HA9149 T 103
SR80 [N ‘AemeIedsid ‘aue sa0H Spi U2ua)) suonesado ga9] sedeuepy siyBuddo; :
uonearjgndar 10 yuudar “FuAdoo 1210 104 §7 ;__:/ SIDAUB(] ‘DAL(] POOMD pxnnnh:_.; JuRIE: :
Wausdo) yanosy pred si .,_5., 211 Ul _...4:...:2: 231 Ado>-1ad aip papraoad a3 I: SI1J A1) JO WoNC __ Al 1 2pod
S 1HE0-CLOP-[-SL6 ‘NEHSI ALrea e awnjoa s ur sapauue asoys suoned jo asn aeand 10y me) yFuidoa g Jo g oy puokaq Adoo :::7_
AAD-LIDTIAAD ON 1®D F34] 01 papiuuad 2Ie SHLTIQET 22IN0S YY) 01 1IPAId Yiim paniuuad s1 Fundensqy suoissiuua g juuday pur jysuddo)

>mo_o:£uw._. |er1snpuj uo mu:mhmucou jeuoileulalul

2102 Y21\ LZ-61

SUJIY.

Z1.11D1-333

disH

Xopu| J1ieyd UoIssdsS

Xapu| Joyiny

SIOMIINIY

$93111WILWLO)D

weibouy |esiuyds |

sy|e | Aieusld

W03 /X\




ICIT 2012 CO-CHAIR’'S WELCOME MESSAGE

Welcome to ICIT'2012

It is our pleasure to welcome all participants to ICIT'2012, the 2012 IEEE
International Conference on Industrial Technology, Athens, Greece, which takes
place at the Divani Apollon Palace & Spa Hotel, Athens.

ICIT'2012 is co-sponsored by the IEEE Industrial Electronics Society (IEEE-IES),
the University of Patras and supported by the Industrial Systems Institute
(ISI/RC ATHENA), Greece.

Founded in 1964 the University of Patras is the third Greek academic institution in
terms of numbers of students, professors and other staff, and academic
departments. It represents a dynamic academic education and research centre
with approximately 22.000 undergraduate students, 2.000 post-graduate
students, 700 teaching staff, 400 administrative personnel and 400 teaching and
research assistants. The University of Patras is a major international centre for
highest tertiary education with a proven high track record not only in teaching but
also in research. Its twenty-two Departments offer a wide range of undergraduate
courses as well as an expanding range of taught and research-based
postgraduate degrees which reflect a balanced academic environment comprising
science and technology as well as health sciences and humanities. Facilities for
academic work are excellent and opportunities for social life are numerous and
exciting. The University of Patras participates in a large humber of European and
international educational and research programmes and its forefront scientific
research has been recognized internationally.

The Industrial Systems Institute (I.S.I.) is a dynamically growing research
institute founded in 1998, located in Patras, Greece. It is a research institute of
Research Center ATHENA and operates under the supervision of the Greek
Ministry of Development. 1.S.I. has strong ties with the University of Patras. Its
activities and expertise covers all aspects of ICT that are used in the industrial /
enterprise environment.

The scope of the ICIT'2012 being very wide, here we have a rare opportunity to
interact with a wide spectrum of technical experts and we are sure you will find
this conference very useful. ICIT'2012 features an excellent technical program,
which includes keynote and plenary presentations delivered by leading authority
from the industry and academia. We are fortunate to have outstanding keynote
speakers, who kindly agreed to contribute to ICIT'2012 Program: Prof. Gerard-
Andre Capolino, Prof. Constantinos Sourkounis and Prof. Armando Walter
Colombo. The keynote addresses will present the state of-the-art and challenges
on specific areas of research.

The quality of the program is a combination of quality submissions and diligent
work of the members of the International Program Committee. Despite the
current world economic crisis, this conference received more than 327 papers,
233 were provisionally accepted, and 194 were included in the program. It was a
considerate effort to conduct the peer review process in a very short time. The
meticulous and thorough review process was conducted according to IEEE
Industrial Electronics Society’s standard. ICIT'2012 has created records on almost
all fronts. The 194 papers from 40 countries contained in the final program cover
all continents and with more than 88% papers from outside Greece is proved that
this conference to be truly international.



The final program of ICIT'2012 consists of a total of 38 sessions, covering the 8
regular Tracks and 4 Special Sessions. The subjects of the 8 Tracks are Control
Systems and Computational Intelligence, Factory Automation and Industrial
Informatics, Robotics and Mechatronics, Embedded and Cyberphysical Systems in
Industrial Applications, ICT for Smart Grids and Renewable Energy and Power
Systems, Electrical Machines and Drives and Sensors, Instrumentation and Signal
Processing. Added to this is a set of four Special Technical Sessions (Condition
Monitoring & Diagnostics, Smart Sensors & Microsystems for Industrial
Applications, Model Based Testing and Engineering, From Data to Information:
Methods and Industrial Technologies, Control & Optimization).

In addition, the conference program includes a welcome reception in the evening
of Monday, March 19. The conference banquet will take place on Tuesday, March
20, at the “Vorres” folk and modern art museum, with a collection that covers
3000 years of Greek history.

We would like to thank all the authors of submitted papers and all the members
of the Program Committee as well as additional reviewers, who spared their
valuable time to review all submitted papers in a timely manner. Also, we would
like to acknowledge the contribution of all members of the several committees
that contribute to putting together such an exciting program. Our sincere thanks
to all the Track Chairs, who offered their best professional support. Special thanks
to Prof. Gerard-Andre Capolino, Prof. Constantinos Sourkounis and Prof. Armando
Walter Colombo for their valuable keynote addresses to ICIT 2012 participants.

Finally, we are grateful to all members of the Local Organizing Committee who
have spent their time generously to help in the organization of the event. In
addition, an event of this size cannot be organized without the help of a large
number of volunteers, who we thank warmly.

