.

System dependent
Availability The degree to which data have attributes that enable them to be retrieved by authorized users and/or applications in a specific context.

Portability
The degree to which data have attributes that enable them to be installed, replaced or moved from one system to another while preserving
the existing quality in a specific context of use.

Recoverability
The degree to which data have attributes that enable them to maintain and preserve a specified level of operations and quality, even in the
event of failure, in a specific context of use.

2.2 Web Engineering and MDWE
We analyzed different methodologies supporting requirements
analysis and design phases and found the following proposals:
NDT [17], UWE [22], WebML [23], WebRE [24], and WebSA
[25]. A comparative study of these methodologies is shown in
[26]. This last study principally shows the types of requirements
managed by each proposal, along with the techniques used and
the extent of detail of each proposal in terms of their development
process.

All of these methodologies are principally focused on how to
identify and define the functional aspects, related to the semantics
of models, oriented towards capturing the relevant properties of
this type of Web applications. However, none of these proposals
includes the quality characteristics of the data that is managed and
stored by these applications. Only a few of the proposals, such as
those in [17, 23, 24], mention certain specific information
objectives that should be considered when designing a Web
application. However, they neither explore their study in greater
depth, nor do they consider any requirements or specifications of
DQ characteristics.

It is worth highlighting that the key concepts managed in the
WebRE metamodel were defined by taking as a basis the
similarities of all methods and proposals reviewed by the authors
and summarized in [24]. WebRE uses the power of metamodeling
to merge different approaches. It also defines a unified
metamodel, in accordance with certain OMG standards such as
MDA [27], UML [28], OCL [29], QVT [30].

The metamodel proposed by Escalona and Koch in [24] permits
the principal elements for Web requirements to be modeled in a
UML class diagram. The metaclasses represent concepts without
any information about their representation; they are grouped in
two packages according to the structure of UML: “WebRE
Structure” and “WebRE Behavior”.

The functionality of a Web system, described in the “WebRE
Behavior” package, is modeled by means of a set of instances of
two types of specific use cases: “Navigation” and “WebProcess”,
and specific activities such as “Browse”, “Search” and
“UserTransaction”.

The “WebRE Structure” package contains the metaclasses used to
describe the structural elements of a Web application: Node,
Content and Web User Interface (WebUI). A brief description of
each element is shown in Table 2.

The UML profile for Web requirements engineering specifies how
the concepts of the WebRE metamodel relate to and are
represented in the standard UML using stereotypes and
constraints [24].

One of the main advantages of this metamodel is that it is very
flexible: it allows the easy inclusion of new elements. It will thus
enable us to add new elements with which to manage the DQ, in
order to specify and model the DQ software requirements in a
particular way, and to relate these new DQ elements to each
element listed in the profile, e.g. use cases (“WebProcess”), or
specific activities like “UserTransaction”.

Table 2. Elements of WebRE metamodel.

Element Description
WebUser Represents any user who interacts with the Web

application.
Navigation Represents a specific use case which includes a set of

“Browse” type activities that the WebUser will be
able to perform to reach a target node.

WebProcess Models the main functionalities (normally business
process) of the Web application. It represents another
use case which can be refined by different Browse,
Search and UserTransaction type activities.

Browse Represents a normal browse activity in the system; it
can be improved by a Search activity.

Search It has a set of parameters, which allow us to define
queries on the data storage in “Content” metaclass.
The results will be shown in the target node.

UserTransac-
tion

Represents complex activities that can be expressed
in terms of transactions initiated by users.

Node Represents a point of navigation at which the user
can find information. Each instance of a Browse
activity starts in a node (source) and finishes in
another node (target). The Nodes are shown to the
users as pages.

Content Represents where the different pieces of information
are stored.

WebUI Represents the concept of Web page.

3. A METAMODEL AND PROFILE OF DQ
SOFTWARE REQUIREMENTS FOR WEB
APPLICATIONS
After carrying out an in-depth analysis of the different Web
Engineering proposals, and given their features, we decided to
take that proposed by Escalona and Koch [24] as a basis for our
work, since it satisfies one of the key requirements for our
research: its compatibility with “de jure” standards. Escalona and
Koch´s proposal presents a metamodel with which to represent
concepts and relationships of Web Requirements Engineering.
This metamodel is used as a basis for defining a UML profile for
Web Requirements (WebRE) [24].

