
Lecture Notes
in Business Information Processing 147

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Selmin Nurcan Henderik A. Proper
Pnina Soffer John Krogstie
Rainer Schmidt Terry Halpin
Ilia Bider (Eds.)

Enterprise, Business-Process
and Information Systems
Modeling

14th International Conference, BPMDS 2013
18th International Conference, EMMSAD 2013
Held at CAiSE 2013, Valencia, Spain, June 17-18, 2013
Proceedings

13

Volume Editors

Selmin Nurcan
University Paris 1 Pantheon-Sorbonne, Paris, France
E-mail: nurcan@univ-paris1.fr

Henderik A. Proper
Public Research Centre - Henri Tudor, Luxembourg-Kirchberg, Luxembourg
E-mail: e.proper@tudor.lu

Pnina Soffer
University of Haifa, Israel
E-mail: spnina@is.haifa.ac.il

John Krogstie
Norwegian University of Science and Technology, Trondheim, Norway
E-mail: krogstie@idi.ntnu.no

Rainer Schmidt
Aalen University, Germany
E-mail: rainer.schmidt@htw-aalen.de

Terry Halpin
INTI International University, Kuala Lumpur, Malaysia
E-mail: terry.halpin@logicblox.com

Ilia Bider
Stockholm University/IbisSoft, Sweden
E-mail: ilia@ibissoft.se

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-642-38483-7 e-ISBN 978-3-642-38484-4
DOI 10.1007/978-3-642-38484-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013938407

ACM Computing Classification (1998): J.1, H.4.1, H.3.5, D.2

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

S. Nurcan et al. (Eds.): BPMDS 2013 and EMMSAD 2013, LNBIP 147, pp. 94–108, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Repairing Business Process Models
as Retrieved from Source Code

María Fernández-Ropero1,2, Hajo A. Reijers1,3, Ricardo Pérez-Castillo2,
and Mario Piattini2

1 Department of Mathematics and Computer Science, Eindhoven University of Technology
Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

{m.fernandezropero,h.a.reijers}@tue.nl
2 Instituto de Tecnologías y Sistemas de la Información, University of Castilla-La Mancha

Paseo de la Universidad 4, 13071 Ciudad Real, Spain
3 Perceptive Software

Piet Joubertstraat 4, 7315 AV Apeldoorn, The Netherlands
{marias.fernandez,ricardo.pdelcastillo,mario.piattini}@uclm.es

Abstract. The static analysis of source code has become a feasible solution to
obtain underlying business process models from existing information systems.
Due to the fact that not all information can be automatically derived from
source code (e.g., consider manual activities), such business process models
may not entirely reflect the original behavior of the organization. This paper
provides a technique to repair such business process models on the basis of
event logs collected during the execution of information systems. The technique
detects missing sequence flows regarding the event log and tidily adds these se-
quence flows to the target business process model. In order to enhance its appli-
cability, this technique is tool-supported. Additionally, this paper provides a
case study with a real-life system to demonstrate its feasibility.

Keywords: process models, source code mining, event logs, repairing.

1 Introduction

Business process management enables organizations to become more efficient, more
effective and more readily adaptable to changes than traditional, functional manage-
ment approaches. Business processes describe the organization’s operations, as well
as the roles and resources involved [1]. Sometimes, however, business processes
models do not explicitly exist in an organization. And even if an organization has
created models of its business processes, these could be outdated and misaligned with
the actual activities. In cases where business activities are supported by information
systems, reverse engineering techniques can be used to obtain business process mod-
els from these. This is often an attractive practice, since existing information systems
may embed business logic in their source code. For this reason, business process ar-
cheology has emerged as a set of techniques and tools to mine business processes
from source code. Source code contains a lot of business knowledge that has been

 Repairing Business Process Models as Retrieved from Source Code 95

embedded during the information system maintenance. Thus, business process arche-
ology represents a good start point for business experts, requiring less effort than
modeling from scratch. One of these techniques is MARBLE [2], which is based on a
model-driven approach, and uses the KDM (Knowledge Discovery Metamodel)
standard to represent intermediate models.

While the analysis of source code allows the acquisition of embedded knowledge
that is not present anywhere else, their application may entail a semantic loss due to
the increase of abstraction level [3]. Business process models obtained in this way can
therefore be incomplete, could contain irrelevant information, or may even contain
ambiguities that decrease their understandability. The improvement of such a
processes model is necessary to address these problems, which helps to have them
better reflect reality [4]. To enrich the semantics of business process models it is ne-
cessary to consider alternative sources from which to extract knowledge. Event logs
form one such candidate. In an opposite way to business process archeology, process
mining techniques aim at obtaining useful information from event logs by means of
process discovery, conformance checking and model enhancement [5, 6]. These event
logs are recorded by information system such as enterprise resource planning (ERP)
or customer relationship management (CRM) systems, among others, i.e., process-
aware information systems (PAISs) [7]. Organizations may also operate traditional
(non-process-aware) information systems supporting their business processes, which
do not record any event during execution.