The success of any conference depends on the quality of the program and
participation of people. We thank you all for being here. We trust that you will
find the technical program intellectually stimulating and your stay in Athens really
enjoyable. We are certain that the atmosphere of Athens, one of the most ancient
European cities, with its historical centre, which is classified as World Heritage,
will provide a stimulating environment for ICIT'2012 participants, allowing
exchange of scientific ideas, updating information about new developments, and
increasing international collaboration and friendship. Hopefully, it will be possible
for several of the attendants to add some extra days for sightseeing and
recreation in Athens.

We welcome you in a technically and intellectually stimulating conference. We
also wish you a nice stay in Athens enjoying the rich Greek culture and the
famous Greek hospitality!

We are sure you will find ICIT'’2012 memorable!

Stavros Koubias and Luis Gomes
ICIT’2012 General Co-Chairs

Dimitrios Serpanos, Juergen Jasperneite, and Yousef Ibrahim
ICIT’2012 Program Co-Chairs

John Gialelis and Maria Ines Valla
ICIT'2012 Special Session Co-Chairs



Monday, 19.03.2012

SSMBTE1
Time:
Room:
Chair(s):

SSMBTE1.1

SSMBTE1.2

SSMBTE1.3

SSMBTE1.4

SSMBTE1.5

SSMBTE1.6

Model Based Testing
14:30-16:00

D

Juergen Jasperneite

“Software Product Line Testing: a Feature

Oriented Approach”
Beatriz Pérez, Oscar Diaz, Maider Azanza, Macario Polo

“Practical Model-Based Testing of User Scenarios”
Vitaly Kozyura, Sebastian Wieczorek, Matthias Schur,
Andreas Roth

“Externalizing Business Rules from Business
Processes for Model Based Testing”
Sujithra Sriganesh, Chandrashekar Ramanathan

“Experiences in Setting up Domain-Specific
Model-Based Testing”

Teemu Kanstrén, Olli-Pekka Puolitaival, Veli-Matti Rytky,
Asmo Saarela, Janne Kerdanen

“Quality Model based on ISO/IEC 9126 for
Internal Quality of MATLAB/Simulink/Stateflow

Models”
Wei Hu, Tino Loeffler, Joachim Wegener

“Flexible Debugging of Behavior Models”
Alexander Krasnogolowy, Stephan Hildebrandt, Sebastian
Watzoldt



Software Product Line Testing: a Feature Oriented
Approach

Beatriz Pérez Lamancha*, Oscar Diaz’, Maider Azanza' and Macario Polo*
*Alarcos Research Group, Castilla-La Mancha University, Ciudad Real, Spain
Email: beatriz.plamancha@uclm.es, macario.polo@uclm.es
t Onekin Research Group, University of Basque Country, San Sebastina, Spain
Email: oscar.diaz@ehu.es, maider.azanza@ehu.es

Abstract—Software Product Lines (SPLs) are not intended to
create one application, but a number of them: a product family.
In contrast to one-off development, SPLs are based on the idea
that the distinct products of the family share a significant amount
of assets. This forces a change in how software is developed.
Likewise, software testing should mimic its code counterpart:
product testing should also be produced out of a common set
of assets. Specifically, this paper addresses how model-driven
testing, used for one-off development, can be moved to an SPL
setting. We focus on feature-oriented software development as the
SPL realization technique. UML sequence diagrams are used to
represent the common and feature scenarios. This models are
transformed through model transformations to obtain test cases
that conform to the UML Testing Profile.

I. INTRODUCTION

Software Product Lines (SPLs) emerge as a reuse approach
when a set of software applications overlap in their function-
ality. Clements et al. define an SPL as "a set of software-
intensive systems, sharing a common, managed set of features
that satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of core
assets in a prescribed way" [1]. This approach distinguishes
between (1) the developmet of the product line as such (i.e. the
core assets) which defines and realizes the commonality and
variability of the product family, and (2) the development of
the product per se, which is derived from the core assets based
on the features to be exhibited by this product. This two-step
process highlights pre-planned reuse: a domain study is first
conducted that provides a set of components one knows for
sure will be reused for different products of the family.

On the other hand, preventing mismatches between the
application and its testing counterpart calls for an alignment
of the application and the testing development processes. SPL
setting is characterized by (1) a potentially broad number of
artifacts, (2) tangling relationships among them, (3) lasting
lifecycles, and (4), neat distinction between artifact producers
(i.e., domain engineers) and artifact consumers (i.e., appli-
cation engineers). Since SPL products are developed out of
core assets components, the testing of SPL products should be
based on the tests which exist from those core components.
Likewise, if SPL products are built by composing core assets
then, the tests for such products should also be delivered
through composition.

This paper presents a model-driven testing approach to

978-1-4673-0342-2/12/$31.00 ©2012 IEEE

309

SPLs. The final aim is to mimic the development of its product
counterpart. The approach focuses on functional testing, where
functional specifications are described for the SPL at design
level using UML models. Specifically, UML use cases and
UML sequence diagrams are used for define base and feature
functionalities. This work presents two main contributions,
first a way to define base and feature functionalities at design
level following a feature-oriented approach for SPLs and,
second, a model-driven testing approach from these models,
where test models are realized using the UML Testing Profile
[2]. These models are later traduced to executable test code for
the base functionalities and the feature functionalities. Then,
their are composes to obtain test code for the products in
the line. The paper begins with a brief summary of Software
Product Lines.

II. A BRIEF ON PRODUCT LINES

SPLs are not intended to build a single application, but a
number of them: a product family. This forces a change in
the engineering process where a distinction is made between
Domain Engineering and Application Engineering. Domain
Engineering (a.k.a. core asset development [1]) determines the
commonality and the variability of the SPL. On the other
hand, Application Engineering (a.k.a. product development
[1]) produces concrete products out of the core assets. Doing
so, the construction of the reusable assets (i.e., core assets)
and their variability (a.k.a. variants) is separated from the
production of the concrete products that form the family.
Variability is a central concept in product family development.
Adequately managing the variability among the family mem-
bers is what permits the generation of the different products
by reusing core assets. Variability is captured through features
(i.e., increments in program functionality that customers use
to distinguish one application from another [3]). The set of
features of an SPL defines its scope. Such set is captured
through a feature model (i.e., the specification of all legal
compositions of features in a product line [3]) during do-
main engineering. This feature model gets instantiated (a.k.a.
configuration model) during application engineering. This
configuration model describes the concrete features to be
exhibited by each single product.

