
Automated Test Generation for Multi-state Systems
Pedro Reales Mateo

University of Castilla-La Mancha
Ciudad Real, Spain

(+34)926295354 ext.96607
 pedro.reales@uclm.es

Macario Polo Usaola
University of Castilla-La Mancha

Ciudad Real, Spain
(+34)926295354 ext.3730

macario.polo@uclm.es

ABSTRACT
This paper describes a genetic algorithm based on mutation
testing to generate test cases for classes with multiple states. The
fitness function is based on the coverability and the killability of
the individuals. The paper includes a small empirical section that
shows evidences of the ability of the algorithm to generate good
test cases.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features, Software testing.

General Terms
Algorithms, Desig, Reliability, Experimentation and Verification.

Keywords
Mutation testing, Genetic algorithms., Tests generation

1. INTRODUCTION
Executable test cases are pieces of code that exercise some
functionality of the system under test (the SUT) to find errors.
One of the main problems to test classes is “the state” problem.
Usually, an instance of a class may have different states and, to
reach a determinate state, it can be required that the object has
been previously in other states. For example, think in a “traffic-
lights” object: to reach the state “red”, it should be in the “yellow
state” previously. Typically, test generation algorithms do not
manage this issue specifically: they just generate test data and
sequences of calls in order to exercise the methods of the SUT.

This article presents a novel algorithm called MACO (Mutation-
based generation of Automated tests for Classes with multiple
states Ordered or restricted) that efficiently manages the states in
order to improve the test generation tasks. The main contributions
of our algorithm are: 1) Test cases are bidimensionally codified
with (a) calls to setup the SUT in a concrete state, and (b) calls to
exercise the SUT services from such concrete state; and 2) The
fitness function, which is based on mutation testing [1] and is
calculated in terms of the coverability and the killability of the test
case. The presented algorithm is implemented in Bacterio [2], a
tool to automate the whole testing process of Java applications.

This paper is organized as follows: after a revision of some related
works, the algorithm is described Section 3. Section 4 presents a
first empirical validation. Finally, we draw our conclusions and
future line of work.

2. RELATED WORK
Optimization techniques have been widely used to generate test
data, such as tabu search [3] and, also, genetic algorithms, since
Shiba et al. [4]. Some of the most recent work related with this

paper is Baudry et al. [5], who describe a “bacteriologic”
algorithm (“inspired in GA”) whose fitness is calculated in terms
of the mutation score and Fraser et al [6], who describes an
mutation based GA algorithm to generate test cases, which
include oracles. In general, authors are not too explicit about their
algorithms’ details.

3. DESCRIPTION OF THE ALGORITHM
This section explains in detail the proposed algorithm. The
MACO algorithm is specially designed to manage the states of the
objects. This is done through the genetic representation of the test
cases and the designed crossover and mutation operations. In the
MACO algorithm, a test case is represented as a bidimensional
structure: on the one side, there is a sequence of calls to: (1) the
constructor, (2) maybe calls to operations to initialize required
objects (class fields, for example) and (3) calls to services of the
SUT; on the other side, the test case also has a set of test data
(which are the Param values elements on the right side of the
figure) and a return value element.
Due to the bidimensional genetic representation, the crossing is
not so direct as usual, and some prevention must be considered.
There are three possibilities: 1) “cross in depth”: this combines the
calls to constructors and the list of inits, what ensures diversity; 2)
“swap cross”: this crosses the list of inits and exchange the
constructor call when the resulting test proceeding from a crossing
in depth is not valid; 3) “methods cross”: this exchanges the
method calls of two individuals: the elements in the same position
of the two sequences are crossed in depth and the remaining
elements are randomly distributed between the descendants.
Besides the crossover function, genetic mutations are important to
create descendants that cannot appear only with the crossover
function. We have designed three kinds of mutation operators: 1)
to mutate a single element, which implies to generate randomly a
new instance of the element or mutate the components elements
are mutated; 2) to mutate a list of elements, which implies to
generate randomly the whole list or mutate each element of the
list changing its position in the list; and 3) to mutate basic values,
where mutations for numeric (increment, decrement and
negation), boolean (negation) and string (random generation)
values are applied.

3.1 Fitness function
The fitness function of the MACO algorithm is based on mutation
testing. However, unlike other also mutation-based genetic
algorithms, the fitness function is based in two properties of the
test cases: Coverability and Killability.
The coverability of a test determines the ability of the test case to
reach mutations, taking into account how difficult is to reach each
mutation. The formula to calculate the coverability appears in
Equation 1, where mi represents the i-th mutant, and c is the
number of mutants covered by the test case t. On the other side,
the killability of a test case determines the ability of a test case to
kill mutants, taking into account how difficult is to kill the killed

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, the Netherlands.
ACM 978-1-4503-1964-5/13/07.

211

mutant. The expression to calculate the killability appears in
Equation 1, where k is the number of mutants killed by the test
case t, and mi represents the i-th mutant.

𝑪𝒐𝒗𝒆𝒓𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝑡 =
[1 −𝑀𝑢𝑡𝑎𝑛𝑡𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚!]!

!!!

𝑐 	

𝑀𝑢𝑡𝑎𝑛𝑡𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠 𝑡ℎ𝑎𝑡 𝑐𝑜𝑣𝑒𝑟 𝑚

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠 	

𝑲𝒊𝒍𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝑡 =
[1 −𝑀𝑢𝑡𝑎𝑛𝑡𝐹𝑟𝑎𝑔𝑖𝑙𝑖𝑡𝑦 𝑚!]!