This paper presents a technique to repair business processes models as obtained by
a static analysis of source code by capturing additional information from event logs.
To develop the technique two assumptions based on our previous work were taken
into account: (1) business process models, capturing a static viewpoint, are obtained
by means of MARBLE, an adaptive framework to recover the underlying business
process models from legacy information system; and (2) event logs, representing a
dynamic viewpoint, are obtained by means of the technique proposed by Pérez-
Castillo et al. [8] in which event logs are generated from non process-aware systems,
which enables a process mining approach. Business process models obtained with
these two different techniques display similarities as well as differences. Hence, our
proposed approach finds similar tasks in both models in order to detect missing se-
quence flows by comparing both artifacts, i.e. those sequences flows that can be in-
ferred from the event log but which are not in the initial business process model. The
detected, missing sequence flows are incorporated into the target business process
model, making it more complete and accurate regarding to the event log. The actual
improvement obtained after this repair step is evaluated in the paper through a case
study using a real-life information system. The case study’s results show that the re-
paired business models are indeed more accurate and more complete than the initial
model as retrieved by reverse engineering.

The remainder of this paper is organized as follows: Section 2 presents related
work. Section 3 introduces the proposed approach to repair business processes models
using event logs. Section 4 shows some preliminary results provided by the proposed
approach using real-life systems. Finally, Section 5 presents the conclusions and
directions for future work.

96 M. Fernández-Ropero et al.

2 Related Work

In the literature, various techniques are described to obtain business process models.
Some of these techniques consider dynamic analysis, which obtain process models
from the event logs that are recorded during system execution. These logs represent
the actual system performance and several algorithms can be used, such as the alpha
algorithm proposed by Van der Aalst et al., a genetic algorithm proposed by De Me-
deiros et al., a heuristics algorithm proposed by Weijters et al., among others, to mine
the business process [9-11]. The event logs used by these algorithms are obtained
from process-aware information systems (PAISs) [7], i.e., information systems whose
nature facilitates the direct registration of events throughout process execution. Al-
though information systems that are not process-aware do not automatically record
event logs, such logs can be obtained by hand or by injecting code to trace by tech-
niques as proposed by Perez-Castillo et al. [8]. These event logs are generated when
the information system is running, and describe which tasks are executed and in what
order for a certain time period. The downside of such event logs is that not all func-
tionalities can be captured, i.e. only tasks that have been carried out at the time of
executing the injector. That is, if the injector stores the event logs for a year it is not
possible to recover the tasks that are executed, e. g., two years back, or it may not be
able to recover those tasks that hardly ever occur but are important for the system.

 Apart from dynamic analyses, a static analysis has been proposed. Static analysis
obtain process models through the syntactical analysis of the source code, e.g. by Zou
et al. [12]. They developed a framework based on a set of heuristic rules to extract
business processes following model-driven development. The framework statically
analyzes the legacy source code and applies the rules to transform pieces of source
code in business process elements. Although this work is based on the MDA (Model-
Driven Architecture) approach, standards as KDM are not considered. Ghose et
al.[13], in turn, consider other software artifacts as a set of text-based queries in do-
cumentation for extracting business knowledge, but the approach is not based on the
MDA. Perez-Castillo et al.[2], use standards in their approach to obtain process mod-
els. They propose MARBLE to obtain a first approximation of business process that is
especially useful for organizations that have never modeled their processes, while
their legacy information systems do embed knowledge during its maintenance (know-
ledge that is only present in the source code, not in the documentation). Unfortunate-
ly, the retrieved process models have a low abstraction level, being very close to the
code level. Furthermore, not all embedded information can be obtained using
MARBLE. Thus, the recovered process models involve several challenges to address.

Neither static nor dynamic analysis can obtain the actual and complete contours of
business processes in an organization. Adriansyah et al. [14] discuss in their work that
a retrieved model often does not describe the process executions as observed in reali-
ty, e.g., activities in the model are skipped in the log, the log contains events not de-
scribed in the model or the order execution of the tasks are different. This work com-
pares the process model with an event log of the same process. In follow up to this
observation, Fahland et al. [4] suggest to repair business process with the recorded
event logs. They obtain subprocesses in event logs not being present in the process
model and then, insert them where it is missing. This particular work assumes that the
process model has been discovered by mining process (using event logs) or by hand.

 Repairing Business Process Models as Retrieved from Source Code 97

However, this is mostly realistic in PAIS settings. The present paper is focused on a
technique to repair business process using event logs that are also suitable for non-
PAISs. Thus, this work combines the static and dynamic analysis in order to improve
process models.

3 Technique for Repairing Business Process Models

The repair technique combines artifacts obtained from the static and dynamic analyses
of existing information systems, i.e., a first sketch of business process models and
event logs collected at runtime. The main goal of the technique is to detect missing
sequence flows by comparing both artifacts and build an improved business process
model containing these sequence flows. The technique has been defined under two
assumptions, which are related to the two previously mentioned techniques. Despite
these two assumptions, this approach can be adapted to other techniques with which
to reverse business process models or obtain event logs.

