


Volume Editors

Giovanni Cantone

University of Rome Tor Vergata

Department of Computer Science, Systems and Production
Rome, Italy

E-mail: cantone @uniroma2.it

Michele Marchesi

University of Cagliari

Department of Electrical and Electronic Engineering
Cagliari, Italy

E-mail: michele @diee.unica.it

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-319-06861-9 e-ISBN 978-3-319-06862-6

DOI 10.1007/978-3-319-06862-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014937905

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai. India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Table of Contents

Agile Development

UX Design in Agile: A DSDM Case Study .........cviviniinininn. ..
Laura Plonka, Helen Sharp, Peggy Gregory, and Katie Taylor

Agile Principles in the Embedded System Development ...............
Matti Kaisti, Tapio Mujunen, Tuomas Mdkild, Ville Rantala, and
Teijo Lehtonen

oile Software Development in Practice. . .« vvw s vonsvns von s vy vv0 s aa
Maureen Doyle, Laurie Williams, Mike Cohn, and Kenneth S. Rubin

Agile Challenges and Contracting

Technical Dependency Challenges in Large-Scale Agile Software
B eha e nt . L e e e e e s

Nelson Sekitoleko, Feliz Evbota, Eric Knauss, Anna Sandberg,
Michel Chaudron, and Helena Holmstrom Olsson

How Can Agile and Documentation-Driven Methods be Meshed
B O I [ SR U -

Lise Tordrup Heeager

Contracting in Agile Software Projects: State of Art and How
BRI er=t O T o v ik i it et Aot v, boawe mabeibes bl 2

Shi Hao Zijdemans and Christoph Johann Stettina

Lessons Learned and Agile Maturity

B¥turing in Agile: What I It ABOUET s cos v vms dore v v v shiis il b
Rafaela Mantovani Fontana, Sheila Reinehr, and Andreia Malucelli

Why We Need a Granularity Concept for User Stories ................
Olga Liskin, Raphael Pham, Stephan Kiesling, and Kurt Schneider

How to Evolve Software Engineering Teaching

Self-organized Learning in Software Factory: Experiences and Lessons
Learned

Xiaofeng Wang, llaria Lunesu, Juha Rikkila, Martina Matta, and
Pekka Abrahamsson

16

32

46

62

94

110



XV Table of Contents

Methods and Metrics

Using Agile Methods to Implement a Laboratory for Software Product
Quialith EVilliation s « s »ses vea « mon com v mew s e s sres © s s s s
Javier Verdugo, Moisés Rodriguez, and Mario Piattini

Software Metrics in Agile Software: An Empirical Study ..............
Giuseppe Destefanis, Steve Counsell, Giulio Concas, and
Roberto Tonelli

Testing and Beyond

Visualizing Testing Activities to Support Continuous Integration:
A MElEple/Oase STUAY o sovr s o iin 598 8 S50 060 ¥ 508 F 5% B35 5 g sei % o
Agneta Nilsson, Jan Bosch, and Christian Berger

Comparing a Hybrid Testing Process with Scripted and Exploratory

Testing: An Experimental Study with Practitioners...................
Syed Muhammad Ali Shah, Usman Sattar Alvi, Cigdem Gencel, and
Kai Petersen

Lean Development

Impediments to Flow: Rethinking the Lean Concept of ‘“Waste’
iw Medern Software Bevelopmient ', 1o, o0 i 00 e Lo I8 et e
Ken Power and Kieran Conboy

Examining the Structure of Lean and Agile Values among Software
Diemelapers sl ohing Sk, Tey Eve Dol or e SARG L
Fabian Fagerholm and Maxz Pagels

Short Papers

Agile Methodologies in Web Programming: A Survey .................
Giulio Barabino, Daniele Grechi, Danilo Tigano, Erika Corona, and
Giulio Concas