As a running example, consider the playing-board game
SPL (Game SPL). These kind of games share a broad set of

ICIT 2012



‘ Board Games SPL ‘

requires | requires

‘ Players ‘

choos;

‘ Opponent ‘

excludes 5e1

‘ Person ‘ ‘Computer 2 ‘ >2 ‘

requires

requires

Feature Model for the Game SPL.

Figure 1.

characteristics, such as the existence of a board, one or more
players, maybe the use of dice, the presence or absence of
cards, policies related to the assignment of turns to the next
player, etc. Figure 1 depicts the feature model for the Game
SPL using the FODA notation [3]. Variations are admitted
along four aspects, namely:

e Type: which corresponds to one of the possible variations.
Each one corresponds to one of the supported four games
(Chess, Checkers, Ludo or Trivial).

o Opponent: The player can play against either the com-
puter or another online human player.

e Players: The minimum number of players for these
games is 2, but optionally some games can be played by
3, 4, or more than 4 players. Chess and Checkers exclude
this option.

e Dice: Ludo and Trivial require throwing the dice prior to
moving, but Chess and Checkers exclude this feature.

Once the SPL is characterized along its feature model, the
challenge rests on how to engineer artifacts (i.e. the core as-
sets) for variability along this feature model. A first distinction
can be made between the subtractive and additive approaches
[4]. Subtractive approaches are successors of the conditional
sentences found in code artifacts, where instruction execution
is conditioned through checks of a feature’s presence/absence.
A core artifact is then "customized" by not executing all
those instructions whose conditions are not met by the current
configuration model. By contrast, the additive approaches
strive to realize each feature in a separate artifact, the so-called
delta artifacts. Base artifacts account for the commonality of
the SPL while delta artifacts leverage the base with the feature
at hand. At production time, base artifacts are composed with
those delta artifacts according to the configuration model.
Feature Oriented Software Development (FOSD) follows this
second approach [5].

A. Feature Oriented Software Development

FOSD dictates that a complex program is developed from
a simple program by adding features incrementally using
function composition (where e denotes such composition):

1ex [/ adds feature i to base program x

jex [/l adds feature j to base program x
Figure 2a shows a base artifact Foo defining variable members

feature Base; | feature Featurel; | ClassFoo {
Class Foo { ClassFoo { intx,y;
intx,y; void reset () { int getX() {
int getX() { x=0; y=0;} return x;}
return x;} |} intgetY () {
int getY () { returny;}
returny; } void reset () {
} x=0; y=0;}
(a) (b) o

Figure 2. Adding a Feature to a Class

(x and y), and methods (getX and getY). This base artifact
can now be incrementally extended by adding a new method
reset() that extends the functionality of the base with a new
feature Featurel. Figure 2b shows such extension using the
Jak language [5]. The expression FeatureleBase returns a
Jak artifact which holds feature Featurel (see Figure 2c).
Likewise, Feature2eFeatureleBase stands for the base being
enhanced with features Featurel and Feature2, where the order
of feature composition (i.e., from right to left) can matter.

Core assets stand for either base artifacts (i.e. those provid-
ing the commonality) or delta artifacts (i.e. those realizing
the variations). Delta artifacts realize features. That is, they
encapsulate the set of changes that should be accomplished
unitedly to leverage the base with an identifiable feature
functionality (i.e. deltas encapsulate the changes that realize
the feature, document the feature, test the feature, etc.). A
formalization of deltas of models can be found in [6].

The challenge rests on applying FOSD approach to artifacts
other than code. This however is most important to ensure
uniformity so that all artifacts no matter their type follow
the same development approach. In this way, a small number
of operators can be use to manipulate all artifacts, ad-hoc
complexity is reduced and better scalability is ensured [5].

III. A DESIGN APPROACH FOR SPLS

This paper advocates for SPL testing to mimic SPL product
development. An SPL end product just looks as any other
software product. So, traditional testing techniques could be
used. However, the difference stems from the development
process. SPLs differ from one-off development in that products
are obtained from a common infrastructure (a.k.a. core assets).
SPLs introduce a sharp distinction between artifacts for reuse
(i.e., core assets) versus artifacts developed by reuse (i.e.
the SPL products). Likewise, testing should follow similar
practices. Effective reuse requires the existence of test core
assets (i.e. tests for reuse) which are later composed to deliver
full-fledged tests for the product at hand.

This section explains how the FOSD approach is extended to
UML models used to design the SPL. Our approach focuses
on functional testing level. In that sense, the UML models
used to represent the system are: UML use cases and UML
sequence diagrams.

UML Use Cases are used to capture the requirements of a
system, that is, what a system is supposed to do. Scenarios

310



concretize use cases by describing one path in the flow of
the use case at hand. Each scenario provides the grounds for
conducting functional testing and a Test Scenario accounts
for the test requirements of a scenario. Figure 3 shows the
Move and ThrowDice use cases. These use cases are part of
the Game SPL.

Use Case: Move
Main Flow:
1. Player wants to move

Use Case: Throw dice
Extends Move in the Extension Point “Specify
movement”

2. The system checks if the player has the turn to play
3. Player specifies the movement (init, finish) Main Flow:
4. The system checks if it is a valid movement and 1. Player wants to throw the dice

The system throws the dice and shows
the result

move 2.
5. The system updates the board
6. The system passes the turn to the next player
Alternative Flow:
2A - The player does not have the turn
2A1 - The system sends a message to the player
4A - Invalid movement
4A1 - The system sends a message to the player
4A2 - Go tostep 3
Extension point: Specify movement in step 3

Figure 3. Move and ThrowDice Use Cases

UML’s Interaction model is a common notation to describe
scenarios [7]. An interaction is a composition of messages
[7], a message defines a particular communication between
lifelines. A lifeline represents an individual participant in
the interaction. A message then relates two happenings in,
normally distinct, lifelines. A common graphical notation to
depict models of this metamodel are Sequence Diagrams (SD).
In this work the terms sequence diagram and interaction are
used indistinctly. Figure 4 illustrates the Move Scenario.

