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ABSTRACT 
This paper describes a genetic algorithm based on mutation 
testing to generate test cases for classes with multiple states. The 
fitness function is based on the coverability and the killability of 
the individuals. The paper includes a small empirical section that 
shows evidences of the ability of the algorithm to generate good 
test cases. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features, Software testing. 

General Terms 
Algorithms, Desig, Reliability, Experimentation and Verification. 

Keywords 
Mutation testing, Genetic algorithms., Tests generation 

1. INTRODUCTION 
Executable test cases are pieces of code that exercise some 
functionality of the system under test (the SUT) to find errors. 
One of the main problems to test classes is “the state” problem. 
Usually, an instance of a class may have different states and, to 
reach a determinate state, it can be required that the object has 
been previously in other states. For example, think in a “traffic-
lights” object: to reach the state “red”, it should be in the “yellow 
state” previously. Typically, test generation algorithms do not 
manage this issue specifically: they just generate test data and 
sequences of calls in order to exercise the methods of the SUT.  

This article presents a novel algorithm called MACO (Mutation-
based generation of Automated tests for Classes with multiple 
states Ordered or restricted) that efficiently manages the states in 
order to improve the test generation tasks. The main contributions 
of our algorithm are: 1) Test cases are bidimensionally codified 
with (a) calls to setup the SUT in a concrete state, and (b) calls to 
exercise the SUT services from such concrete state; and 2) The 
fitness function, which is based on mutation testing [1] and is 
calculated in terms of the coverability and the killability of the test 
case. The presented algorithm is implemented in Bacterio [2], a 
tool to automate the whole testing process of Java applications.  

This paper is organized as follows: after a revision of some related 
works, the algorithm is described Section 3. Section 4 presents a 
first empirical validation. Finally, we draw our conclusions and 
future line of work. 

2. RELATED WORK 
Optimization techniques have been widely used to generate test 
data, such as tabu search [3] and, also, genetic algorithms, since 
Shiba et al. [4]. Some of the most recent work related with this 

paper is Baudry et al. [5], who describe a “bacteriologic” 
algorithm (“inspired in GA”) whose fitness is calculated in terms 
of the mutation score and Fraser et al [6], who describes an 
mutation based GA algorithm to generate test cases, which 
include oracles. In general, authors are not too explicit about their 
algorithms’ details. 

3. DESCRIPTION OF THE ALGORITHM 
This section explains in detail the proposed algorithm. The 
MACO algorithm is specially designed to manage the states of the 
objects. This is done through the genetic representation of the test 
cases and the designed crossover and mutation operations. In the 
MACO algorithm, a test case is represented as a bidimensional 
structure: on the one side, there is a sequence of calls to: (1) the 
constructor, (2) maybe calls to operations to initialize required 
objects (class fields, for example) and (3) calls to services of the 
SUT; on the other side, the test case also has a set of test data 
(which are the Param values elements on the right side of the 
figure) and a return value element.  
Due to the bidimensional genetic representation, the crossing is 
not so direct as usual, and some prevention must be considered. 
There are three possibilities: 1) “cross in depth”: this combines the 
calls to constructors and the list of inits, what ensures diversity; 2) 
“swap cross”: this crosses the list of inits and exchange the 
constructor call when the resulting test proceeding from a crossing 
in depth is not valid; 3) “methods cross”: this exchanges the 
method calls of two individuals: the elements in the same position 
of the two sequences are crossed in depth and the remaining 
elements are randomly distributed between the descendants.  
Besides the crossover function, genetic mutations are important to 
create descendants that cannot appear only with the crossover 
function. We have designed three kinds of mutation operators: 1) 
to mutate a single element, which implies to generate randomly a 
new instance of the element or mutate the components elements 
are mutated; 2) to mutate a list of elements, which implies to 
generate randomly the whole list or mutate each element of the 
list changing its position in the list; and 3) to mutate basic values, 
where mutations for numeric (increment, decrement and 
negation), boolean (negation) and string (random generation) 
values are applied.  