How Many Eyeballs Does a Bug Need? An Empirical Validation

of sy lnAse et St Sipn ibie el peonneuis, ol Ined ol ames .y
Subhajit Datta, Proshanta Sarkar, Sutirtha Das, Sonu Sreshtha,
Prasanth Lade, and Subhashis Majumder

The Theory and Practice of Randori Coding Dojos ...................
John Rooksby, Johanna Hunt, and Xiaofeng Wang

Locating Expertise in Agile Software Development Projects ...........
Mawarny Md. Rejab, James Nobl, and George Allan

260




Table of Contents

Are Refactoring Practices Related to Clusters in Java Software? .......
Giulio Concas, Cristina Monni, Matteo Orri, and Roberto Tonelli

Social Contracts, Simple Rules and Self-organization: A Perspective
sripiotlc Devel GpTent '« o babe  won wan v s sva e swewt b anw Pie e v s s
Ken Power

Realizing Agile Software Enterprise Transformations by Team
Performance Development . . .o .cvuvn vt v vene see e aee cae e e en
Petri Kettunen

A Test-Driven Approach for Model-Based Development of Powertrain
BIEEEEIOTI . s = v womn v v v w s womes SEie B IS G § R SR B §eT B0
Henrik Peters, Christoph Knieke, Oliver Broz,
Stefanie Jauns-Seyfried, Michael Krdamer, and
Andreas Schulze

Experience Reports

Archinotes: A Global Agile Architecture Design Approach.............
Juan Urrego, Rafael Munoz, Mauricio Mercado, and Dario Correal

Definition of Ready: An Experience Report from Teams at Cisco.......
Ken Power

Specification by Example with GUI Tests - How Could That Work? . ...
Emily Bache and Geoffrey Bache

Towards Agile and Beyond: An Empirical Account on the Challenges
Involved When Advancing Software Development Practices............
Helena Holmstrom Olsson and Jan Bosch

RS e L G el s Sohd 0 0ttt ittt anrs S Mt e bl v & woms s

XV

269

320




y: Findings from the “hﬁle \

L. of learning-the Kalfkl]pp
Pany

at
:Pub]icgtions, Inc. (2003)

jzation of Agile gy

Using Agile Methods to Implement a Laboratory
for Software Product Quality Evaluation

Javier Verdugo!, Moisés Rodriguez', and Mario Piattini'?

1 Alarcos Quality Center, Paseo de la Universidad 4, 13071, Ciudad Real, Spain
{javier.verdugo,moises.rodriguez,
mario.piattini}@alarcosqgualitycenter.com
: mnstitute of Information Technologies and Systems, University of Castilla-La Mancha,
Camino de Moledores s/n, 13051, Ciudad Real, Spain
Mario.Piattini@uclm.es

Abstract. In this paper we discuss how we at Alarcos Quality Center
implemented AQCLab, the first laboratory in the world to be accredited as
meeting ISO/IEC 17025 for software product quality evaluation based on the
ISO/IEC 25000 series of standards. We implemented AQC Lab following agile
principles by means of an adaptation of the Scrum methodology. This work
method helped us to progress in a challenging context which had several
similarities to software development, where the requirements were uncertain
from the start.

Keywords: Software, quality evaluation, ISO/IEC 25000, SQuaRE, agile
implementation, accredited laboratory, ISO/IEC 17025.

1 Introduction

Alarcos Quality Center (from now on referred to as AQC) is a Spanish company that
was spun off from the Alarcos Research Group at the University of Castilla-La
Mancha in 2008. It was founded with the goal of providing its customers (software
factories and development departments, as well as software acquirers) with software
quality assurance services. Though AQC is relatively young, we have over fifteen
vears of experience in software quality research that has already been carried out by
the Alarcos Research Group.

After several projects that involved software process improvement, we realized
that, though good development processes are of great help in the effort, they do not
always lead to quality software; we became aware that the best way to evaluate
guality in software products is by measuring and evaluating their own characteristics,
not those of the processes followed.

