
Jürgen Münch,
Jo Ann Lan, and He Zhang

May 18–19, 2013
San Francisco, CA, USA

2013
International Conference on

Software and Systems Process
(ICSSP)

Proceedings

The Association for Computing Machinery, Inc.
2 Penn Plaza, Suite 701

New York, NY 10121-0701

Copyright c© 2013 by the Association for Computing Machinery, Inc (ACM). Permission to make digital or hard
copies of portions of this work for personal or classroom use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permission to republish from: Publications Dept. ACM, Inc.
Fax +1-212-869-0481 or E-mail permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided that
the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923.

Notice to Past Authors of ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other material previously published by ACM.
If you have written a work that was previously published by ACM in any journal or conference proceedings prior to
1978, or any SIG Newsletter at any time, and you do NOT want this work to appear in the ACM Digital Library, please
inform permissions@acm.org, stating the title of the work, the author(s), and where and when published.

ACM ISBN: 978-1-4503-2062-7

Additional copies may be ordered prepaid from:

Phone: 1-800-342-6626
ACM Order Department (U.S.A. and Canada)
P.O. BOX 11405 +1-212-626-0500
Church Street Station (All other countries)
New York, NY 10286-1405 Fax: +1-212-944-1318

E-mail: acmhelp@acm.org

Production: Conference Publishing Consulting, D-94034 Passau, Germany, info@conference-publishing.com

Process Variability Management in Global Software
Development: A Case Study

Tomás Martínez-Ruiz, Félix García, Mario Piattini, Francisco de Lucas-Consuegra
Alarcos Research Group, Institute of Information Technologies and Systems, University of Castilla-La Mancha

Camino de Moledores, s/n, 13051 Ciudad Real, Spain telf. (+34) 926 29 53 00 ext. 96678
{tomas.mrtnez, delucasfrancisco}@gmail.com, {Felix.Garcia, Mario.Piattini}@uclm.es

ABSTRACT
Global Software Development (GSD) is set to be the paradigm
that will support software industries in the increasingly globalized
21st century. It opens the door to companies from emerging
countries to compete for their own gap in the market. It does,
however, still bring some challenges with it. It must integrate
different cultures, work styles, and work timetables in the same
development process. In fact, GSD methodologies do indeed
include specific activities to coordinate different work teams, but
they fail precisely where any other methodology does: in the need
to be truly useful by meeting the distinct cultural requirements of
every organization involved, all at the same time. Up to now,
process tailoring has been managed through variability
mechanisms. Since these successfully merge original structure
with cultural assets, they are also useful for adjusting global
methodologies so that they suit each particular development
context. This paper presents a case study of the use of the Variant-
Rich Process paradigm (VRP) to support tailoring in a GSD
methodology. It reveals the suitability of the VRP mechanisms,
given that they support the two tailoring dimensions a GSD
project involves, i.e., they take into account the circumstances of
the entire global project, as well as the need to fit the internal
characteristics of each organization; furthermore, they save effort
in the tailoring process.

Categories and Subject Descriptors
K.6.3 [Management of Computing and Information Systems]:
Software Management – software process, software development,
software maintenance.

General Terms
Management, Documentation, Experimentation

Keywords
Process tailoring; Global Software Development; Variant-Rich
Process paradigm; Process institutionalization

1. INTRODUCTION
Traditionally, it has been commonly accepted that software
processes must fit the organization, because if not, the work force
will reject them sooner or later [1]. The first consequence of this
is that these processes are tailored before each enactment [2].
Literature therefore shows that the process tailoring problem has
been dealt with by means of applying assets from products.
Approaches based on components [3], product lines [4], even
aspects [5] have been used in managing variability with traditional
software engineering projects.

At the present time globalization also influences software
engineering; this in turn brings about Global Software
Development (GSD) projects. Globalization provides software
development with several advantages; in addition to the
possibility of saving resources or reducing the time to market, it
makes it possible for the most qualified human resources to work
together. Several pieces of work have already studied the benefits
of this: cost-saving when accessing large multi-skilled
workforces, reduced time to market, increased working-days, up
to almost 24 hours [6-10]. Some challenges still remain, such as
access to innovation and shared best practices and knowledge,
improvement of resource allocation as well as of task
modularization and communication. There is also a need for a
clearer definition of the common process(es) [6, 11, 12] that
coordinate(s) and improve(s) the work across all the organizations
involved in a GSD project.

Even when the methodology is defined, GSD projects mean an
extra challenge: as there are several organizations involved in the
same project, the processes must meet the requirements of all
these organizations as they work together. As each one possesses
its own particularities, the same processes must fit all of the
organizations at one and the same time. It is true that using a
methodology mitigates the problems of GSD, but the real benefits
are clearly unattainable, and the advantages of GSD are,
moreover, placed under threat unless the methodologies are able
to be set in motion and run in different cultures. Thus suitable
variability support counts towards the usefulness of GSD.

Unlike traditional projects, tailoring in global contexts must be
managed from a multidimensional viewpoint, one dimension or
even more per organization involved. To support process tailoring
in the GSD scenario, traditional approaches must be enhanced and
ad hoc tailoring becomes unacceptable, given the special
complexity of global development. Under those circumstances,
the enactment of GSD methodologies requires mature process
tailoring approaches, such as product lines and aspects-based
ones.