Assumption 1. One of the assumptions of the repair technique is that the process
models are obtained using MARBLE (Modernization Approach for Recovering Busi-
ness process from LEgacy systems) [2], a framework for obtaining business processes
from legacy information systems (LIS for short), focusing on the phase of reverse
engineering. MARBLE is based on KDM, which is recognized as an ISO/IEC 19506
standard [15] and allows abstract conceptual representations of the different views of
the architecture of legacy information systems. Afterwards, this knowledge is gradu-
ally transformed and refined down to the underlying business processes. For this
purpose, MARBLE is divided into four levels of abstraction and defines three trans-
formations. In order to achieve optimal business process management, MARBLE
represents business processes by means of Business Processes Model and Notation
(BPMN) [16]. This notation is a well-known graphical notation and is aimed to be
easily understandable by system analysts as well as business analysts.

Assumption 2. The second assumption is that event logs are obtained by the injection
of fragments in specific parts of the information system to generate an event log file
during system execution, using the event traces injector proposed in [8]. This ap-
proach generates event logs in MXML (Mining XML) format from non-process-
aware information systems. Although the technique is generic, the supporting tool that
is used in this work, Event Traces Injector (ETI), has been designed for object-
oriented systems. Event logs are considered as a suitable knowledge source to discov-
er what is really going on in an organization. Each event log is related to a “run” of
the process, i.e., a process instance, and provides additional information about the
resource executing or initiating the activity, the timestamp, or data elements. Process
mining [17] aims at knowledge extraction from event logs available in information
systems. Among the available process mining techniques, this paper uses the Heuris-
tic Miner algorithm. The Heuristics Miner proposed by Weijters et al. [11] uses a
heuristic approach to provide the control flow of the information system from an
event log. It is usually applied to real-life data with not too many different events, or
for carrying out further analysis in PROM [18].

98 M. Fernández-Ropero et al.

Fig. 1 shows the sequence of steps carried out to obtain an improved process model
(‘Process model’). The start points of the technique are the process model and the
event logs. The steps are described in Sections 3.1 to 3.4. To facilitate their under-
standing, a running example will be progressively developed in the mentioned sec-
tions. They relate to a real-life information system, in which the technique is applied
to Villasante-Lab, a company devoted to the chemical analysis of water and waste
water (cf. Section 4).

3.1 Step 1: Obtain Info Tasks and Diagrams

This step analyzes, on the one hand, the business process according the BPMN nota-
tion and, on the other hand, event logs according to the MXML notation. In the
process model, each diagram (BusinessProcessDiagram) contains several tasks,
data objects, and inter-connections between these. In event logs, the name of each
event corresponds to the name of the class to which it belongs and the name of the
method invoked (nameClass.nameMethod). The nameMethod is considered the
task name, while the nameClass is considered the diagram name in which the task is
contained.

This step obtains which task is included in which diagram. Diagrams are classified
as fine-grained or coarse-grained diagrams in order to apply different treatments de-
pending on the type of granularity (e.g., in an object-oriented system, MARBLE
transforms some classes in BPMN diagrams and other as tasks inside another diagram
while ETI considers each class as a diagram). This classification is made according to
a proposed limit. This signifies that if a diagram contains fewer elements than this
limit specified as the number of tasks, then that diagram is considered as a
fine-grained diagram.

Fig. 1. Technique to repair BPMN using Event logs

Process
model’

Info Tasks
& Diagrams

BPMN

Info Tasks
& Diagrams
Event logs

Similar
Tasks

Heuristics Net
mined using

PROM

Edges to
insert

TECHNIQUE OUTPUTINPUT

1. Obtain info
tasks &

diagrams

2. Obtain
similar tasks

3. Obtain
edges to

insert

4. Insert
edges

Process
model

Event
Logs

1. Obtain info
tasks &

diagrams

 Repairing Business Process Models as Retrieved from Source Code 99

To continue with the running example, Table 1 shows the diagrams obtained after
applying both techniques to Villasante-Lab and the number of tasks in each of these.
As the tables show, most MXML diagrams are fine-grained and contain very few
tasks (usually one) while the BPMN part contains less fine-grained diagrams. Thus,
some MXML diagrams correspond (or are equivalent) to tasks in BPMN diagrams. In
this running example, the limit to characterize fine-grained diagrams is one task. Be-
sides, a task may contain several occurrences in different diagrams as MXML tasks
getUserManager and setInvoiceManager in Table 1.

3.2 Step 2: Obtain Similar Tasks

The information mined from information system using both techniques (MARBLE
and Event Traces Injector) displays the following differences:

• Different types of granularity. Depending on the extraction techniques, the dia-
grams show different types of granularity, e.g. in an object-oriented system,
MARBLE considers some classes as BPMN diagrams, while other classes are con-
sidered tasks inside another diagram, whereas ETI considers classes as diagrams.

Table 1. Extract of tasks Information. BPMN.