That is why we decided to focus our work on developing a new service in an area
that was not as well-known and widespread as others in the software industry: Indeed
it is still not so widely-recognized, even now; we are talking about software product
evaluation.

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 143-156, 2014.
© Springer International Publishing Switzerland 2014



144 J. Verdugo, M. Rodriguez, and M. Piattini

By 2010, the new series of International Standards ISO/IEC 25000 [1] (known as
Software product Quality Requirements and Evaluation - SQuaRE) was still in an
early stage of development. We decided to take ISO/IEC 25000 as the basis for our
software quality evaluations, even though the main standards in the series — the
quality model and the evaluation process — were still under development. Four years
later, SQuaRE is still being developed, though it has matured considerably and most
of the main standards of the series have already been released. These include the
quality model] —presented in ISO/IEC 25010 [2] - and the evaluation process —defined
in ISO/IEC 25040 [3].

At the beginning, there was a fair amount of uncertainty about how to deal with the
implementation process, as it was a rather complex task in a not very well-known
ground that involved a lot of research and experimentation. Right at that point, we
knew we would have to:

e Develop a quality model. Starting from the quality model defined in ISO/IEC
25010, which specifies only top-level quality characteristics and their sub-
characteristics, it would be essential for us to identify metrics and define how to
aggregate their values to evaluate the top-level elements of the model.

e Implement an evaluation framework. We would have to identify tools that provide
measurements for the metrics defined in the quality model. We would also need to
develop a tool that takes those measurements and aggregates them according to our
criteria so that we can obtain quality assessments for the top-level elements of the
model.

e Define the evaluation process. Based on the evaluation process defined in ISO/IEC
25040, we would have to decide how to adapt that process to our circumstances.

The specific requirements to implement those three main work products were not
totally clear from the start, given that it was difficult to define the scope of that
endeavor completely. We thus realized that we would have to identify those
requirements and deal with potential change along the way.

At that time, agile methods and techniques for software development had been
around for a few years, and after a slow but steady rise and spread they were starting
to become really popular in the industry. One of the most popular agile methods,
Scrum [4], was a great exponent of the impact that the agile trend was having on the
industry.

Seeing that agile principles addressed the same problems we had (dealing with
uncertainty via evolutionary development, as well as providing a flexible response to
change), though in a different context (software development), we decided to study
which of those practices could be applicable and useful to our case. For this purpose,
we took several training courses and workshops on Scrum that helped us to
understand it better and get a better vision of the framework as a whole. Once we had
a better knowledge of Scrum, we decided to adopt some of its practices and adapt
them to our own objectives.

One month after we started to work on our software product quality evaluation
service, and while researching other standards related to evaluation, we found out
about ISO/IEC 17025 [5]. This standard specifies the general requirements for




Using Agile Methods to Implement a Laboratory for Software Product Quality Evaluation 145

laboratories to carry out tests and/or calibrations competently. To meet those
requirements, laboratories have to implement a management system for their quality,
administrative and technical operations.

Accreditation complying with ISO/IEC 17025 means the formal recognition by an
accreditation body of the technical competency of the laboratory and its capability to
provide correct and trustable results. In this regard, accreditation to ISO/IEC 17025
differs from certification to ISO 9001, which solely confirms that a company adheres
to, and operates under, a documented quality system. To that end, accreditation bodies
perform a thorough evaluation of laboratories, confirming that they:

e Count on qualified and experienced staff.

e Have the necessary equipment and infrastructure for suitable performance of their
activities.

e Employ suitable and validated work methods and procedures.

e Perform techniques for quality evaluation of results.

e Inform their clients about test results in a suitable manner, providing clear and
precise reports.

e Adhere to, and operate under, a quality system.