In previous work we have defined a process institutionalization
framework, which includes the Variant-Rich Process paradigm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSSP'13, May 18–19, 2013, San Francisco, USA
Copyright 2013 ACM 123-4-5678-9012-3/13/05... $15.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSSP’13, May 18–19, 2013, San Francisco, CA, USA
Copyright 2013 ACM 978-1-4503-2062-7/13/05 ...$15.00

46

[13]. This has been designed to provide software industries with
the process tailoring support they actually require [14]. The
paradigm and the notation implementing it, vSPEM, have been
tested in several experiments and case studies, moreover [15, 16].
They have been shown to be extremely applicable in the support
of process tailoring. This work now centers on applying our
paradigm to model the variability in the case of a GSD
methodology in the context of the ORIGIN project [17]. The aim
is to turn the ORIGIN methodology into a variant-rich process,
which could easily be tailored to any organization involved in a
GSD project. We also present the vEPF plugin, which provides
modeling support to vSPEM.

This paper is structured as follows. Section 2 describes the state of
the art. Our SPRINTT framework, and the Variant-Rich Process
paradigm are presented in Section 3, along with the vSPEM
notation. Section 4 deals with the case study. The plugin giving
technical support to the vSPEM language is introduced in Section
5. Finally, Section 6 outlines our conclusions and future work.

2. STATE OF THE ART
Variability as a support for process tailoring has been widely dealt
with in literature. Processes had been tailored by means of
changes made to their structures [18, 19]. After that, some pieces
of work concerning this theme are the “process lines” approach
proposed by Rombach [4]; and the links between aspects and
processes, by Sutton [5]. The systematic literature review
presented in [14] describes how processes are modified in order
for them to fit the project’s needs; it also states the set of
requirements a process variability notation must include to
support tailoring as real organizations actually need it. It therefore
guides the definition of new process variability support
mechanisms.

 Some other new work has also appeared since the aforementioned
systematic review. First of all, the article by Simidchieva et al.
[20] presents an explicit differentiation between problem and
solution spaces, and identifies three types of approaches:
generation, navigation and reasoning. Araujo et al. [21] propose
the management of process variability by identifying the common,
mandatory, optative and alternative features of a process model.
The same authors have also defined a tool that imports method
plugins from EPF also proposing the definition of a nine-step
procedure with which to apply MDE transformations to process
tailoring [21]. Simmonds et al. [22] propose the creation of Basic
Feature Models to represent features of the tailored process over
the vSPEM notation (which is set out in Section 3), and they also
pay special attention to orthogonal (crosscutting) variations.
Hurtado Alegría et al. [23] propose tailoring software processes
by using MDE and ATL transformations to convert generic
variable processes into specific tailored ones.

Of those initiatives which apply variability to software processes
in order to align the processes themselves with the projects found,
we should highlight the work of Martins and Silva [24, 25], a
proposal based on three fundamental steps: i) defining the process,
ii) adapting and monitoring the process execution, and iii)
measuring the process. Killisperger et al, [26] suggest an
environment through which to apply variations to processes
automatically through variation operations. Silva Barreto et al,
[27, 28] propose another environment in which to carry out
variations in software processes, with the aim of facilitating
process reuse, based on the definition of variations in process
components.

Table 1 summarizes the main characteristics of the process
improvement frameworks. All of them include some aspects that
seek continuous process improvement or institutionalization (as is
defined in this article), but none of them really support process
tailoring which serves to provide processes that fit their
organizations. It should also be said that, to the best of our
knowledge, the tailoring approaches identified do not (at all) meet
the requirements industries require, as has been pointed out in the
SLR of [14], a fact that will be observable in Table 2. Bearing all
the above in mind, as well as our goal of supporting process
institutionalization systematically by means of adaptation and
standardization, a framework with a variability modeling notation
has been created, which fulfills the requirements that have been
set out.

Table 1. Characteristics of the most-related work

Characteristics
Martins

et al.,
2009

Killispegue
r et al.,
2009

Silva et
al., 2008,

2011
Based on process

tailoring (to project) YES YES YES

Focused on process
improvement YES NO NO

Including cyclic
initiative NO NO NO

Including different
stages (traceable) YES YES YES

Standardizing
processes at

organizational level
NO NO YES

Knowledge use and
reuse YES NO YES

Table 2. Requirements fulfillment by existing approaches

Requirement

Simidch
ieva et

al.,
2012

Arauj
o et
al.,

2011

Simm
onds
et al.,
2011

Hurtado
et al.,
2011

RQ1. Variation
support in the

process composing
elements

7/8 3/8 5/8 6/8

RQ2. Types of
supported variation 3/10 7/10 7/10 7/10

RQ3. Notation
supporting
tailoring

1/2 1/2 1/2 1/2

RQ4. Tailoring
support 2/5 3/5 1/5 2/5

3. THE SPRINTT APPROACH
The Software Process Institutionalization based on Tailoring and
sTandardization (SPRINTT) approach is composed of two
elements, which have been termed the Institutionalization Cycle
and the Variant-Rich Process paradigm (VRP). The former is the
theoretical setting through which organizations transform and
include processes as new and effective assets. It defines four
cyclical steps to tailor, execute, analyze, and standardize the
processes, just as Figure 1 shows.