 Name task Name diagram Type Dia-
gram

B
PM

N

BaseZoneController AddPointAdminController Coarse
getUserManager BaseUserController Coarse
getClientManager BaseClientController Coarse
initBinder AnalysisBean Coarse
doPrepareView AnalysisBean Coarse
searchZoneNoHistoricas AnalysisDAO Coarse
searchZone AnalysisDAO Coarse
filterUser AnalysisDAO Coarse
convertDissolutionToDissolutionBean BaseDissolutionController Coarse
calculateTotal BaseDissolutionController Coarse
Transform PdfExport Fine
resolveException ExceptionResolve Fine

M
X

M
L

setZoneManager BaseZoneController Fine
getUserManager AuthenticationManager Coarse
getUserManager BaseUserController Coarse
setRolManager BaseRolController Fine
setInvoiceManager BaseInvoiceController Fine
setInvoiceManager BaseLinesInvoiceController Fine
setDissolutionManager BaseDissolutionController Fine
getClientManager BaseClientController Coarse
initBinder BaseClientController Coarse
searchZoneNoHistoricas ClientManagerImpl Coarse
doHandle IndexController Fine
searchZone ClientManagerImpl Coarse

100 M. Fernández-Ropero et al.

• Not Covering the Same Number of Tasks. While the BPMN model contains all
the business tasks derived from source code, the MXML model only contains those
tasks executed during the ETI execution during a certain time. The executed tasks
outside the execution period are not recorded and neither are those tasks that rarely
occur but are important for the system. Following with the running example, Villa-
sante-Lab, 368 business tasks have been obtained in the BPMN model while only
96 tasks appeared in the MXML model. This represents that the execution of this
information system during that time only executed 26% of business tasks of the
whole instrumented information system.

• Similar Tasks. The tasks used in these two models also display similarities. The
great challenge is to know which tasks of the MXML model correspond to tasks of
the BPMN model (see Fig. 2). This is done by computing the syntactic distance of
their name labels. When a MXML task is contained in a fine-grained process, it is
necessary to compare the MXML diagram with each BPMN task (due to different
granularities) as well as to compare the names of the MXML and BPMN tasks.

Fig. 2. Comparison BPMN and MXML: Diagrams framed in solid line are similar. Dotted
MXML diagrams are tasks in dotted BPMN diagrams.

6

11

1

31

1
1

4

8

1

11

4

2

1
18

19

29

18

66

21

97

2
18

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

GenDAO

XmlExport

GenericoViews
Validation

PdfExport

MensajeIU

ListenerAplicacion

Hibernate3DaoSupport

ExceptionResolver

AddPuntoAdminController

BaseUsuarioController
BaseRolController

IndexController

BaseFacturaController

BaseDisolucionController

BaseClienteController

BaseCalibracionController

AnalisisBean

Analisis
AnalisisDAO

HashUtils

AuthenticationManager

Number of Tasks

D
ia

g
ra

m
 in

 B
P

M
N

13
1
2
3

18
6

23
1
1
1

4
1

4
1
1
1

3
1
1
1
1

4
1
1
1
1

0 5 10 15 20 25 30

ClienteManagerImpl
RolManagerImpl

ZonaManagerImpl
FacturaManagerImpl

DisolucionManagerImpl
CalibracionManagerImpl

AnalisisManagerImpl
BaseZonaController

BaseAnalisisController
BasePuntoCalibracionController

BaseClienteController
BaseRolController

BaseUsuarioController
BaseLineasAnalisisController

BaseDisolucionController
BaseCalibracionController
AuthenticationManager
BaseFacturaController

BaseLineasFacturaController
RoleVoter

IndexController
UsuarioManagerImpl

LogoutController
ListClienteController

InsertEntryClienteController
ClienteBean

Numer of tasks

D
ia

g
ra

m
 in

 M
X

M
L

10 15 20

Numer of tasks

 Repairing Business Process Models as Retrieved from Source Code 101

Thus, step 2 selects tasks that are similar in process model and event logs. The step
uses the information obtained in the previous step to calculate the distance between
two tasks of the two artifacts. If the MXML task is contained in a fine-grained
diagram the distance between the BPMN task and MXML diagram is calculated.

The syntactic similarity is calculated using the Levenshtein distance [19] of the
labels as Algorithms 1 to 3 show.

Algorithm 1. Obtaining Similar Tasks.