We considered that we would be making a valuable contribution in implementing a
laboratory that would carry out tests consisting in the evaluation of software product
quality; that is how AQC Lab emerged. We decided to pursue laboratory accreditation
for several reasons:

¢ It would guarantee the integrity and competence of AQC Lab in its performance of
software product quality evaluations.

® It would be a distinguishing feature and a key factor in keeping an edge over
competition.

¢ Laboratory accreditation would result in an internationally-recognized service, as
ISO/IEC 17025 is the best-known and most generally-accepted international
standard for laboratory evaluation. In addition, accreditation bodies from different
countries co-operate under multilateral agreements.

Implementing a laboratory that complied with ISO/IEC 17025 resulted in a whole
new set of requirements, in addition to those we had already identified in relation to
developing our software quality evaluation service. To meet the requirements of the
laboratory accreditation scheme, we had to implement and document many different
Processes (both technical and administrative), produce formats, and keep records that
documented and showed how those processes were carried out.

After a period of a year and a half of implementing, testing and validating our
evaluation method, we carried out the first software quality evaluations for customers.
Six months later, in 2012, AQC Lab became the first laboratory in the world to be
given accreditation to perform software quality evaluation tests under ISO/IEC 17025.

The rest of the paper is organized as follows: in section 2 we discuss the two
approaches to the adoption of Agile methodologies, which are either following them
Strictly or adapting them to fit the context of each project. In section 3 we describe



146 J. Verdugo, M. Rodriguez, and M. Piattini

how we adapted Scrum to implement AQC Lab. Section 4 presents the conclusions of
the paper, describing what we found most useful in our adaptation of Scrum.

2 Adapting Agile Methods

Since the emergence of Agile methods, there has been dispute among Agile advocates
over the issue of whether to adopt methods “by the book™, or rather to adapt them to
serve the specific context of each company or development team. Even though
nowadays this dispute has been overcome for the most part, there are still some
practitioners that hold opposing views regarding this matter.

On the one hand, there are Agile advocates. commonly known as evangelists, who
encourage all projects to follow every single practice of the Agile method in question
to the letter. They argue that adopting the method as a whole is the only way to take
full advantage of it, and any deviation from what is established by their authors would
result in not realizing its full benefits. A quote from Kent Beck about XP practices [6]
sums this reasoning up: “No single practice works well by itself; each needs the other
practices to keep them in balance”.

One of the fathers of Scrum, Ken Schwaber, coined a term for any deviation from
the rules, roles and time boxes established in Scrum: “ScrumBut” (a term that gained
popularity; some people later turned this into the more humorous “ScrumButt”), A
ScrumBut can therefore be considered as an inappropriate variation of Scrum that
hampers the team from getting the most out of it. Schwaber explains that ScrumButs
follow the pattern (ScrumBut) (reason or excuse) (workaround). An example of this
would be “(We use Scrum, but) (having a daily scrum every day is too much
overhead,) (so we only have one per week.)”. This example shows a kind of
adaptation that negates the advantages of Scrum. In this case, the tailoring leads to not
knowing the real progress of the sprint at the right time, in the right way; that in turn,
leads to the possibility that the goals established for that sprint may not be met.

On many occasions, ScrumButs have their origins in a dysfunction in the
development team and its inability to fix it. This results in the modification of the
method, not because that is what is intended, but because the bad habits in the team
do not let them find the way to adopt the method correctly.

On the other hand, an increasing number of practitioners and researchers, as stated
in [7], argue that Agile development methods and practices should be adapted to fit
the context in which they are adopted. These authors contend that, as with any other
kind of adaptation, a tailored method may indeed not represent a reasonable
adaptation of the original method. The “wrongdoing”, however, is not in the act of
adaptation itself, but rather in the nature or scope of the adaptation when it is not done
suitably. They consider that being restrictive in adapting Agile methods is a kind of a
paradox, because, as Conboy and Fitzgerald conclude in [8], “the very name “agile”
suggests that the method should be easily adjusted to suit its environment”.