The Variant-Rich Process paradigm offers variability support
which is suitable for the execution of both the first and last steps

47

of the cycle. The paradigm provides on-point and crosscutting
variability mechanisms, as well as Rationale management to give
support during the decision support. These are based, respectively,
on Product Lines (SPLE’s) [29], Aspects (AOSE) [30] and
Rationale Management [31] from Software Engineering.

Figure 1. Institutionalization Cycle overview

The VRP gives tailoring support as industries require, just as the
systematic review illustrated in summary form [14]. This SLR
also stated that variability is needed in different process notations.
Consequently, the VRP includes generic variability mechanisms.
These have been implemented over SPEM [32], resulting in the
vSPEM language [15, 16, 33-36]. By using the vSPEM notation it
is possible to define variant-rich processes in a diagram (Figure
2), which is tailored by using the on-point and crosscutting
variations (Table 3).

VActivityV1. Analysis
and Design

VActivityV4. Test and
Integration

1. Requirements 3. Implementation
5. EndingeVPActivity2. Variation

Point DS1
eVPActivity4. Variation
Point DS2

Software Development

[1,2] [1,2]

Figure 2. A variant-rich process including some on-point

variations
Table 3. Grammar for modeling a crosscutting variation [34]

Aspect Aspect Variation2{

Process
pointcut

 pointcut ppc1 (VPTask vpt1, VPWorkP vpw1,){
 vpt1=(execution(“1.2.2*”));
 vpw1=(produce(*)&& within(“1.2.2*”));
}

Process
advice

 advice ppc1 (VPTask vpt1, VPWorkP vpw1){
 vpt1.occupe(Analyse HW SW Interaction);
 vpw1.occupe(Software Design); }
}

The VRP paradigm has been tested using the vSPEM notation.
Experiments have shown it is much easier to adapt processes if
they are modeled using the vSPEM language, even considering
the lack of understanding of a new notation (and paradigm) [16].
On the other hand, these results have clearly demonstrated that the
VRP and the notation are useful in modeling variability in
Aerospatiale and Quality Assurance domains [15, 34]. This article

is now focused on presenting a new case study using a GSD
methodology, and the tool that support process variations.

4. CASE STUDY. ORIGIN
The case study [37, 38] has focused on checking if the Variant-
Rich Process paradigm is suitable (useful and practical) for
modeling variations in a real Global Software Development
methodology through the use of the vSPEM.

The object of study has been both the new paradigm and the
notation, used to model variability of the ORIGIN methodology.
The methodology was developed in the context of the ORIGIN
project, which focused on supporting global software
development.

ORIGIN [17] includes the guidelines for the management and
development of global projects. Based on PUD [39] SCRUM
[40], it also includes Agile practices [41, 42], to foster a greater
sense of satisfaction in, and with, their own work on the part of
the participants . ORIGIN includes assets such as methods with
which to elicit requirements, ensure quality, execute tests, and
plan projects and their management in GSD projects. It supports
different team structures and physical locations, promotes
relationships between partners, while at the same time improving
interaction and coordination between workers. All of the projects
follow different standards or can be executed in different ways,
depending on their particular type, or on other factors. In short,
ORIGIN has been designed to provide full support to GSD
projects, but as with any methodology, it must be tailored to fit
each organization’s needs, if is to be useful in reality.

4.1 Subjects and Analysis Units
The processes used in the case study are included in the ORGIN
GSD methodology. This is the main asset from the ORIGIN
project, which has involved various enterprises and the Alarcos
Research Group from the University of Castilla-la Mancha. The
processes were initially modeled in a non-variability support
language, and the variability needs were therefore implicitly
included in the textual definition of the processes. As a result, the
variant-rich version of the ORIGIN process has been created from
scratch, i.e., from variability textual requirements.

4.2 Variability Planning
Modeling variability in ORIGIN was executed by following a
procedure based on experience from former case studies (Table
4). This procedure aims to create the ORIGIN variant-rich
process, from the textual analysis of the variability requirements
included in the methodology. The following sections summarize
the main results obtained by following this procedure.

Table 4. Procedure to execute the case study

1) Context Analyses of Variabilities
a) Context scoping
b) Syntactic Analysis
c) Semantic Analysis

2) Design of Variations:
a) Definition of variations.
b) Search for and stating of new variations

3) Implementation of Variations
a) Implementation of on-point variations
b) Implementation of crosscutting variations

4) Presenting the resulting Variant-Rich Process

48

4.3 Tailoring Requirements from the Context
Analysis
The ORIGIN methodology includes several needs for adaptation
to meet the actual context of each enterprise. After executing the
context analysis, these requirements have been elicited and
classified, along with the factors influencing its tailoring.