1 getSimilarTasks(Info InfoBPMN, Info InfoMXML)

2 List similarTasks;

3 for(tb:InfoBPPMN.getTasks()) do

4 for(tm:InfoMXML.getTasks()) do

5 if((getSimilarity(tb,tm))>=LIMIT)then

6 similarTasks.add(tb,tm);

7 if(tm.getDiagram().getType()==FINE_GRAINE)then

8 if ((getSimilarity (tb,tm.getDiagram()))>=LIMIT) then

9 similarTasks.add(tb,tm.getDiagram());

10 return similarTasks;

Algorithm 2. Obtaining the syntactic similarity between task names
1 getSimilarity (Task t1, Task t2)

2 double similarity;

3 double distance = LevenshteinDistance(t1.name, t2.name);

4 similarity = 1 – distance/max(t1.name.length,t2.name.length)

5 List adjacentT1 = getAdjacent(t1);

6 List adjacentT2 = getAdjacent(t2);

7 for(at1: adjacentT1)do

8 for(at2: adjacentT2)do

9 similarity + =(getSimilarity(at1,at2)/10);

10 return similarity;

Algorithm 3. Obtaining the similarity between a task and a diagram
1 getSimilarity (Task t, Diagram t)

2 double distance= LevenshteinDistance(t.name, d.name);

3 return 1 – distance/max(t.name.length,d.name.length);

Table 2. Extract of Similar Tasks

BPMN Task MXML Task Similarity
BaseZoneController setZoneManager 1
getUserManager getUserManager 1
getRolManager setRolManager 0.923076923
BaseRolController setRolManager 1
BaseInvoiceController setInvoiceManager 1
searchZoneNoHistoricas searchZoneNoHistoricas 1
searchZone searchZone 1
filterUser filterUser 1
searchTypeAnalysis searchTypeAnalysis 1
searchPointCalibration searchPointsCalibration 0.956521739
searchLinesDissolution searchLinesDissolution 1
vote vote 1
authenticate authenticate 1

102 M. Fernández-Ropero et al.

After applying step 2 and following up with the running example, 45 similar tasks
were detected, as shown in Table 2. MXML tasks in bold symbolize that these tasks
are contained in a fine-grained process which are related to BPMN tasks. In this case,
the used limit for the similarity between tasks is 0.9.

3.3 Step 3: Obtain Missing Sequence Flows to Be Added

This step uses the Heuristics Net obtained using PROM tool [18] and the set of simi-
lar tasks to determine which edges are candidates to be inserted. The source and target
of an edge must be in the same diagram in the BPMN. Algorithm 4 shows the proce-
dure used in this step. For each edge, the source and target task are searched from the
set of similar tasks (line 5-6). If there are BPMN tasks similar to both tasks (source
and target), then the occurrence of BPMN tasks included in the same BPMN diagram
are checked (line 11). If the MXML target task has no similar BPMN task (line 14),
an intermediate task is then searched (line 15-16). In this case, the obtained edge is
induced by transitivity. Similarly, if the MXML source task has no similar BPMN
task (line 25), an intermediate task is also searched (line 26-27).

To follow up with the running example, in this step 145 edges are studied, obtain-
ing from Heuristics Net. After applying the third step 14 direct edges and 11 edges are
transitively obtained as is shown in Table 3. However, edges with reflexive flows
(same source and target) are not inserted in the model since they do not provide
additional semantics.

Algorithm 4. Obtaining Edges to insert.

1 getSimilarEdges(HeuristicsNet h, similarTasks)

2 List similarDirectEdges;

3 List similarInducedEdges;

4 for(edge: h.getEdges()) do

5 List similarBPMNsources = getBPMNSimilar(edge.source, similarTasks);

6 List similarBPMNtarget = getBPMNSimilar(edge.target, similarTasks);

7 if(!similarBPMNsources.isEmpty())then

8 if(!similarBPMNtarget.isEmpty())then

9 for (Task source: similarBPMNsources) do

10 for(Task target: similarBPMNtarget) do

11 if(source.getDiagram()==target.getDiagram() &&

12 source!=target) then

13 similarDirectEdges.add(new Edge(source,target));

14 else then

15 for(intermediateEdge: h.getEdges()) do

16 if(intermediateEdge.source == edge.target) then

17 List similarBPMNtarget=

18 getBPMNSimilar(intermediateEdge.target,similarTasks);

19 if(!similarBPMNtarget.isEmpty())then

20 for (Task source: similarBPMNsources) do

21 for(Task target: similarBPMNtarget) do

22 if(source.getDiagram()==target.getDiagram() &&

23 source!=target) then

24 similarInducedEdges.add(new Edge(source,target));

25 else then

 Repairing Business Process Models as Retrieved from Source Code 103

26 for(intermediateEdge: h.getEdges()) do

27 if(intermediateEdge.target == edge.source)then

28 List similarBPMNtarget=getBPMNSimilar(intermediateEdge.target,

29 similarTasks);

30 if(!similarBPMNtarget.isEmpty())then

31 for (Task source: similarBPMNsources) do

32 for(Task target: similarBPMNtarget) do

33 if(source.getDiagram()==target.getDiagram() &&

34 source!=target) then

35 similarInducedEdges.add(new Edge(source,target));

36 return similarDirectEdges, similarInducedEdges;

3.4 Step 4: Insert Missing Sequence Flows

In the last step, the edges obtained in the previous step (see Table 3) are added to the
process model. For each edge, its source task and its target task are located in the
diagram and the sequence flow between both of these does not exist, the sequence
flow is added. In the running example, 25 sequence flows (SF) are inserted in the
process model since none of these previously existed.