Back to SPLs, a distinction is made between Base inter-
actions (i.e. interactions that contain the commonality of the
SPL) and Delta interactions (i.e. interactions that account
for a specific feature). The question is how deltas differ
from traditional interactions. The main difference stems from
deltas being inconclusive. Deltas do not exist in isolation but
define increments on Base interactions. This fact is realized
as an extension point to the Base interaction. This extension
point is denoted through a UML message. Figure 5 shows
ThrowDice interaction which partially describes the delta Dice.
ThrowDice leverages Move with the ability of throwing dices.
This enhancement is constrained to occur (1) after the player
consults his turn and (2) before moving. To denote this location
in UML terms, we resort to the notion of gate. A gate is a

FTMave
‘ £ Piplayer E nnterface ‘ ] C:controller | ] MiManager | ] B:Board
Lt canMove { ) l ) ‘ |
‘ Zihestun () 3 hasTurnPlayer() |
i hesTurnPlayer [ ): true
‘ 6 canbiove { itrue | | |
Bovors oy | | |
‘4" movePlayer (start, st o, vatdove ( star, Fnish ) |
‘ 10: validhave (-, - : true |
| [T 11 pdateBoard { s, frish) |
| 13: move 12; updateBoard ( | -) 1 true ﬂ
[Limore )i e I | |
| | | | |

Figure 4. Move scenario functionality

/] ThrowDice

‘ 2 playor Player

‘ E pt:DiceInterface ‘ ‘ E bCibiceContraller
1 muve(star#,ﬁnish) ‘ |
Bthowtice () |

‘ 5: throwDice { ) : total

4

Figure 5. ThrowDice sequence diagram
3 Move
3 Base .
¥ Player
3 UseCase1
Use Case 2 Move
Use Case Interaction TestModel
Model Model Use Casen 7Y
i<<merge>>
4 H
| <emerge>> B3 Throw Dice
3 Feature1
5 UseCase1
«extends
Use Case2
Move Throw Dice

Use Case Interaction TestModel

Model Model UseCasen SpecifyMovement

(a) Package Structure (b) Move and ThrowDice Packages

Figure 6. UML Package Merge

representative of an OccurrenceSpecification that is not in the
same scope as the gate [7]. A gate is a connection point for
locating a message outside an interaction with respect to a
message inside the interaction. Figure 5 shows such a gate
for the ThrowDice delta. The gate indicates that the delta is to
occur just above the namesake message in the base interaction.

At this point, it is worth noticing that artifacts are arranged
into higher units along the feature criterium. For each feature
in the SPL, one delta package exits. Both Base packages and
Delta packages exhibit the same structure. For the purpose of
this paper, artifacts are arranged along three main types: use
cases, scenarios and tests. Figure 6(a) provides an example.
Unlike Base packages, Delta packages can hold delta scenarios
along with complete artifacts. This infrastructure is used
during product generation. This is the topic of the next section.

IV. A TESTING APPROACH FOR SPL

An SPL infrastructure refers to the set of core assets that
will be reused during the production of end products. This
infrastructure includes testing. Figure 7 shows the main assets
and their relationships. Hereafter, the term “test deltas” is used
to denote these test core assets. The notion of “delta” aims to
suggest the inconclusive definition of these tests that require
to be composed to be fully operational.

In our particular setting, “functional artifacts” are to be
complemented with “testing artifacts”. The artifacts involved
are depicted in the upper part of Figure 7. Besides Use
Cases, Scenarios and Scenario Tests, now we introduce Delta
Use Cases, Delta Scenarios and Delta Scenario Tests, which
support features. In brief, deltas provide an increment in

311



1

Use Case Scenario = Scenario Test
1.° 1. ! 1 1.

= Feature

Delta Scenario Delta Scenario Test

1 . 1 1

Delta Use Case

Figure 7. Artifact types and their content relationships.

functionality independent of the artifact that realizes such
functionality (e.g. a use case, a scenario or a test).

The previous section addressed delta definition for design
models . Delta development can be distributed among different
developers. After all, deltas account for features. A feature is a
meaningful increment in functionality which can be subject to
a different evolution pace than its other feature companions.
This makes features common units of workload distribution
among developer teams. This implies that features tend to be
developed (and tested) separately from the rest of the SPL
infrastructure.

We then propose three-step for Testing in SPL (see Figure
8), namely: test base, test delta and test product functionalities

4/ ™
Test base Base SD i T Ziitn?is: 1 . Teztog.:se ‘
functionality (umy) QT | (UMLTP) | MOF2Text | (xUnit)
Delta SD T3 Test Case | T2 Test Case |
TES! de“f" (UML) " scenario }—' Code ‘
functionality | avt (UML-TP) | MOF2Text (xUnit)
s - ) . y .
Andromeda le
Test product [ Product §D T1 Test Case | T2 Test Case |
functionality (UML)  — scenario Code
avt (UML-TP) MOF2Text (xUnit)
Figure 8. Metamodels and transformations for Testing in SPL

A. Testing base functionality

The base functionality is described through UML SD. In
previous works [8], [9], we defined an automated approach
to obtain executable test cases from scenarios described using
UML SD. From a functional testing point of view, generating
test cases scenarios implies that the system must be considered
as a black box, and the stimulus from the actor to the
system must be simulated, and vice versa. Figure 8 (above)
describes the transformations for test base functionality. The
first transformation (T1), converts a SD in a test case scenario.
The test case scenario is represented also using UML SD and
follows the UML Testing Profile (UML-TP) [2]. The second
transformation (T2), converts test case behavior in test code.
These transformations are described next:

UML SD to test case scenario (T1): This transformation
is a model to model transformation, mapping from the UML
Interaction metamodel (used for scenario description) to the