• Time Difference: Time differences affect the
communication and interrelation between the distributed
teams around the world; thus the entire development of
the project is affected. Some cultural aspects mean that
working time does not always correspond with clock
time (working times in Spain and Germany are
different, even though they share the same time zone). It
should also be remembered that the best use of the
working day is more or less around the middle of it, so
meetings tend to be planned at those times. These
differences must therefore be considered in terms of the
level of overlapping between the working times of the
different teams. This level ranges form a total overlap,
in which the work teams can communicate with each
other by synchronous method, to null overlap. This
latter term means that the teams work at different times,
so must use asynchronous communication methods.

• Distributed Meetings: It is clear that if the time overlap
is low, it is difficult to plan meetings to coordinate
people. This being so, the problem of a lack of meetings
must be solved by means of documentation so all the
teams can follow and understand the project without any
problem. Where a high level of overlapping exists,
videoconferences may be used instead. According to
Woodward [43] there are five methods to carry out
distributed meetings that may be used, documentation
meetings, link approach, altering schedule, sharing the
grief, and feel the grief.

• Creating Distributed Teams (from a Characteristic
Team) is one of the first steps to be carried out. The
teams – known as characteristic teams - must now
assume different roles (analysts, designers,
programmers), and all of them must be capable of
developing one characteristic from the Product Backlog.
It is recommended that the members of the same team
come from the same locations, but there are certain
ways to convert the component teams into characteristic
teams. Larman and Vodde propose big-bang
reorganization, gradual expansion of responsibility, and
gradual introduction of characteristic teams [44].

• Management of the Distributed Team: It is a main factor
in a distributed process. It affects several activities of
the development phase and must be coordinated
between all the companies. In fact, there are three
methods: Isolated Scrums, Scrum of Distributed
Scrums, and Integrated Scrums. The first is the most
commonly-used, but it may be adjusted, since it affects
meetings and certain tasks concerning the team.

• Implementation and Testing Methodologies: ORIGIN
has been designed to follow the ATDD (Acceptance
Test-Driven Development), and its use is recommended
so that each work team may choose the methodology
they are more confortable with. If necessary, different
development and testing methodologies may be used.

• Management of Shared Documents: There are
mechanisms with which to share documents that may be
used in a distributed project; by default, the use of a
wiki is by far the most widely-recommended. In
addition, different constraints regarding communication
may make one of the mechanisms more useful than the
others.

• Retrospective of Retrospectives: This activity is planned
to be executed in the Spin Retrospective phase. This
activity consists of a meeting to analyze the
dependencies between the different development
groups, and analyses the sprint from the coordination
viewpoint. As its definition suggests, this activity is not
necessary in cases in which there are no dependencies
between the teams.

• Team Size: The work team is the multifunctional people
group needed to execute the work and to convert the
product backlog into a functional product. According to
ORIGIN, its size must be of 7±2 people. However,
sometimes certain roles, such as the Product Owner and
Scrum master, may be included in the work team.

• Scrum of Scrums Meeting: The scrum of scrums
meetings activity focuses on the weekly coordination of
the different teams, in order to look at the dependencies,
problems and so on. Different representatives of each
team may take part in the meeting or, if there are no
dependencies between the teams, it does not take place.

Most of these tailoring requirements affect how the entire GSD
project is set up. They come about mainly as a result of the real
state of communication, and must be fixed or decided within the
scope of the whole project. All the organizations involved in the
GDS project must reach an agreement about these, and tailor the
ORIGIN methodology accordingly.

There are some other variations, however, that do not affect all the
organizations as a whole, but only influence how each
organization implements the project at a local level. In these cases
agreement between the organizations is not required, so each one
of them may tailor the ORIGIN processes according to their own
particular needs, as well as to their own culture.

Table 5 summarizes the scope of the elicited variations. The
ORIGIN processes must therefore be tailored according to the
requirements of all the organizations involved; these together
make up one project dimension. All the specific dimensions,
including the characteristics of each organization, must also be
taken into account in the tailoring. Variability mechanisms must
support these dimensions, while also tailoring in different times.

Table 5. Scope of the elicited variability requirements

Variation Scope
Distributed Meetings (time difference) Project

Creating Distributed Teams (from a
Characteristic Team)

Project

Management of the Distributed Team Project
Implementation and Testing

Methodologies
Organization

Management of Shared Documents Project
Retrospective of Retrospectives Project

Team Size Organization
Scrum of Scrums Meetings Project

49

4.4 Definition of the ORIGIN Variant-Rich
Process
After considering the tailoring requirements ORIGIN includes, the
ORIGIN Variant-Rich Processes have been outlined, first of all,
by means of defining the variability elements giving support to
these variations. Tables 6 and 7 summarize the on-point and
crosscutting variability elements, respectively.

Table 6. Presentation of the on-point variability elements

Variation Type Var. Points Variants
Implementation

and Testing
Methodologies

Alternative. 2 variation
points

2n
variants1

Retrospective of
Retrospectives

Optional One variation
point

One
variant

Team Size Alternative One variation
point

n
variants1

Scrum of Scrums Optional One variation
point

One
variant

Table 7. Presentation of the crosscutting variability elements

Variation Aspects Variants
in the
Aspect

Variation
Points

Affected2
Distributed

Meetings (time
difference)

5 aspects (one
per method
described)

5n variants3 n
variation

points
Creating

Distributed
Teams (from a
Characteristic

Team)

3 aspects (one
per mode of
creating the

team)

3n variants3 n
variation

points

Management of
the Distributed

Team

3 aspects (one
per mode of

management)

3n variants3 n
variation

points
Management of

Shared
Documents

3 aspects (one
per mode of

sharing
documents)

5n variants3 n
variation

points

4.5 Implementation of the ORIGIN Variant-
Rich Process
The on-point and crosscutting variabilities have been modeled, by
using the mechanisms proposed in the VRP.