Having shown the main characteristics and elements of the
WebRE metamodel in Section 2.2, in this section we describe our
proposal. One of the most important motivations of this work is to
provide the analysts and designers of Web applications with the
artifacts needed to specify and describe certain DQ software
requirements in a clear and intuitive manner.

We therefore intend to extend Escalona and Koch´s metamodel
for the integration of those elements which are considered to be
essential for the specification of DQ software requirements.
Having conducted a systematic review on the main proposals for
the specification and modeling of DQ requirements, presented in
[31], we decided to incorporate the following key elements
(namely stereotype) which were principally inferred from [32-34]
(see Figure 1):

- For the Behavior Package: “InformationCase”,
“DQ_Requirement”, “ DQ_Req_Specification” and
“Add_DQ_Metadata”;

- For the Structure Package: “DQ_Metadata” and
“DQ_Validator”.

Bearing the objective of modeling DQ Requirements in mind, we
have introduced these new elements, which allow what a user may
require to control the level of quality of the data used in a Web
Application to be modeled. In order to make our approach
operative, we have also implemented a UML profile for Web
application requirements which has been extended with data
quality issues (DQ_WebRE) (see Figure 2). We have used the

commercial tool Enterprise Architect to implement the new
profile and to later manage the corresponding diagrams. On the
left-hand side of the tool (see Figure 3) we can observe a special
“ toolbox” with its own elements defined in the DQ_WebRE
profile. The specification of each new stereotype is described in
Table 3.

Figure 1. Extended metamodel with DQ elements.

Table 3. Stereotypes specification for DQ software requirements in DQ_WebRE profile.

Name
Base
Class

Description Constraints Tagged Values

InformationCase UseCase

The IC, unlike normal use cases, has the main function of
representing use cases that manage and store the data
involved with the functionalities of the “WebProcess”
type. These data will be subject to the specific
requirements of data quality (DQ_Requirement) that are
associated with them; we consider that the best way to link
them is through a relationship of the “include” type, thus
allowing them satisfy such DQ requirements.

 Must be related to at
least one element of
“WebProcess” type.

None.

DQ_Requirement UseCase
This represents a specific use case which is necessary to
model the DQ requirements (DQ dimensions) that are
related to the “InformationCase” use cases.

Must be related to
(“ include”) at least one
element of type
“ Information Case”.

None.

DQ_Req_Specification Element

Abstract class that represents a particular element
(“Requirement” type). It will be used to specify each of the
DQ requirements added through requirements diagrams in
detail.

ID: Integer.
Text: String.

Add_DQ_Metadata Activity

This represents a particular activity which is related to the
different “UserTransaction” activities. This metaclass is
responsible for validating and adding the operations and
information associated with each of the attributes
(DQ_metadata) belonging to the “DQ_Metadata” or
“DQ_Validator” metaclasses.

Not mandatory. None.

DQ_Metadata Class

This represents a structural element of a Web application,
and the DQ metadata will be managed and stored here.
These sets of metadata are associated with Content
elements. It will thus be possible to specify various DQ
requirements (DQ dimensions) directly linked to data
stored in the elements of the “Content” type.

Not mandatory.
DQ_metadata:
set(String)

DQ_Validator Class
This represents a structural element. This metaclass will be
responsible for managing different DQ operations in order
to validate or restrict WebUI elements.

Not mandatory. None.

Figure 2. DQ_WebRE profile.

4. EXAMPLE OF APPLICATION
In this section we shall demonstrate how to use our proposal by
means of an example. As developers, we are interested in
highlighting how to capture the main functionalities of the system,
in addition to the principal data quality requirements for the data
used in the execution of the software that will implement the
desired functionalities.

Bearing in mind the focus of the Unified Development Process
(UDP) [35], the Analysts will first model the system’s principal
use cases, and then, by means of activity diagrams, attempt to
provide a more detailed description of each use case identified.