ETMove_test

‘ [ PreTestCompanentsFlayer_TestComporent | | B bisbataPockMove_DataPool | «S5UT
B interface:Interface
‘ «DataSelectors ‘
1:ds canMove i )

|
I
r 3: canMove ( )
\

2:ds canMove () returnt

4: canMove () : realRt

==Yalidation Action=»

{returni==realR}

St ds_mawe [ skart, finish, - )

)
i

\

\

|

|

! )
L i ds_move { start, Finish, returmnz ) .H

~ T

i

;

\

\

\

, 7+ move (start, finish )

.. Bimove (- -]:reaRz

<<V/alidation Actions=>
{retunz==realR2}

Figure 9. Test Case for Move Scenario

]
|
|
|
l

1
|
|

UML 2.0 Testing Profile (used for test case description)
and was developed using OMG’s Query-View-Transformation
language (QVT) [10]. Along the UML-TP[2], actors are repre-
sented as TestComponents, test data is stored in the DataPool
whilst the System is represented as the System Under Test
(SUT). Figure 9 depicted the Move test scenario transformed
from Move Scenario (Figure 4). Each message between the
actor and the SUT must be tested. For example, to test the
message Move(start,finish) in Move, the following steps are
necessary:

1) Obtaining the test data: The TestComponent asks
for the test data using the DataSelector operation in
the DataPool. Figure 9 shows the message ds_Move()
stereotyped as DataSelector, that returns three parame-
ters, the start and finish data and the expected result for
the test case (return2).

2) Executing the test case in the SUT: The TestCompo-
nent calls the message to test in the SUT. The operation
Move(start finish) is tested with the input data returned
by the dataPool as parameter and returns the actual result
(realR2).

3) Obtaining the test case verdict: The TestComponent
executes the state invariant stereotyped as validation
action, comparing the expected and the real results. For
the operation Move(start, finish), if the realR2 (actual
value) is equal to the return2 (expected value) the test
case pass else fail.

Test case scenario to test code (T2): This is a model to text
transformation, takes as input test case scenarios described
through the UML-TP and returns as output executable test
code using the xUnit test language. xUnit is a family of
frameworks, which enable the automated testing of different
elements (units) of software. The generated test code can
be executed using the corresponding xUnit framework to
test the system. This transformation was developed with the
MOFScript tool'. To illustrate this transformation we use Java

Lnttp:/www.eclipse.org/gmt/mofscript/

312



and its corresponding test language JUnit?. The transformation
takes as input the test case for Move (Figure 9), and transforms
it into a JUnit test method (see Figure 11(a)). Basically, the
test method asks for the test data to the dataPool. The dataPool
returns a vector with the test data set, allowing test the same
functionality with several data values. Then, extract each test
data and call the operations to test. First, the canMove() is
tested and the expected and the returned result is compared
using the assertTrue sentence of JUnit. The process is repeated
for the Move(start, finish) operation.

B. Testing delta functionality

This step focuses on the scenarios that apply uniquely to
the feature at hand. The only difference between testing Base
interactions and Delta interactions is that the latter hold a
gate. Figure 8 shows transformation T3. This transformation

7] ThrowDice_Test

throwDice_DataPool: @SUTs
«DataPooksThrowDic | dicelnterface:Dicelnterface
&_DataPaol

player_TestComponent :«Tesk
ComponentsPlayer_TestCom
ponent

| 11 ds_thrawDice { ) |

| 2: ds_throwDice { ) @ totalE -H

|-‘S: throwDice { )

| < throwDice () ; tatalR:

|
|
L |
|
|

=y alidation Actions==
{totalE==totalR}

|
|
!
!
|
|

Figure 10. Test case scenario for ThrowDice.

first just removes the gates and proceeds in the same way as
transformation T1, as was described above. Figure 5 shows
the ThrowDice interaction with a gate and Figure 10 shows
the generated test case. To obtain the executable test code, the
transformation T2 is also used.

C. Testing the composition between the delta and the base

The rationale behind this step is that a feature never occurs
alone but at least the Base needs to be present. This implies
that Base scenarios need to be first composed with Delta
scenarios for the feature at hand. This corresponds to transfor-
mation T4 in Figure 8. Figure 11(b) shows the composition
between Move and ThrowDice. Section V explains in detail
how the composition was implemented.

Once the composition is obtained, the test case for that com-
position is obtained using first transformation T1 (see Figure
V-B) , and then the test code is obtained using transformation
T2, as was explained in section V.

V. COMPOSITION IMPLEMENTATION

SPL product generation starts by characterizing the product
through its configuration model (i.e. the set of features to
be hold by the product). This configuration model is then
transcribed to a feature equation. For instance, the equation

2 http:/fwww,junit.org/

trivialGame = trivial e dice e base stands for product
trivialGame as the result of composing features dice and
trivial to the common base.

Implementation wise, both base and dice are realized by the
namesake packages. This implies that feature composition is
realized as package composition. A package is a containment
hierarchy of artifacts (see Figure 12). A package can contain
base

dice . base = dice .

uc lMove

throlece usecase hrolece test move usecase

uc lMove UC Move

Test Use;ase
Inter ction Inter ctlon

throlece-move test

throleceomove us move.! test

tests o Aests o Aests

throwDiceemove.interaction throwDice.interaction move.interaction

Figure 12. Package Composition

other packages, which are in turn composed, until atomic
artifacts are reached. Package composition percolates along
the containment hierarchy until atomic artifacts (the leaves)
are reached. This highlights that the composition operator is
polymorphic in the sense that its semantics depend on the type
of the artifact being compound.

Therefore, we need to define the semantics of composition
for two artifacts: UML packages and UML interaction dia-
grams. Since interaction diagrams realize scenarios and test
cases, defining composition of interaction diagrams addresses
how testing scenarios are obtained out of the composition
of scenarios and scenario deltas (i.e. features). Next subsec-
tions define package composition and scenario composition.
The bottom line is that the very same feature-based reuse
mechanism is being defined for both functional artifacts (e.g.
java classes) and test artifacts (i.e., scenarios). More to the
point, test artifacts are obtained at the very same pace as their
functional counterparts. The very same process that yields the
trivialGame also obtains the scenarios to test this product.