4.5.1 Implementation of the On-Point Variations
On-point variations are implemented through the creation of
variation points, variants, and the variability dependencies
between these. They are: empty points in the process structure to
execute variability; specific implementations of this variability;
and the rules forcing consistence during the process tailoring. To

1 There are as many variants as possible implementations of the

variability
2 Variation points are not explicitly designed. They will be

retrieved by process pointcuts. This column is shown as
illustration

3 A variant is defined per each aspect, and per each point the
crosscutting variation affects

illustrate these, the optional on-point variation as regards the
retrospective of retrospectives activity is presented.

In the first place, an activity variation point is placed in the
corresponding Sprint Retrospective phase (instead of the original
activity). Figure 3 presents the variation point.

Figure 3. Variation point inside the Sprint Retrospective

phase
Additionally, an activity variant implementing the retrospective of
retrospectives is specifically designed for placing in the previous
variation point. Figure 4 presents its definition in diagram form.

Figure 4. Variant of the retrospective of retrospectives activity
Finally, tailoring consistence is also embedded into the variant-
rich process by means of dependencies (variant2variation point
and variationPoint2variant).

4.5.2 Implementation of the Crosscutting Variations
By definition, crosscutting variations execute a lot of on-point
variations. They are composed of one or more aspect; each one of
these tailors the process in one particular way. Aspects have the
capability of executing several on-point variations at once. They
analyze the entire process structure and locate the specific points

50

(by means of the pointcuts) in which to execute these variations,
using the advices.

Table 8 describes the DocumentationMeetings aspect (an
overview), which is affected by the time difference.

Table 8. Description of the aspect documentationMeetings

Aspect Aspect documentationMeetings{
Pointcut

s
 Process pointcut activitiesAffected (vpActivity
 vpa_a1, vpActivity vpa_a2…){
 Vpa_a1::=(executing “weekly scrum”);
 Vpa_a2::=(executing “scrum of scrums);
 } …. //other pointcuts

Advices Advice activitiesAffected (vpActivity vpa_a1,
 vpActivity vpa_a2…){
 Vpa_a1.free();

Vpa_a1.occupe(“weekly_scrum_documentation”);
 Vpa_a2.free();
Vpa_a2.occupe(“scrum_of_scrums_document.”);
 } …//other advices

 }

The aspect shown in Table 8 tailors the methodology according to
the DocumentationMeetings mode. The first part (pointcuts) looks
for specific meeting activities throughout the whole methodology,
and obtains the exact points of the process structure in which
documentation meeting activities must be inserted. Then, the
second part (advices) places the correct meeting activities in these
holes.

4.6 Presenting the Resulting ORIGIN
Variant-Rich Process
The resulting ORIGIN Variant-Rich Process has been presented to
the developers of ORIGIN, in order to obtain their agreement. The
usage of variability mechanisms has also been described.

4.6.1 On-Point Variation Retrospective of
Retrospectives
The activity Retrospective of Retrospectives may or not be
included in the corresponding Sprint Retrospective phase. If it is
not included, there is no tailoring element required, and then the
variability elements disappear when variability is interpreted. The
tailored process is presented in Figure 5.

Figure 5. Tailored phase without using the Retrospective of

Retrospectives activity (overview)

If, on the other hand, this activity is included, a variation is now
created by means of using the variability mechanisms defined.
Figure 6 shows this in a diagram. When variability is interpreted,
all the occupation relationships turn the variants and variation
points they link into specific process elements. Regarding this on-
point variation, in a concrete activity (Figure 7).

Figure 6. Variation about the Retrospective of Retrospectives

Figure 7. Interpretation of the on-point variation

4.6.2 Crosscutting Variation about Documentation
Meetings
Meetings in a GSD methodology clearly depend on the time
overlapping between the companies involved. In this case, the
ORIGIN has been tailored in a case where there is no time
overlapping, and companies need to communicate with each other
by means of the documentation asynchronous mode. The
DocumentationMeetings aspect is therefore activated. Firstly, it
will automatically filter (using the pointcuts) the process-
composing elements affected by the communication mode. Figure
8 goes on to show two activities affected by the type of meetings,
which have been transformed into empty points.

Figure 8. Variation points filtered by the process pointcuts

(overview)

51

Once the points affected by the type of meetings are localized,
they are used to automatically place the activities implementing
the selected type of meetings. Figure 9 presents the execution of
two of these variations. Figure 10 shows the final phase after the
entire process is tailored.

Figure 9. On-point variations executed by the advices

Figure 10. Final tailored activity

4.7 Validity and Limitations
Threats to validity have been dealt with as regards the construct,
internal and external validities [38]. Regarding construct validity,
the research question focused clearly on attempting to apply the
paradigm and the notation to real variations in GSD processes, in
order to check its suitability.