This approach to Agility is based on the idea that a project cannot be viewed as an
independent part of its surrounding context. Rather, the method followed to manage
the project is affected by the interaction of the development team and their



Using Agile Methods to Implement a Laboratory for Software Product Quality Evaluation 147

organizational culture. It is difficult to keep any element that is external to the method
from not affecting it in one way or another. Because of this, the practitioners that
follow this approach stand for understanding how Agility can be adapted in context
and take advantage of that situation. In this case, the main focus is on adapting the
methods in a way that makes sense and improves the performance of the development
team. This can only be done by understanding really well the purpose of the practices
that will be adapted, introducing only the changes needed to make them work better in
the context of each specific project or development team. Otherwise these
adaptations, in the case of Scrum, would become negative Scrumbuts; the kind that
make a team's performance worse.

There are practitioners and researchers, and we count ourselves among them, who
believe that some of the Agile methodologies can even be adapted to other
environments outside software development. A good example of this would be
Scrum. This framework can be, and actually has been, adapted to different contexts
other than software development, due to its strong focus on project management and
its independence of specific technical practices.

For example, in [9], the authors present Score, an adaptation of Scrum to manage
the mentoring of students in the context of an academic research group. The authors
claim that ever since they have been carrying out some of the practices of Scrum,
especially the daily scrum, the mentoring has been more efficient, and both the
mentors and the students have benefitted from this new approach. For mentors, it is
now easier to keep up-to-date with their students’ progress, and when students are
struggling, it takes less time to address what is not going right. Authors assert that
students say they are more productive, more enthusiastic about research, and have
better interactions with other students and with their adviser, feeling there is a real
sense of community in the group since they began to use Score.

In [10], the author discusses how they applied an agile methodology in an
academic environment, and provides insights for non-software industries on how agile
is not a set of rigid rules, but a philosophy that can be applied to get maximally
effective results with a mindset for continued change.

The authors of [11], among whom is Jeff Sutherland —co-creator of Scrum,
together with Ken Schwaber -, describe how Scrum has been adopted in the sales and
account management teams at the company iSense in the effort to take more control
over the sales process they carry out. They conclude that implementing Scrum has led
to escalating revenue and a sustainable competitive advantage.

On reading [12], we see how the author describes the experiences with Agile
methods in a marketing department, as well as the series of adjustments they had to
make to overcome some problems they had during the first months of adoption.

On a more exotic note, [13] describes how an Italian company producing luxury
bathtubs and showers adopted Agile and Lean methods in many departments of the
Company, explaining how they adapted them to a non-software context.

The growing importance of Agile methods in project management is also reflected
by the fact that the Project Management Institute (PMI) has developed a certification
for project management practitioners who are adopting Agile approaches in their
Projects. This certification, known as PMI Agile Certified Practitioner (PMI-ACP),




148 J. Verdugo, M. Rodriguez, and M. Piattini

recognizes an individual’s expertise in using agile practices in their projects, while
demonstrating their increased professional versatility through agile tools and
techniques.

In the next sub-section we set out how we adapted Scrum in the implementation of
our laboratory for software product quality evaluation tests; this is an endeavor that
not only involved software development, but also process implementation, as well as
a great deal of research.

3 Implementing AQC Lab

Although Scrum was conceived as a software development framework, it centers on
management practices. Being involved in the software industry, though not
developing software ourselves, we at AQC saw that Scrum could be applied in
contexts other than software development. In our case, we saw Scrum would be suited
to our purpose of putting a software quality evaluation service into operation, which
would later expand and turn into implementation of a laboratory, AQC Lab,
accredited as complying with ISO/IEC 17025 for conducting software quality
evaluation tests.