A main premise of this work is that current UML 2.0
compliant tools must support the definition of deltas, avoiding
developers the task of directly editing the XMI representation
of delta interactions. This is the most important issue to ensure
practitioners will embrace the approach. Both, Scenarios and
Test Scenarios are described through UML sequence diagram
models.

The current UML 2.0 compliant tools support the use of
gates. Specifically, IBM Rational Software Architect® is used
to obtain the diagrams in this work. This implies that base and
deltas can resort to the same toolings. More to the point, the
composition between base and deltas (see next section) can be
achieved using XMI which in turn, ensures that the result can
also be displayed through existing UML editors.

3 http:/fwww.ibm.com/developerworks/rational/products/rsa/

313



FTMove

Boolean ret2 - (Boolean) vs.getValue('ret2");

13 validiiove { start, Fin|sh )

/#/Call canMove() in SUT
Boolean retR - inter.canMove();
//Assertion for canMove()
assertTrue(ret.equalsCretR));
/#/Call move(start, Finish) in SUT

Boolean retR2 - inter.move( start,finish,ret2); 18 move (-, -] true

‘ & PiPlayer ‘ | H Linterface ‘ | & Cicontraller | | & M:Manager | ‘ & e:6oard H & Dn:Dicelnterface | | & bCiDiceContraller ‘
1: canMave { ) l | ‘ ‘
2 hasT
[ EN0) ) 3 hasTunPlayerd) | ‘ ‘
public void Move test(){ | S:hasTurn{ 3 : brug| == | ‘ ‘
//Get the data from DataPool | 6 canttove {3 s | | \ \
Vector<ValueSet> v = Move_DataPool.getMove_test(); T
//For each set of data in DataPool | | 7 throwpice t 3| | | o s i
AR, | ‘ | | | 8¢ trowDiceResut( )|
//0btain the test data , . 9: throwbiceResult { ) botg)
Boolean ret - (Baolean) vs.getValue('retds"); AL S SR [ ottt s
Integer start ~ (Integer) vs.getValue("start); [ . [ [ |
Integer Finish - (Integer) vs.getValue('finish"); 11: move ( start, finish ) (st Frich ) |

17: mave

16; updateBoard { -, J) itrue

//Assertion for move
assertTrue(ret2. equals(retR2));

- — — — —

(a) Move test case in JUnit

Figure

A. Composition of Packages

Composition of packages can be supported through the
UML’s Merge mechanism. A package merge is a directed
relationship between two packages that indicates that the
contents of the two packages are to be combined. It is very
similar to Generalization in the sense that the source element
conceptually adds the characteristics of the target element to its
own characteristics resulting in an element that combines the
characteristics of both [7]. Laguna et al. [11] use the package
merge mechanism to represent variability in an SPL setting.

Figure 6(b) shows the package merge for the Move func-
tionality in the Board Game SPL. For the Dice feature, the
ThrowDice use case extends the Move use case. In the UML
specification, the semantics of package merge are defined
by a set of constraints and transformations. The constraints
specify the preconditions for a valid package merge, while
the transformations describe its semantic effects. Different
metatypes have different semantics, but the general principle
is always the same: a resulting element will not be any
less capable than it was prior to the merge. Explicit merge
transformations are only defined for certain general metatypes
(Packages, Classes, Associations, Properties, etc.). UML does
not provide merge semantics for other kinds of metatypes. This
is the case of interaction diagrams.

B. Composition of Interaction Diagrams

Back to our sample case, trivialGame is characterised
through its feature equation ¢rivial e dice e base. Therefore,
scenarios for trivialGame are obtained through composition
of base scenarios, dice scenarios and frivial scenarios. As an
example, the composition of the ThrowDice scenario, which
is part of the dice feature and the Move scenario, which
corresponds to the base yields a scenario for trivialGame
(see Figure 11(b)). This scenario can then be used to obtain a
test scenario by running a model transformation that generates
tests. This subsection addresses composition of scenarios
described as interaction diagrams.

(b) ThrowDice Move scenario composition

11.

Interaction diagrams are models. Model composition has
been defined as the operation M 45 = Compose (M4, Mp,
C4p) that takes two models M4, Mp and a correspondence
model C4p between them as input, and combines their ele-
ments into a new output model M 45 [12]. Delta composition
is a special case, where both M 4 and M p conform to the same
metamodel. Delta composition is performed by pairing objects
of different models with the same name and composing them
[13].

The order between the messages in a interaction diagrams
is vital, and it should be preserved in the composition. We
need to know where exactly the variable part (i.e., the delta)
must be added to the common part (i.e. the base) to obtain
the entire functionality. To define the composition we need
to identify the point in the diagram where the delta must be
added. When adding the functionality of a feature (i.e., a delta)
to a common functionality (i.e. a base), three different cases
appear: (1) the delta is added before the first message in the
base, (2) the delta is added between two messages in the base
and (3) the delta is added after the last message in the base.

UML Gates provide a solution for the three cases. For the
second and third case, Figure 13 shows a gate in the diagram
Featurel. It is represented as an arrow with the start in the
border of the rectangle. This indicates that all messages in
Featurel must be added after the message referenced in the
gate. If the base has more messages, the feature must be added
in between the message referenced by the gate and the next
message in the base. The gate in Featurel is c20pl and it
references the message with the same name in base. The SD
FeatureleBase shows the composition. The solution for the
first case, where the variable part needs to be added before
the first message in the common part is shown in Figure
13. In this case, the arrow is represented with the start in a
lifeline inside the Interaction and the finish in the border of the
Interaction. This approach was realized using ANDROMEDA,
a tool for model composition [13]. This solution allows for
multiple composition: Feature2eFeatureleBase obtains a SD
similar to FeatureleBase of Figure 13(a) with the message