In this study, one of the main factors affecting the internal validity
was that the designer of the VRP executed the case study. The fact
that he had previous knowledge of the variability mechanisms
would have some affect. However, since the case study did not
focus on assessing the efficiency but on whether these
mechanisms could really be applied to industrial processes, this

threat does not affect the results. The process model and the
variation needs were taken from a real enterprise focusing on
Global Software Development, and the results obtained were
therefore dependent on that sector of the market. However,
previous replicas of the study were carried in an effort to
minimize risks about external validity.

Since the objective of the study was not related to efficiency, the
results are not dependent on the experience of the researcher; he
thus does not affect the reliability. Any person who has had more
or less experience of using the notation or the paradigm and who
has the time needed will be capable of modeling the variability
presented in ORIGIN.

4.8 Lessons Learned
Several lessons are learnt from the execution of this case study.

• First of all, GSD methodologies include variability, as
every process model does. Sometimes processes make
explicit reference to variability or tailoring support (or
adjustment mechanisms), but in most cases it is
implicitly defined. This case study shows the need to
tailor support by using variability mechanisms even
more clearly: GSD processes structure the work that all
the organizations involved in a GSD project do, so it is
important for these processes to satisfy those needs so
that, organizations can implement the processes.

• Processes must be tailored to meet requirements from
several different viewpoints at the same time. On one
hand, they must fit the context in which all the
organizations are working together, as well as the
specific requirements each organization internally needs
to satisfy in its work. From a more abstract viewpoint,
GSD methodologies bring up the challenge of tailoring
in a general dimension, and after that, in as many
particular dimensions as there are firms involved in the
GSD project.

• Regarding the objective of the case study, it has been
fulfilled. It must be highlighted that the vSPEM notation
(and hence, the VRP paradigm) is fully applicable in
modeling variability and providing tailoring support in
Global Software Development methodologies. In fact,
the Variant-Rich Process paradigm provides the
mechanisms for tailoring the GSD processes in the
general, and all the particular, dimensions any project
involves.

• Moreover, extracting variability from the textual
description of the processes and modeling it requires a
well-defined and well-structured procedure, so as not to
build in bias or inconsistencies, and to build variant-rich
processes with reliable tailoring support.

• Finally, a post-mortem analysis of tailoring effort has
been executed. It compares the investment and cost of
using the VRP tailoring mechanisms and the
“traditional” ones. Using the quantitative results from
the experiments, it is possible to infer that the initial
effort in creating the ORIGIN variant-rich process –
most of which is due to the knowledge discovering-
means a nearly constant effort in defining each tailored
process, while traditional approaches mean a lineal cost
in tailoring new processes, as Figure 10 presents.

52

Figure 11. Comparison of tailoring costs

5. VEPF TOOL
 To give efficient support to the variability mechanisms included
in the vSPEM notation, the previously existing EPF Eclipse
plugin [45], has been improved through vEPF. The first version of
vEPF4 (vEPF 1.0) implements the on-point variability
mechanisms. It was created in two phases; the first included a full
reverse engineering over EPF that provided knowledge in detail
about how the plugin runs, as well as how to modify and improve
it, while the second one was divided into several iterations, each
of which focused on adding well-defined functionality to several
process-composing elements. The plugin has been created to
provide full compatibility with EFP processes.

The functionality of vEPF is clearly divided into two subsections.
On the one hand, it provides mechanisms with which to create
variant-rich processes (commonly known as process lines), and on
the other, it includes the assets needed to tailor processes from
them.

The next version of vEPF is being developed. It will include
support to crosscutting variations, as well as knowledge
management.

5.1 Defining Variant-Rich Processes
The vEPF Library has been enhanced to include variant-rich
processes (VRPs) (Figure 12). VRPs are created from methods
(just as EPF supports), but these include some variability
mechanisms that must be tailored towards concrete processes
later.

Figure 12. Overview of the vEPF library

Variation points and variants are included in the variant-rich
process by using the New Child option (just as other process
elements do). Their properties, and dependencies with other
variability elements, are set by means of a specific form, as Figure

4 http://alarcos.esi.uclm.es/vepf

13 shows in the case of variation points. A similar one has been
created for variants. Variation points are fixed in the process
breakdown structure; variants are included as “floating” elements,
whilst they are available to tailor software processes (Figure 14).

Figure 13. Way of defining variation points

Figure 14. Variants to tailor the process

5.2 Tailoring processes with vEPF
Once the variant-rich processes (namely process lines) have been
defined, they can be used to tailor new processes. vEPF also
supports the adaptation of new processes.

In this case, the process-tailoring window appears (Figure 15),
supporting the definition of occupation relation-ships, namely, the
inclusion of variants in the variation points by means of the
specific variations window. It also controls that the dependencies
between all the variability elements are satisfied, before tailoring
is completed.

Once all the mandatory variation points have been filled with a
variant, the process is tailored. Figure 16 presents a tailored
process which summarizes all the variations executed and the
elements that they affect

53

Figure 15. Process tailoring

Figure 16. Tailored process with variants in all the variation

points

6. CONCLUSIONS
Enactment of traditional processes requires suitable mechanisms,
such as the VRP proposes. They provide these processes to be set
in motion in the organization performing them. When the number
of organizations involved in the project increases, as happens with
GSD projects, the variability mechanisms remain fundamental.