Table 3. Sequence Flows to insert

 BPMN Source Task BPMN Target Task BPMN Diagram

D
ir

ec
t S

eq
ue

nc
e

Fl
ow

s

getAnalysisManager BaseAnalysisController AnalysisBean
BaseAnalysisController getAnalysisManager AnalysisBean
getCalibrationManager BasePointCalibrationController BaseCalibrationController
BasePointCalibrationController getCalibrationManager BaseCalibrationController
doHandle doPrepareView AnalysisBean
initBinder doHandle AnalysisBean
getDissolutionManager BaseDissolutionController BaseDissolutionController
BaseDissolutionController getDissolutionManager BaseDissolutionController
getInvoiceManager BaseInvoiceController BaseInvoiceController
BaseInvoiceController getInvoiceManager BaseInvoiceController
getRolManager BaseRolController BaseRolController
BaseRolController getRolManager BaseRolController
getZoneManager BaseZoneController AddPointAdminController
BaseZoneController getZoneManager AddPointAdminController

T
ra

ns
it

iv
e

Se
qu

en
ce

 F
lo

w
s PaginateAnalysisFiltered searchTypeAnalysis AnalysisDAO

insertAnalysis searchTypeAnalysis AnalysisDAO
searchAllClient searchZone AnalysisDAO
searchPointSample PaginateDissolutionsFiltered AnalysisDAO
searchTypeAnalysis searchAllClient AnalysisDAO
searchZone searchPointSample AnalysisDAO
searchCalibration searchPointCalibration AnalysisDAO
searchPointCalibration searchCalibration AnalysisDAO
PaginateDissolutionsFiltered searchLinesDissolution AnalysisDAO
searchLinesDissolution searchSubstanceReactive AnalysisDAO
searchSubstanceReactive searchSubstanceOfAnalysis AnalysisDAO

104 M. Fernández-Ropero et al.

4 Case Study

This section provides a case study concerning Villasante-Lab, in particular the system
presented in the running example. The case study has been conducted following the
formal protocol developed by Runeson et al. [20] for conducting case studies in the
software engineering field. The following sections show the stages of this protocol:
the design, selection procedure, execution procedure and data collection, analysis and
interpretation, and finally, the threats to validity.

4.1 Case Study Design

The object of this study is the proposed repair technique, while the purpose is the
evaluation of its effectiveness in a real-life context in terms of accurateness and com-
pleteness. The following research questions (RQ) are established in order to carry out
the case study:

RQ1: Are repaired business models more accurate than preliminary models obtained
by reverse engineering from source code?

RQ2: Are repaired business models more complete than preliminary models obtained
by reverse engineering from source code?

The case study follows the embedded case study design according to the classification
proposed by Yin [21], since the case study consists of multiple units of analysis. The
independent variables used in this study are business processes models. As dependent
variables, conformance checking techniques are used in order to measure the fit degree
between event logs and the target business process model after applying the technique.
Conformance checking compares the observed and modeled behavior (i.e., event log).
Hence, to answer the question RQ1, the dependent variable is the fitness value which is
often seen as the most important quality dimension for comparing model and log [17,
22]. The fitness values vary between 0 and 1. A model has a perfect fitness (i.e., 1) if
each trace in the event log can be replayed by the process model from beginning to end.
To address question RQ2, as independent variable the density of the business process
model is used, i.e., the ratio of the total number of edges in a process model to the theo-
retically maximum number of edges. The density, after inserting sequence flows, can
only increase therefore this evaluation shows what to extent in a realistic case. RQ1 and
RQ2 are therefore evaluated by means of quantitative research together with a qualita-
tive evaluation, which focuses on the effectiveness of the proposed repair technique.

4.2 Case Selection Procedure

In order to select the case under study the following set of selection criteria are formu-
lated: (1) the system should be a real-life information system currently in production;
(2) the size of the system should be greater to 20 KLOC (thousands of lines of source
code) to make it more likely that the system under study supports more than a single
business process; (3) the system should be written in Java language to be able to
use the supporting tools (MARBLE and Event Traces Injector).

 Repairing Business Process Models as Retrieved from Source Code 105

After analyzing a dozen of information systems of partner companies according to
criteria, the selected case was Villasante-Lab, a web application of 26 KLOC devoted
to support operations of a chemical laboratory of the water and waste industry.

4.3 Execution Procedure and Data Collection

The procedure to carry out the case study consists of the following steps according to
the proposed technique. Particular details of the execution are shown in the running
example developed throughout Section 3.

1. Business process models are mined from the source code using MARBLE.
2. Event logs are obtained using the Event Traces Injector.
3. The repair technique is applied using the artifacts generated according to the

described steps. In order to facilitate its execution, the technique has been
implemented as a plug-in in the PROM tool.

4. The fitness in both business process models – the original from information and
repaired using the proposed technique – is measured using the replayer proposed
by Adriansyah et al. [22]. This technique is developed as a plug-in in the PROM
tool. The fitness value is collected to carry out the conformance checking.