The example describes a typical business process for the
reservation and payment of tickets for particular concerts and
events, using a Web application. The flow of events is described
as follows: The client will first be able to browse the available
events; however, in order to make a reservation, s/he must be
registered and log in into the system. Once logged in, s/he can
select the event and verify its availability and cost. If the client
agrees with these data, s/he can proceed by entering specific data

to make the reservation. S/he must then provide payment for the
ticket, and the system will send him/her the electronic ticket by
email. To satisfy this functional requirement, the analysts
introduce the use case “Make ticket reservation”. Some data that
will be used in this use case are: Invoice_number, ID_client,
Client, Address, Cost, etc. (see comment attached to class Invoice
and Reservations in Figure 4).

Once the data has been identified, the next step is to capture and
introduce the data quality requirements. It is known that if the
specific functionality defined by this use case is to succeed, the
data used must be reliable, accurate, complete and confidential.

In our context, a piece of data can be said to be credible when it
has been provided by an authorized user. At this point, we do not
wish to argue whether a user is or is not authorized. Let us simply
suppose that we have a database containing solely authorized
users. We must model a query to this database, but must also bear
in mind that the intention is to warranty a specific database.

We would like to make readers aware that we are interested in
enabling the system to be responsible for warranting that data
which will have the best levels of quality for the specified

dimensions. This signifies that the analyst must introduce the new
requirements (probably functional requirements) into the systems
with the objective of executing new functionalities in order to
obtain this warranty. The analysts are therefore provided with the
DQ_WebRE profile to model these new requirements (see Figure
3). They are then encouraged to define the corresponding
functionalities to satisfy the perception of the data quality for each
of the application’ users.

Returning to our example, if we wish to verify the credibility of
the data, the execution of a <<DQ_Requirement>> “[Credibility]
Check if data have been provided by an authorized user” must be
executed.

In addition, in order to ensure the level of accuracy of a piece of
data, the use case named “<<DQ_Requirement>> [Accuracy]
Check if the incoming data satisfy a specific standard format”
should be executed to ensure that the data managed fulfills this
DQ requirement.

The Analysts will similarly be able to guarantee the level of
confidentiality of data, through the use case named
“<<DQ_Requirement>> [Confidentiality] Check data is only
shown to an allowed user”. Finally, the analyst will be able to
guarantee this DQ requirement by means of a use case named
“<<DQ_Requirement>> [Completeness] Check that all data
introduced is complete”.

Figure 3. Use cases diagram specifying DQ requirements.

It is also possible to model the corresponding activity diagram by
making use of the stereotyped elements defined in the new profile
(see Figure 4). In this figure, the diagram shows the main
activities carried out in order to describe the “Make ticket
reservation” use case.

In this activity diagram (Figure 4), the Analysts will be able to
model the specific activities to meet the DQ software
requirements, and these activities will be related to different
elements which are specific to the development of a Web
application. These specific DQ activities are derived from the DQ
software requirements that each user defines for the data that will
be managed in each InformationCase.

In this example, the “Verify and add Confidentiality metadata”
activity will verify and add Confidentiality metadata
(“Available_to” and “Security_level”). These metadata will be
stored in an instance of the “DQ_Metadata” class, and thus fulfill
the DQ requirement of Confidentiality.

The “Verify Accuracy of data” activity will be responsible for
adding the specific operations (as part of the definition of the
corresponding instance of a “DQ_Validator” class specifically

aimed at satisfying this requirement) in order to verify the
Accuracy of the data managed in the “Webpage of reservations”
element (of WebUI type). The “Verify Completeness of data”
activity will similarly be in charge of adding the specific functions
in order to verify the Completeness of the data managed in each
element that appears in the “Webpage of payment” of WebUI type.

Finally, the “Verify Credibility of data” activity will be
responsible for managing and adding the DQ metadata
(“Client_valid” and “Card_valid”) stored in an instance of the
“DQ_Metadata” class, in order to guarantee the DQ requirement
of Credibility, and will be related to the Invoice data (of
“Content” type).

5. CONCLUSIONS AND FUTURE WORK
In the last decade, the amount and complexity of Web
applications whose aim is to satisfy diverse business processes has
grown dramatically. It is paramount that these web applications
will be able to provide data with appropriate quality levels. In
order to achieve this goal, we consider that Web applications
should implement certain kinds of artifacts to provide them with
data quality awareness. This could be achieved by capturing some

kinds of data quality requirements that will be later translated into
the software requirements of the application. Unfortunately, none
of the existing Web development methodologies include the
management of DQ software requirements. A correct management
of DQ requirements would help developers to anticipate the needs
of users who require data for their tasks, in order to eliminate or at
least minimize the possible problems caused by inadequate levels
of quality in the data used. When executing software, users would
therefore benefit from a higher level of trust in their tasks and
processes, both internal (within the same organization) and
external (business processes) with other companies and clients.