GSD processes require tailoring from general and individual
perspectives. Firstly, the processes must fit in to the context of all
these organizations as a whole, as well as the project itself. After
that, this shared process must be undertaken by each organization
individually. The culture, the working style, the characteristics of
its working teams set up a dimension of each organization that the
process must be compatible for. This means that process tailoring
in a GSD context must make different process instances
compatible in a multidimensional context, and variability
mechanisms should have the capability of managing them. The
case study presented in this article clearly sets out the variabilities
the ORIGIN methodology implies, through a detailed textual
analysis, right through to a complete description. It shows that
some of them depend on the GSD project, and on how the whole
organizations work together. Some others, such as the size of the
teams, are dependent on each organization.

The case study has also shown that the variability mechanisms of
the Variant-Rich Process paradigm, the vSPEM notation
implements, are suitable (useful and practical) in modeling the
variabilities included in a GSD methodology. In fact, they give
full support to tailoring GSD processes from the project and
organizational perspectives, which means that this kind of
tailoring technology also remains fundamental in GSD process
enactment. The effort in tailoring ORIGIN from scratch and from
the ORIGIN variant-rich process (considering the effort in
creating it) has been also compared, taking into account the real
effort per variation from previous experiments. These results
clearly show that the Variant-Rich Process paradigm provides
cheaper tailoring support.

The vEPF tool has been created with the aim of bringing the
support that process tailoring really needs. It has been designed to
automate, as well as manage tailoring knowledge by using the
vSPEM language. The current version supports on-point
variations, while the next version is planned to give full support to
the VRP.

Future work will deal with the issues in different ways. First of
all, new case studies are planned, to check the usability of the
VRP in several domains, as well as the implementation of the
SPRINTT cycle over these organizations, seeking to validate it
and to obtain feedback from the organizations. Another aim
includes completing the second version of the vEPF tool, to
integrate crosscutting variability mechanisms giving full support
to GSD process tailoring and enactment.

7. ACKNOWLEDGMENTS
This work has been funded by the GEODAS-BC project (Min. de
Economía y Competitividad and Fondo Europeo de Desarrollo
Regional FEDER, TIN2012-37493-C03-01).

8. REFERENCES
[1] Zahran, S. Software Process Improvement: Practical

Guidelines for Business Success. Addison-Wesley, Harlow,
United Kingdom, 1998.

[2] Yoon, I.-C., Min, S.-Y. and Bae, D.-H. Tailoring and
Verifying Software Process. In Proc. of the Proc. of the 8th
Asia-Pacific Software Engineering (Macao, China,
December 2001, 2001). IEEE CS, Washington, DC, USA.

[3] Szyperski, C., Bosch, J. and Weck, W. Component-Oriented
Programming. Springer-Verlag, City, 1998.

[4] Rombach, D. Integrated Software Process and Product Lines.
Springer, City, 2005.

[5] Sutton, S. M. Aspect-Oriented Software Development and
Software Process. Springer, City, 2005.

[6] Ebert, C. and Neve, P. D. Surviving Global Software
Development. IEEE Software, 18, 2 2001), 62-69.

[7] Ågerfalk, P. J., Fitzgerald, B., Holmström, H. and Conchúir,
E. Benefits of Global Software Development: The Known
and Unknown. In Proc. of the International Conference on
Software Process (2008). Springer Berlin / Heidelberg

[8] Humphrey, W. S. Introduction to the Team Software Process.
Longman, Massachusset, USA, 2000.

[9] Cataldo, M. and Herbsleb, J. D. Communication networks in
geographically distributed software development. In Proc. of
the CSCW '08 Proceedings of the 2008 ACM conference on
Computer supported cooperative work (2008)

54

[10] Damian, D. and Zowghi, D. The impact of stakeholders’
geographical distribution on managing requirements in a
multi-site organization. In Proc. of the Requirements
Engineering (RE'02) (2002)

[11] Nguyen, T., Wolf, T. and Damian, D. Global Software
Development and Delay: Does Distance Still Matter? In
Proc. of the IEEE International Conference on Global
Software Engineering (2008). IEEE Computer Society

[12] Solingen, R. V. and Valkema, M. The Impact of Number of
Sites in a Follow the Sun Setting on the Actual and Perceived
Working Speed and Accuracy: A Controlled Experiment. In
Proc. of the 5th IEEE International Conference on Global
Software Engineering (2010)

[13] Martínez-Ruiz, T., García, F. and Piattini, M. Process
Institutionalization Using Software Process Lines. In Proc. of
the 11th Int. Conf. on Enterprise Information Systems
(Milan, 2009)

[14] Martínez-Ruiz, T., Münch, J., García, F. and Piattini, M.
Requirements and Constructors for Modeling Variability in
Software Processes, a Systematic Review. Software Quality
Journal, 20, 1 2012), 229-260.

[15] Martínez-Ruiz, T., García, F. and Piattini, M. Supporting
Software Process Variability: The Variant Rich Process
Modelling Paradigm Sent to SOSYM2012).