314



[]Mave_test

| (] Pr<TestCompanent»Player_TestCompanent

] DisDataPacl=Move_DataPoal ‘

«DataSelectors
1:ds canMove (1

«5UT» ] throwbice_Datapool <DatapoolsT <sUT»
H interface:Interface hrowCice_DataPoal ] diceInterface:Dicelnterface

‘ 2. cortievef vt || | | |
- % canMave { ) ‘ | \ |
| 41 cantovs ( ) 1 realR | 1] | ‘
\ \ |
<<\Validation Actian=> ‘ | ‘ |
{returni==resR} | ‘ |
| «DataSelector> ‘
5 ds_throwbice { ) ) | ‘ ‘
Ls: ds_throwDice { ) : totale 1 | ﬂ ‘
L drontie 1 1 | [ |
Ls: throwbice ¢ ) : totaR 1 | [ ﬂ
‘ \
([ e | | | |
‘ «DataSeleckors ‘
| S:dsmave (-, - -) | |
‘L_m: ds_move { start, finish, returnz ) ﬂ |
(\ 11: move { start, firish ) ‘ |
L 12imove (-, - )i realf2 ﬂ
== alidation Action== I
{returnz==realR2}
T
Figure 14. Test scenario for ThrowDice.Move
c10p2() added as first message. Due to space limitations, im-
— 5 plementation details have been omitted. We refer the interested
Base Base . . .
B reader to [14] for a more comprehensive description.
| I c1:class1 || [ c2lass2 ‘ | [ ct:class1 H O cz:Class2 ‘
ezopt ()] [ semo | VI. RELATED WORK
| o) 202001 () SPL testing includes the derivation of test cases for both the
sty | ] core assets and the products themselves. There exist different
| | methodologies for deriving test cases and a summary of this
[ oo [ eonzil methods is given in [15], [16], [17], the most cited are from:
! ! I I Nebut et al. [18], Bertolino and Gnesi [19], Reuys et al. [20],
. .
i ° Olimpiew and Gomma [21], Kang et al. [22]. Some of them
[Ereaurez ] use UML 2.0 models to capture SPL functionality, but define
| E“T"“” | ECZT"“‘Z | EEIEEE their own models to represent testing artifacts and variability
_ 15 c20p1 () q | 1ceopiy in the test model. By contrast, our work strives to be fully
eon () i | 2o | UML compliant: (1) UML-TP is used for testing scenarios,
_daopt () | (2) package composition is introduced by using UML merge
| | primitive, and (3), scenarios resort to the UML gate construct
| | to describe partial scenarios for feature realization. Only when
| | | | UML falls short (e.g. composition of interaction diagrams) our

2 c20p1 { )

662002 ( )

|
F, ,,,,,,,,,,,,,,,

(a)

Figure 13. Model composit:

/] Feature1.Base E’]Feature2.Base
| I cliClasst || [ c2:Class2 | | D ctiClass1 || cz:class2 ‘
[ veopiey |

3:e20p1( )

4:c20p1( )

'(_ _______________

5:c20p2 ()

6:c20p2 ()

ion for UML Interactions

own semantics are introduced. Additionally, our approach ad-
vocates for a uniform treatment of artifacts no matter whether
their realize functional or testing behaviour. This is most
important for SPLs to scale up. Both, the number of artifacts
and the complexity of the development process, are larger
in SPLs than in one-off development. Uniform development
(both code artifacts and scenarios follow the same composition
principles) helps to face complexity [5]. We regard scalability
as a main requirement for traditional testing methods to be
applied to SPLs.

Focusing on Feature Oriented Model Driven Development
(FOMDD) [23], Uzuncaova et al. [24] presents an incremental
test generation approach for specifi-
cation-based testing of software product lines developed using

315



AHEAD tool and focusing on the use of Alloy for test gen-
eration. They perform test generation incrementally, mapping
a formula that specifies a feature into a transformation that
defines incremental refinement of test suites. These formulas
then feed a SAT-based analyzer to generate test inputs for each
product in SPL. This work uses Jakarta code (a variation of
Java for feature implementation) as feature realizations which
are then enhanced with annotation of invariants. Our work also
uses a FOMDD approach but scenarios (rather than Java code)
are used to set the test cases.

Our proposal defines model composition for UML SD in
SPLs. The work of Apel et al. [25] is related to ours, they use
superimposition as a model composition technique in order
to support variability in the following UML diagrams: class,
state and sequence. For UML sequence diagram they only take
into account the case in that the feature is added to the end of
the base sequence diagram. Jezequel[26] also works in model
composition for UML sequence diagrams and relates it with
aspect weaving. They implement the proposal with Kermeta
using self metamodels to represent UML sequence diagrams.
Our approach uses the OMG metamodel for UML and existing
market tools to represent graphically UML sequence diagrams.

VII. CONCLUSIONS

This work addresses how current feature oriented practices
for SPL development can be extended to testing. This has a
twofold implication: first, defining a SPL testing infrastructure.
Second, applying this infrastructure to obtain product tests
out of delta tests, hence realizing the reuse benefits brought
by SPL also to the testing realm. The specification of delta
scenarios is UML compliant so that UML editors are ap-
plicable. Delta scenario reuse is achieved through scenario
composition where model composition techniques are used.
The approach is illustrated using the Game SPL. Current and
future work includes evaluating the approach in a industrial
software product line.

Acknowledgments. This work is co-supported by the Span-
ish Ministry of Education, and the European Social Fund
under contract TIN2008-06507-C02-01/TIN (MODELINE)
and TIN2008-06507-C02-01/TIN (PEGASO/MAGO). Also,
founding is acknowledge from DIMITRI (Ministerio de Cien-
cia e Innovacin, grant TRA2009_0131) and MOTERO (JCCM,
PEII11-0366-9449). Beatriz Perez has a grant from “JCCM
(Orden de 13-11-2008)”.

REFERENCES

[1] P. Clements and L. Northrop, Software Product Lines - Practices and
Patterns. Addison-Wesley, 2001.