In order to solve these DQ problems, and taking the MDA
approach [36] as a basis, we present an extended metamodel and a
UML profile (DQ_WebRE) with which to permit DQ software
requirements to be captured in Web applications. The UML
profile proposed will allow us to introduce and model the key

concepts of data quality from the initial stage of the development
process, thus allowing developers to be aware of the DQ software
requirements that need to be implemented for each functionality
(use cases) that the Web application provides.

As part of our future work, and taking the MDA Process as a
guideline, we plan the incorporation of mechanisms focused on
the design stage, in order to translate the DQ requirements into the
corresponding design elements. We consider that an excellent
option would be to use transformation rules and implement them
by employing the QVT (Query/View/Transformation) language
[30]. We will thus be able to design models and produce code in a
semiautomatic manner, with the eventual objective of developing
Web applications more quickly and, in turn, ensuring the quality
of the data that they manage.

Figure 4. Activity diagram with DQ management.

6. ACKNOWLEDMENTS
This work has been funded by the following projects:
PEGASO/MAGO project (MICINN and FEDER, TIN2009-
13718-C02-01), IQMNet (TIN2010-09809-E) project which are

supported by the Spanish Ministerio de Educación y Ciencia.
ENGLOBAS (PII2I09-0147-8235) and ARMONIAS (PII2I09-
0223-7948) projects, both supported by the Consejería de
Educación y Ciencia of Junta de Comunidades de Castilla-La
Mancha.

7. REFERENCES
[1] Phan, D.D. and D.R. Vogel, A model of customer relationship

management and business intelligence systems for catalogue
and online retailers. Information & Management, 2010.
47(2): p. 69-77.

[2] Bertino, E., A. Maurino, and M. Scannapieco, Guest Editors'
Introduction: Data Quality in the Internet Era. 2010. p. 11-
13.

[3] Caro, A., et al., A proposal for a set of attributes relevant for
Web Portal Data Quality. Software Quality Journal, 2008.

[4] Batini, C., et al. A Framework and a Methodology for Data
Quality Assessment and Monitoring. in 12th International
Conference on Information Quality. 2007. MIT, Cambridge,
MA.

[5] Ballou, D.P. and H.L. Pazer, Modeling Completeness versus
Consistency Tradeoffs in Information Decision Contexts IEEE
Transactions on Knowledge and Data Engineering 2003 15 (1
): p. 240-243

[6] Kahn, B.K., D.M. Strong, and R.Y. Wang, Information
Quality Benchmarks: Product and Service Performance.
Communications of the ACM, 2002. 45(4ve): p. 184-192.

[7] Pipino, L., Y. Lee, and R. Wang, Data Quality Assessment.
Communications of the ACM, 2002. 45(4): p. 211-218.

[8] Scannapieco, M. and L. Berti-Équille, Report from the First
and Second International Workshops on Information Quality
in Information Systems- IQIS 2004 and IQIS 2005 in
Conjunction with ACM SIGMOD/PODS Conferences.
SIGMOD RECORD, 2006. 35(2): p. 50-52.

[9] Shankaranayanan, G. and Y. Cai. A Web Services Application
for the Data Quality Management in the B2B Networked
Environment. in 38th Hawaii International Conference on
System Sciences (HICSS-38 2005). 2005. Big Island, HI,
USA: IEEE Computer Society.

[10] Eppler, M. and M. Helfert. A Classification and Analysis of
Data Quality Costs. in International Conference on
Information Quality. 2004. MIT, Cambridge, MA, USA.

[11] Laudon, K.C., Data Quality and Due Process in Large
Interorganizational Record System. Communications of the
ACM, 1986. 29(1): p. 4-11.

[12] Wang, R., V. Storey, and C. Firth, A Framework for Analysis
of Data Quality Research. IEEE Transactions on Knowledge
and Data Engineering, 1995. 7(4).

[13] Karel, R., C. Moore, and C. Coit, Forrester’s report for
Business Process and Application Professionals on Trends
2009: Master Data Management. Forrester, 2009.