5. After the whole execution, the collected information is statistically analyzed to
answer the research questions.

Table 4. Case Study’s statistics

BP model #tasks Initial Final #inserted
SF

Density
gain Density #SF Density #SF

GenDAO 6 0.1333 2 0.1333 2 0 0
XmlExport 11 0.0355 60 0.0355 60 0 0
GenericViews 1 0 0 0 0 0 0
Validation 31 0.0448 35 0.0448 35 0 0
PdfExport 1 0 0 0 0 0 0
MessageIU 0 0 0 0 0 0 0
ListenerAplication 4 0.2222 2 0.2222 2 0 0
Hibernate3DaoSupport 8 0.1429 4 0.1429 4 0 0
ExceptionResolve 1 2.0000 0 2.0000 0 0 0
AddPointAdminController 11 0.0175 3 0.0292 5 2 0.0117
BaseUserController 4 0.0667 1 0.0667 1 0 0
BaseRolController 2 0.1667 1 0.5000 3 2 0.3333
IndexController 0 0 0 0 0 0 0
BaseInvoiceController 18 0.1087 28 0.1159 30 2 0.0072
BaseDissolutionController 19 0.1082 25 0.1169 27 2 0.0087
BaseClientController 29 0.1261 80 0.1261 80 0 0
BaseCalibrationController 18 0.0627 27 0.0650 29 2 0.0023
AnalysisBean 66 0.0382 255 0.0386 259 4 0.0004
Analysis 21 0 0 0 0 0 0
AnalysisDAO 97 0.0265 124 0.0279 135 11 0.0014
HashUtils 2 0.6667 0 0.6667 0 0 0
AuthenticationManager 18 0.0342 4 0.0342 4 0 0
TOTAL 368 0.0096 651 0.0100 676 25 0.0004

106 M. Fernández-Ropero et al.

4.4 Analysis and Interpretation

After the full execution of the case study, the values of the fitness were collected for
the business process model. Although missing sequence flows were only detected in
seven business process diagrams, as Table 3 shows, the fitness was calculated for the
whole process model. The results demonstrated that the fitness of the repaired BP
model (0.6064) is greater than the original fitness (0.3804), i.e., the repaired model
fits 59.41% better to the observed behavior. However, the fitness is not yet close to 1
since, as was shown in Section 3.2: only 26% of business tasks of the whole
information system are captured in the event logs.

Table 4 summarizes the statistics of the case study. Once the BPMN, the MXML
and the Heuristic Net were available, the total time spent on carrying out the repair
was 973 milliseconds. In all the cases the density gain (final density - initial density)
was positive, even reaching a 33.33% gain.

Hence, the research question RQ1 may be positively answered owing to the fitness
has increased, i.e., the repaired business models are more accurate than the prelimi-
nary model obtained by reverse engineering from source code. Similarly, the research
question RQ2 may be positively answered since the final model is more connected
and therefore more complete.

4.5 Threats to Validity

This section presents the threats to the validity of this case study and possible actions
to address them. The threats are divided in three types of validity: internal, construct
and external validity.

Regarding the internal validity, the study considers a process model and event logs
obtained from an information system. However, the study may be replicated by using
more information systems, to consider a larger sample of process models. Besides, the
support tools (MARBLE and ETI) could be a factor that affects the case study results
since the technique depends on the settings of retrieved process model and event logs.

With regard to construct validity, the study considers measures to evaluate the re-
search question. Nevertheless, there are other measures in literature that may be used
instead. Hence, additional measures should be evaluated in the future, such as shown
in [3]. Another threat to construct validity is the similarity algorithm used in step 2 to
obtain similar tasks (Algorithm 1). In order to address this threat, other possible simi-
larity algorithms may be considered as e.g., including the semantic similarity.

Concerning the external validity, this study considers the whole population to be
business process models retrieved by reverse engineering from legacy information
systems as well as event logs obtained from the same information system. However,
the obtained results obtained cannot be strictly generalized to all types of information.
This threat may be mitigated by replicating the study using systems implemented in
different platforms.

 Repairing Business Process Models as Retrieved from Source Code 107

5 Conclusions and Future Work

Reverse engineering has become a feasible solution to mine business processes mod-
els from existing information systems. Unfortunately, these retrieved business
processes models entail some challenges that are necessary to address if synch models
form the basis for properly managing these business processes.

Incompleteness is one such important challenge to deal with in a retrieved business
processes model, since data are distributed across several sources. Missing sequence
flows between elements decreases the understandability of the model since it may not
reflect the real behavior of an organization. In order to address this challenge, this
paper present a technique for repairing business processes models obtained from in-
formation systems using event logs. The technique builds on two assumptions: (1)
business process models, which represent the static viewpoint of the organization, are
mined by the archeology tool MARBLE, which is an adaptive framework to recover
business process models underlying legacy information system; and (2) event logs,
which represent the dynamic viewpoint of an organization, are obtained by means of
the technique proposed in [8], since event logs cannot automatically be generated
from non-process-aware systems. Despite these assumptions, the main ideas of this
approach can be easily adapted to other reverse engineering techniques and platforms.
In fact, to ensure its feasibility this technique has been validated by means of an in-
dustrial case study. The results of this case study show that the fitness of the process
model increases after applying the technique, i.e., repairing business process model
leads to a more faithful representation of the observed behavior.