3.1 Fitness function 
The fitness function of the MACO algorithm is based on mutation 
testing. However, unlike other also mutation-based genetic 
algorithms, the fitness function is based in two properties of the 
test cases: Coverability and Killability.  
The coverability of a test determines the ability of the test case to 
reach mutations, taking into account how difficult is to reach each 
mutation. The formula to calculate the coverability appears in 
Equation 1, where mi represents the i-th mutant, and c is the 
number of mutants covered by the test case t. On the other side, 
the killability of a test case determines the ability of a test case to 
kill mutants, taking into account how difficult is to kill the killed 
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mutant. The expression to calculate the killability appears in 
Equation 1, where k is the number of mutants killed by the test 
case t, and mi represents the i-th mutant. 

𝑪𝒐𝒗𝒆𝒓𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝑡 =
[1 −𝑀𝑢𝑡𝑎𝑛𝑡𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚! ]!
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𝑐 	  

𝑀𝑢𝑡𝑎𝑛𝑡𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚 =
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑡𝑒𝑠𝑡𝑠  𝑡ℎ𝑎𝑡  𝑐𝑜𝑣𝑒𝑟  𝑚

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑡𝑒𝑠𝑡𝑠 	  
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𝑀𝑢𝑡𝑎𝑛𝑡𝐹𝑟𝑎𝑔𝑖𝑙𝑖𝑡𝑦(𝑚) =
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑡𝑒𝑠𝑡𝑠  𝑡ℎ𝑎𝑡  𝑘𝑖𝑙𝑙  𝑚  

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑡𝑒𝑠𝑡𝑠 	  

Equation 1. Calculus of the coverability and killability 
Coverability rewards a test case as it visits more unvisited 
mutations, whereas killability rewards those test cases that kill 
more hard-to-kill mutants. In order to combine the two fitness 
values (killability and coverability), the algorithm has the same 
structure that a NSGA-II algorithm [7], which is designed to 
combine several fitness values in the same genetic algorithm. 

4. EMPIRICAL ANALYSIS 
In order to analyze the proposed algorithm empirically, we have 
generated tests for three classes that have the “state problem” 
commented in the introduction of this paper (Board, Player and 
Street classes of the Monopoly application, which have been used 
in previous studies [8]), and to the classic Triangle-type 
determination problem, which has not the “state problem”. 

TABLE I shows the execution results of the algorithm: number of 
iterations, number of generated tests, mutation score achieved by 
the final set of tests (note that equivalent mutants were not 
identified) and statement coverage of the final set. 

TABLE I. Experimental results (I=iterations, ST=selected 
tests, MS= mutation score and SC = statement coverage) 

Classes # I # ST MS SC 
Street (175 LOC) 24 17 93,96% 90,03 
Board (1239 LOC) 77 60 79,32% 99,9% 
Player (962 LOC) 84 103 79,06% 70,01% 
Triangle (170 LOC) 53 24 83,92% 98,2% 
We can see that in 238 iterations, the algorithm was able to 
generate 204 tests for the four classes. In mean, the mutation 
achieved by the test cases is 84% and the statement coverage is 
90%. An interesting data was obtained with the Player class. The 
mutation score obtained against this class was 79,06% but the 
statement coverage was 70,01%. From the result of the 
experimentation, 83 mutants from the 535 mutants of the Player 
class (15%), were not covered by the test cases, which explains 
why the statement coverage has a low value. 

Figure 1 shows how the killability and the coverability evolve for 
each class. The graphs show that these values can get better or 
worse in each iteration, but they show a trend positive, being 
better across successive generations. Again, a special case is the 
Player class: the mean coverability obtained with this class is very 
high from the beginning of the execution. This data explains the 
coverage results obtained with this class, since the algorithm was 
focused on increasing the killability and did not search to cover 
new mutants. This result suggests a possible improvement in the 
adjustment of the calculus of the fitness function. 

The empirical results obtained from the execution of the MACO 
algorithm against the Street, Board, Player and Triangle classes 
induce to think that the proposed algorithm is able to overcome 

the consequences derived from the “state problem”, which make 
difficult the automatic generation of tests. MACO also works 
properly to evolve basic values. 

	   	  
Figure 1. Mean of the killability and coverability 

5. CONCLUSIONS AND FUTURE WORK 
In this paper a novel genetic algorithm is proposed to improve the 
task of generating tests automatically for classes with multiple 
states with different restrictions, specially execution preconditions 
(in particular, existence of certain objects in concrete states to 
execute SUT services). As a future work, we will improve the 
algorithm with the development of new techniques to generate the 
initial population and in the mutation through diminishing 
randomness and providing some extra information to the 
algorithm that could guide the search. 
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