[14] Guerra-García, C., I. Caballero, and M. Piattini, A Survey on
How to Manage Specific Data Quality Requirements during
Information System Development. Lecture Notes in Computer
Science, 2011(Evaluation of Novel Approaches to Software
Engineering).

[15] Ge, M. and M. Helfert. A Review of Information Quality
Research. in International Conference on Information
Quality. 2007. MIT, Cambridge, MA, USA.

[16] Strong, D.M., Y.W. Lee, and R.Y. Wang, Data Quality in
Context. Communications of the ACM, 1997. 40(5): p. 103-
110.

[17] Escalona, M.J. and G. Aragón, NDT. A Model-Driven
Approach for Web Requirements. IEEE Trans. Softw. Eng.,
2008. 34(3): p. 377-390.

[18] Guerra-García, C., I. Caballero, and M. Piattini. DQ-VORD:
A Methodology for Managing and Integrating Data Quality
Requirements into Software Requirement Specification. in
IADIS International Conference WWW/INTERNET 2009.
2009. Rome, Italy.

[19] Batini, C., et al., Methodologies for data quality assessment
and improvement. ACM Computing Surveys, 2009. Vol. 41,
No. 3.

[20] Lee, Y.W., et al., Journey to Data Quality. 2006, Cambridge,
MA, USA: Massachussets Institute of Technology.

[21] ISO-25012, ISO/IEC 25012: Software Engineering-Software
product Quality Requirements and Evaluation (SQuaRE)-
Data Quality Model. 2008.

[22] Koch, N. and A. Kraus, The Expressive Power of UML-
based Web Engineering, in Second Int. Workshop on Web-
oriented Software Technology (IWWOST ´02). 2002: Málaga,
Spain. p. 105-119.

[23] Ceri, S., P. Fraternali, and A. Bongio, Web Modeling
Language (WebML): a modeling language for designing Web
sites. Computer Networks, 2000. 33(1-6): p. 137-157.

[24] Escalona, M.J. and N. Koch, Metamodeling the
Requirements of Web Systems, in Web Information Systems
and Technologies, S.B. Heidelberg, Editor. 2006. p. 267-280.

[25] Meliá, S. and J. Gómez, Applying Transformations to Model
Driven Development of Web applications, in Perspectives in
Conceptual Modeling, S.B. Heidelberg, Editor. 2005. p. 63-
73.

[26] Escalona, M.J. and N. Koch, Requirements Engineering for
Web Applications: A Comparative Study. Journal on Web
Engineering, 2004. 2: p. 193-212.

[27] OMG, Model Driven Architecture (MDA)- document number
ormsc/2001-07-01. 2001.

[28] OMG. Unified Modeling Language: Superstructure. Versión
2.0. 2005; Available from:
<http://www.omg.org/docs/formal/05-07-04.pdf>.

[29] OMG, OCL 2.0 Specification. Version 2.0. 2005, Object
Management Group (OMG). p. 185.

[30] OMG. MOF QVT Final Adopted Specification. 2008;
Available from: http://www.omg.org/spec/QVT/1.0/
[Accessed in January, 2011].

[31] Guerra-García, C., I. Caballero, and M. Piattini. A Systematic
Literature Review of How to Introduce Data Quality
Requirements into a Software Product Development. in 5th.
International Conference on Evaluation of Novel Approaches
to Software Engineering, ENASE. 2010. Athens, Greece.

[32] Becker, D., J. Jaster, and J. Kuperman. Flexible and Generic
Data Quality Metadata Exchange. in International
Conference on Information Quality, ICIQ ´09. 2009.

[33] Becker, D., W. McMullen, and K. Hetherington-Young. A
Flexible and Generic Data Quality Metamodel. in
International Conference on Information Quality. 2007.

[34] Caballero, I., et al. A Data Quality Measurement Information
Model based on ISO/IEC 15939. in 12th International
Conference on Information Quality. 2007. MIT, Cambridge,
MA.

[35] Jacobson, I., G. Booch, and J. Rumbaugh, The Unified
Software Development Process. 1999: Reading (MA):
Addison-Wesley.

[36] Bézivin, J., In Search of a Basic Principle for Model Driven
Engineering. UPGRADE, Novática., 2004. Vol. 2(No.2): p.
21-24.