[2] OMG, “UML Testing Profile Version 1.0,” OMG Document Number:
formal/05-07-07, 2005, status: revision underway.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, and A. S. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Carnegie-Mellon
University/Software Engineering Institute, Tech. Rep. CMU/SEI-90-TR-
21, November 1990.

[4] M. Volter and I. Groher, “Product Line Implementation using Aspect-
Oriented and Model-Driven Software Development,” in International
Conference on Software Product Lines (SPLC 2007), 2007.

[51 D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling Step-Wise Refine-
ment,” IEEE Transactions on Software Engineering (TSE), 2004.

(6]

[71

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

316

I. Schaefer, “Variability Modelling for Model-Driven Development of
Software Product Lines,” in 4th International Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS 2010), Linz, Austria,
2010.

OMBG, “Unified Modeling Language (UML),” OMG Document Number:
formal/2007-11-02, November 2007.

B. Pérez, P. Reales, 1. Rodriguez, M. Polo, and M. Piattini, “Automated
model-based testing using the UML testing profile and QVT,” in 6th
International Workshop on Model-Driven Engineering, Verification and
Validation (MoDeVVa 2009), Denver, CO, USA, 2009.

B. Pérez, P. Reales, M. Polo, and D. Caivano, “MODEL-DRIVEN
TESTING: Transformations from Test Models to Test Code,” in 6th
International Conference on Evaluation of Novel approaches to Software
Engineering (ENASE 2011), Beijing, China, 2011.

OMG, “Meta Object Facility (MOF) 2.0 Query/View/Transformation,
v1.0,” OMG Document Number: formal/2008-04-03, April 2008.

M. Laguna, B. Gonzdlez-Baixauli, and J. Marqués, “Seamless Devel-
opment of Software Product Lines,” in 6th International Conference on
Generative Programming and Component Engineering (GPCE 2007),
Salzburg, Austria, 2007.

J. Bézivin, S. Bouzitouna, M. Didonet, M. Gervais, F. Jouault,
D. Kolovos, 1. Kurtev, and R. Paige, “A Canonical Scheme for Model
Composition,” in 2nd European Conference on Model Driven Architec-
ture - Foundations and Applications (ECMDA-FA 2006), Bilbao, Spain,
July 10-13, 2006, 2006.

M. Azanza, D. Batory, O. Dfaz, and S. Trujillo, “Domain-Specific
Composition of Model Deltas,” in 3rd International Conference on
Model Transformations (ICMT 2010), Malaga, Spain, 2010.

M. Azanza, “Model driven product line engineering: Core asset and pro-
cess implications,” Ph.D. dissertation, University of the Basque Country,
February 2011, available at: https://www.educacion.gob.es/teseo/ im-
primirFicheroTesis.do?fichero=22952.

P. da Mota, I. Carmo, J. McGregor, E. de Almeida, and S. de Lemos, “A
systematic mapping study of software product lines testing,” Information
and Software Technology, 2010.

E. Engstrom and P. Runeson, “Software product line testing-a systematic
mapping study,” Information and Software Technology, 2010.

B. Pérez et al., “Software Product Line Testing, A Systematic Review,”
in ICSOFT, 2009.

C. Nebut, S. Pickin, Y. L. Traon, and J. Jézéquel, “Automated
Requirements-based Generation of Test Cases for Product Families,” in
18th IEEE International Conference on Automated Software Engineering
(ASE 2003), Montreal, Canada, 2003.

A. Bertolino and S. Gnesi, “Use Case-based Testing of Product Lines,”
in 11th ACM SIGSOFT Symposium on Foundations of Software Engi-
neering (FSE 2003) , Helsinki, Finland. ACM, 2003, pp. 355-358.
A. Reuys, E. Kamsties, K. Pohl, and S. Reis, “Model-Based System
Testing of Software Product Families,” in 17th International Confer-
ence Advanced Information Systems Engineering (CAISE 2005), Porto,
Portugal, 2005.

E. Olimpiew and H. Gomaa, “Customizable Requirements-based Test
Models for Software Product Lines,” in International Workshop on
Software Product Line Testing (SPLiT 2006), Baltimore, MD, USA, 2006.
S. Kang, J. Lee, M. Kim, and W. Lee, “Towards a Formal Framework
for Product Line Test Development,” in 7th International Conference on
Computer and Information Technology (CIT 2007), Fukushima, Japan,
2007.

S. Trujillo, D. Batory, and O. Diaz, “Feature Oriented Model Driven
Development: A Case Study for Portlets,” in 29th International Con-
ference on Software Engineering (ICSE 2007), Minneapolis, MN, USA,
2007.

E. Uzuncaova, S. Khurshid, and D. Batory, “Incremental test generation
for software product lines,” Software Engineering, IEEE Transactions
on, vol. 36, no. 3, pp. 309-322, 2010.

S. Apel, F. Janda, S. Trujillo, and C. Késtner, “Model Superimposition in
Software Product Lines,” in 2nd International Conference on Theory and
Practice of Model Transformations (ICMT 2009), Zurich, Switzerland,
2009.

J. Jézéquel, “Model Driven Design and Aspect Weaving,” Software and
System Modeling (SoSyM, 2008.



	MAIN
	Front Matter
	Welcome Messages
	Committees
	Technical Program
	Monday
	REPS1
	RM1
	FAII1

	ICTSG1
	SISP1
	ECSIA1
	CSCI1
	SSSSMIA1
	REPS2
	SSFDT2
	CSCI2
	SSMBTE1
	SISP2
	ECSIA2
	ICTSG2
	SSFDT1

	Tuesday
	REPS3
	RM2

	CSCI3

	SSSSMIA2

	SISP3

	ECSIA3

	CSCI4

	SSMBTE2

	REPS4
	EMD1
	FAII2

	Wednesday
	REPS5
	RM3
	CSCI5

	SSCMD1
	REPS6
	EMD2
	SISP4
	SSCMD2
	REPS7
	EMD3
	CSCI6


	Plenary Talks
	Conference at a Glance
	Author Index
	Session Chair Index
	Reviewers
	CD Help
	Search
	Zoom In
	Zoom Out
	View Full Page