[16] Martínez-Ruiz, T., García, F., Piattini, M. and Münch, J.
Modeling Software Process Variability: An Empirical Study.
IET Software, 5, 2 (March 2010 2011), 172-187

[17] del Nuevo, E., Piattini, M. and Pino, F. J. Scrum-based
Methodology for Distributed Software Development. In
Proc. of the ICGSE (2011)

[18] Sutton, S. and Osterweil, L. J. PDP: Programming a
Programmable Design Process. In Proc. of the 8th Int.
Workshop on Software Specification and Desing (Schloss
Velen, 1996)

[19] Sutton, S. M. and Osterweil, L. J. Product Families and
Process Families. IEEE CS, City, 1996.

[20] Simidchieva, B. I. and Osterweil, L. Categorizing and
Modeling Variation in Families of Systems: a Position Paper.
ACM, City, 2012.

[21] Araujo, F., Freire, M. A., Câmara dos Santos, W. and
Kulesza, U. An Approach to Manage and Customize
Variability in Software Processes. In Proc. of the 24th
Brazilian Symposium on Software Engineeering SBES 2010
(Salvador, BA, 2010). IEEE Digital Library

[22] Simmonds, J. and Bastarrica, M. C. Modeling Variability in
Software Process Lines. Departamento de Ciencias de la
Computación. Universidad de Chile, 2011.

[23] Hurtado Alegría, J. A., Bastarrica, M. C., Quispe, A. and
Ochoa, S. F. An MDE Approach to Software Process
Tailoring. In Proc. of the Proceedings of the 2011
International Conference on Software and Systems Process
(Waikiki, Honolulu, 2011). ACM, New York.

[24] Martins, P. V. and Silva, A. R. ProPAM: Discussion for a
New SPI Approach. Software Quality Professional, 11, 2
2009), 4-17.

[25] Martins, P. V. and Silva, A. R. ProPAM. SPI based on
Process and Project Alignment. IDEA Group Inc., City,
2007.

[26] Killisperger, P., Stumptner, M., Peters, G., Grossmann, G.
and Stückl, T. Meta Model Based Architecture for Software
Process Instantiation. Springer Verlag, City, 2009.

[27] Silva Barreto, A., Murta, L. and Rocha, A. R. Software
Process Definition: a Reuse-Based Approach. City, 2008.

[28] Silva Barreto, A., Murta, L. and Rocha, A. R. Software
Process Definition: a Reuse-Based Approach. Journal of
Universal Computer Science, 17, 13 2011), 1765-1799.

[29] Clements, P. and Northrop, L. Software Product Lines.
Practices and Patterns. Addison-Wesley., Boston, 2002.

[30] Filman, R. E., Elrad, T., Clarke, S. and Aksit, M. Aspect-
Oriented Software Development. Addison-Wesley, Boston,
MA, 2004.

[31] Dutoit, A. H., McCall, R., Mistrík, I. and Paech, B. Rationale
Management in Software Engineering: Concepts and
Techniques. Springer, City, 2006.

[32] OMG. Software Process Engineering Metamodel
Specification. Object Management Group, 2008.

[33] Martínez-Ruiz, T., García, F. and Piattini, M. Managing
Process Diversity by Applying Rationale Management in
Variant Rich Processes. Springer Verlag, City, 2011.

[34] Martínez-Ruiz, T., García, F., Piattini, M. and Münch, J.
Applying AOSE Concepts for Modeling Crosscutting
Variability in Variant-Rich Processes. In Proc. of the 37th
Conf. on Software Engineering and Advanced Applications -
SEAA (Oulu, Finlandia, 2011). IEEE

[35] Martínez-Ruiz, T., García, F. and Piattini, M. Enhanced
Variability Mechanisms to Manage Software Process Lines.
Publizon, City, 2009.

[36] Martínez-Ruiz, T., García, F. and Piattini, M. Towards a
SPEM v2.0 Extension to Define Process Lines Variability
Mechanisms. Springer Verlag, City, 2008.

[37] Runeson, P., Höst, M., Rainer, A. and Regnell, B. Case Study
Research in Software Engineering: Guidelines and
Examples. John Wiley & Sons, 2012.

[38] Runeson, P. and Höst, M. Guidelines for Conducting and
Reporting Case Study Research in Software Engineering.
Empirical Software Engineering, 14, 2 2009), 131-164.

[39] Jacobson, I., Booch, G. and Rumbaugh, J. The Unified
Software Development Process. Pearson Education, 1999.

[40] Schwaber, K. and Sutherland, J. Scrum Guide. City, 2010.

[41] Schwaber, K. and Beedle, M. Agile Software Development
with Scrum. Addison-Wesley, 2001.

[42] Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,
Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,
Mellor, S., Schwaber, K., Sutherland, J. and Thomas, D.
Agile Manifesto. City, 2001.

[43] Woodward, E., Ganis, M. and Surdek, S. A Practical Guide
to Distributed Scrum. City, 2010.

[44] Larman, C. and Vodde, B. Practices for Scaling Lean &
Agile Development. Pearson Education, 2010.

[45] IBM Eclipse Process Framework Composer. City, 2012.

55