Future work will aim at incorporating a mechanism to calculate the semantic dis-
tance between two tasks. Besides, with both mechanisms (syntactic and semantic
similarity) can be performed a grouping of similar tasks in order to decrease the num-
ber of fine-grained tasks, i.e., those tasks that do not perform a real business activity.
Finally, a mechanism is called for to detect tasks’ labels which are poor in descriptive
quality, i.e., those task labels that have several occurrences in the model and do not
clearly represent their purpose.

Acknowledgments. This work was supported by the FPU Spanish Program and the
R&D projects GEODAS (TIN2012-39493-C03-01), PEGASO /MAGO (TIN2009-
13718-C02-01) and ARMONIAS (PII2I09-0223-7948). This work has been addition-
ally supported by Eindhoven University of Technology.

References

1. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer,
Heidelberg (2007)

2. Pérez-Castillo, R., García-Rodríguez de Guzmán, I., Piattini, M.: Business Process Arche-
ology using MARBLE. Information and Software Technology (2011)

3. Fernández-Ropero, M., Pérez-Castillo, R., Caballero, I., Piattini, M.: Quality-Driven Busi-
ness Process Refactoring. In: International Conference on Business Information Systems,
ICBIS 2012, Paris, France, pp. 960–966 (2012)

108 M. Fernández-Ropero et al.

4. Fahland, D., van der Aalst, W.M.P.: Repairing Process Models to Reflect Reality (2012)
5. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of

Business Processes. Springer (2011)
6. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., de Medeiros,

A.K.A., Song, M., Verbeek, H.: Business process mining: An industrial application. In-
formation Systems 32, 713–732 (2007)

7. Dumas, M., van der Aalst, W.M.P., Ter Hofstede, A.: Process-aware information systems.
Wiley Online Library (2005)

8. Pérez-Castillo, R., Weber, B., García Rodríguez de Guzmán, I., Piattini, M.: Generating
Event Logs from Non-Process-Aware Systems Enabling Business Process Mining. Enter-
prise Information System Journal 5, 301–335 (2011)

9. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Transactions on Knowledge and Data Engineering 16,
1128–1142 (2004)

10. De Medeiros, A.K.A., Weijters, A., van der Aalst, W.M.P.: Using genetic algorithms to
mine process models: representation, operators and results. Beta, Research School for Op-
erations Management and Logistics (2005)

11. Weijters, A., van der Aalst, W.M.P., de Medeiros, A.K.A.: Process mining with the heuris-
tics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP 166 (2006)

12. Zou, Y., Hung, M.: An Approach for Extracting Workflows from E-Commerce Applica-
tions. In: Proceedings of the Fourteenth International Conference on Program Comprehen-
sion, pp. 127–136. IEEE Computer Society (2006)

13. Ghose, A., Koliadis, G., Chueng, A.: Process discovery from model and text artefacts. In:
2007 IEEE Congress on Services, pp. 167–174. IEEE (2007)

14. Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance checking using
cost-based fitness analysis, pp. 55–64. IEEE (2011)

15. ISO/IEC: ISO/IEC 19506:2012. Information technology – Object Management Group Ar-
chitecture-Driven Modernization (ADM) – Knowledge Discovery Meta-Model (KDM), p.
331. ISO/IEC (2012)

16. http://www.omg.org/spec/BPMN/2.0/PDF/
17. van der Aalst, W.M.P.: Process Mining: Overview and Opportunities. ACM Transactions

on Management Information Systems (TMIS) 3, 7 (2012)
18. Promtools.org: ProM Tool (2010)
19. Lcvenshtcin, V.: BINARY coors CAPABLE or ‘CORRECTING DELETIONS,

INSERTIONS, AND REVERSALS. In: Soviet Physics-Doklady (1966)
20. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empirical Softw. Eng. 14, 131–164 (2009)
21. Yin, R.K.: Case study research. Design and methods. Sage, London (2003)
22. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process

models for conformance checking and performance analysis. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery (2012)

	Repairing Business Process Models as Retrieved from Source Code
	1 Introduction
	2 Related Work
	3 Technique for Repairing Business Process Models
	3.1 Step 1: Obtain Info Tasks and Diagrams
	3.2 Step 2: Obtain Similar Tasks
	3.3 Step 3: Obtain Missing Sequence Flows to Be Added
	3.4 Step 4: Insert Missing Sequence Flows

	4 Case Study
	4.1 Case Study Design
	4.2 Case Selection Procedure
	4.3 Execution Procedure and Data Collection
	4.4 Analysis and Interpretation
	4.5 Threats to Validity

	5 Conclusions and Future Work
	References