!!!

𝑘 	

𝑀𝑢𝑡𝑎𝑛𝑡𝐹𝑟𝑎𝑔𝑖𝑙𝑖𝑡𝑦(𝑚) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠 𝑡ℎ𝑎𝑡 𝑘𝑖𝑙𝑙 𝑚

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠 	

Equation 1. Calculus of the coverability and killability
Coverability rewards a test case as it visits more unvisited
mutations, whereas killability rewards those test cases that kill
more hard-to-kill mutants. In order to combine the two fitness
values (killability and coverability), the algorithm has the same
structure that a NSGA-II algorithm [7], which is designed to
combine several fitness values in the same genetic algorithm.

4. EMPIRICAL ANALYSIS
In order to analyze the proposed algorithm empirically, we have
generated tests for three classes that have the “state problem”
commented in the introduction of this paper (Board, Player and
Street classes of the Monopoly application, which have been used
in previous studies [8]), and to the classic Triangle-type
determination problem, which has not the “state problem”.

TABLE I shows the execution results of the algorithm: number of
iterations, number of generated tests, mutation score achieved by
the final set of tests (note that equivalent mutants were not
identified) and statement coverage of the final set.

TABLE I. Experimental results (I=iterations, ST=selected
tests, MS= mutation score and SC = statement coverage)

Classes # I # ST MS SC
Street (175 LOC) 24 17 93,96% 90,03
Board (1239 LOC) 77 60 79,32% 99,9%
Player (962 LOC) 84 103 79,06% 70,01%
Triangle (170 LOC) 53 24 83,92% 98,2%
We can see that in 238 iterations, the algorithm was able to
generate 204 tests for the four classes. In mean, the mutation
achieved by the test cases is 84% and the statement coverage is
90%. An interesting data was obtained with the Player class. The
mutation score obtained against this class was 79,06% but the
statement coverage was 70,01%. From the result of the
experimentation, 83 mutants from the 535 mutants of the Player
class (15%), were not covered by the test cases, which explains
why the statement coverage has a low value.

Figure 1 shows how the killability and the coverability evolve for
each class. The graphs show that these values can get better or
worse in each iteration, but they show a trend positive, being
better across successive generations. Again, a special case is the
Player class: the mean coverability obtained with this class is very
high from the beginning of the execution. This data explains the
coverage results obtained with this class, since the algorithm was
focused on increasing the killability and did not search to cover
new mutants. This result suggests a possible improvement in the
adjustment of the calculus of the fitness function.

The empirical results obtained from the execution of the MACO
algorithm against the Street, Board, Player and Triangle classes
induce to think that the proposed algorithm is able to overcome

the consequences derived from the “state problem”, which make
difficult the automatic generation of tests. MACO also works
properly to evolve basic values.

	 	
Figure 1. Mean of the killability and coverability

5. CONCLUSIONS AND FUTURE WORK
In this paper a novel genetic algorithm is proposed to improve the
task of generating tests automatically for classes with multiple
states with different restrictions, specially execution preconditions
(in particular, existence of certain objects in concrete states to
execute SUT services). As a future work, we will improve the
algorithm with the development of new techniques to generate the
initial population and in the mutation through diminishing
randomness and providing some extra information to the
algorithm that could guide the search.

6. ACKNOWLEDGMENTS
This paper has been partially supported by the GEODAS-BC
project (TIN2012-37493-C03-01). Pedro Reales has a FPU from
Ministerio de Educación (AP2009-3058).

7. REFERENCES
[1] P. Ammann and J. Offutt, Introduction to software testing.

Cambridge University Press, Cambridge, UK, 2008.

[2] P. R. Mateo and M. P. Usaola, “Bacterio: Java mutation
testing tool: A framework to evaluate quality of tests cases,”
2012, pp. 646–649.

[3] E. Díaz, J. Tuya, R. Blanco, and J. Javier Dolado, “A tabu
search algorithm for structural software testing,” Computers
& Operations Research, 35(10), pp. 3052–3072, Oct. 2008.

[4] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using artificial life
techniques to generate test cases for combinatorial testing,”
in Computer Software and Applications Conference, 2004.
COMPSAC 2004. Proceedings of the 28th Annual
International, 2004, pp. 72 –77 vol.1.

[5] B. Baudry, F. Fleurey, J.-M. Jezequel, and Y. Le Traon,
“Automatic test case optimization: a bacteriologic
algorithm,” IEEE Software, 22(2), pp. 76 – 82, Apr. 2005.

[6] G. Fraser and A. Zeller, “Mutation-driven generation of unit
tests and oracles,” presented at the ISSTA, 2010, p. 147.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,”
IEEE Transactions on Evolutionary Computation, vol. 6,
no. 2, pp. 182 –197, Apr. 2002.

[8] P. Reales Mateo, M. Polo Usaola, and J. L. Fernández
Alemán, “Validating 2nd-Order Mutation at System Level,”
IEEE Transactions on Software Engineering, pp. 1–1, 2012.

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	

1	 21	 41	 61	 81	
Number	 of	 Iteration	

Mean	 Killability	

Street	
Board	
Player	
Triangle	

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

1	 21	 41	 61	 81	
Number	 of	 Iteration	

Mean	 Coverability	

Street	
Board	
Player	
Triangle	

212