Implementing AQC Lab involved different high-level tasks that would in turn
encompass more specific tasks:

e Defining a quality model based on ISO/IEC 25010. As the standard only defines
the high-level elements of the model (quality characteristics and its sub-
characteristics), we would have to define which metrics affect the characteristics
and sub-characteristics. We would also need to specify how to aggregate and
combine their values so as to obtain a reasonable indicator of the quality of the
software evaluated. For this purpose, we would define a hierarchical model and the
methods or functions for obtaining values of higher-level element from the values
of the elements on lower levels. Initially, we centered on the characteristic of
Maintainability and its five subcharacteristics.

e Defining an evaluation process based on ISO/IEC 25040. We would have to define
the steps to take, along with the specific way to carry out the activities of the
evaluation process described in ISO/IEC 25040.

e Developing an automated evaluation framework. Once we had decided which
metrics would be part of the quality model, we would need to look for tools that
allowed us to get their values from the products analyzed. It would also be
necessary to develop a software system that took the values of the metrics and
carried out their aggregation, thereby obtaining quality values for the high-level
elements in the model. This system would consist of three parts: a “core” that
performed the aggregations and stored the results of the evaluation in a database, a
Maven plugin that allowed the automated execution of the “core”, together with a
web tool that showed the results of the evaluation in a helpful, attractive and
practical way.

e Defining, documenting and establishing the Quality Management System of the

laboratory. The QMS would consist of a Quality Manual, along with



Using Agile Methods to Implement a Laboratory for Software Product Quality Evaluation 149

administration and technical processes, technical instructions, records and formats.
For example, some of the administration processes involved internal auditing,
personnel training and qualification, documentation control, control of non-
conformities, corrective and preventive actions, and management reviews. Some
examples of the technical processes carried out are: result quality assurance,
validation of the quality model, validation of the software analysis tools used in
evaluations, report elaboration and test item manipulation. Some examples of
technical instructions are the ones that define how to configure the execution of the
different analysis tools in the context of the evaluation framework, as well as their
installation and deployment.

Seeing that the scope of the matter at hand was quite vast and our team size was
very small (three people), we saw fit to use an iterative and incremental approach. In
addition, the scope of some of the tasks was uncertain initially, and we knew some of
the requirements might change during the implementation; (for example, when we
started the definition of our quality model and evaluation process, the ISO/IEC 25010
and ISO/IEC 25040 standards were still draft versions that might have changed once
the final version was released).

Even though Scrum was developed with software development in mind, we found
similarities between software development and what we had to do, as both are unique
creative efforts that require the development of different components and demand
knowledge in diverse areas. Nevertheless, our endeavor also entailed software
development, since we had to develop the evaluation framework. For that task we
were also able to take full advantage of Scrum.

All of these circumstances led us to choose Scrum as the best approach for
managing the implementation of AQC Lab.

Of course, we knew there were also differences between implementing AQC Lab
and developing software. For instance, the extent of research, experimentation and
validation involved was larger in our case than what you typically have in a software
development project. The particular circumstances of our context made it necessary to
adapt some of the practices of Scrum, while at the same time ignoring some of the
rules,

Below is a description of the adapted Scrum process that we followed:

®* We kept the three roles described in Scrum. In our case there was no external
client; because of that, the role of Product Owner was assigned to our CTO, as he
had the appropriate characteristics: product vision and leadership. As we were a
small team of just three people, the role of Scrum Master was shared by the same
person as above, since he also had the best characteristics to fill this particular role;
he possessed the capacity to facilitate the process, resolve impediments, enforce
time boxes and promote improvement. The other two people made up the
Development Team, although in the implementation of a few of the elements of the
Product Backlog, the person holding the Product Owner/Scrum Master roles also
took a small part in the Development Team. Having one person that plays both the
roles of Scrum Master and Product Owner is considered among most practitioners
1o have potential for a conflict of interests, due to the fact that the same person is




150 J. Verdugo, M. Rodriguez, and M. Piattini

responsible for supporting and protecting the team, as well as for “pushing” the
team to get more business value out of the product being developed. Even thought
the potential for conflict exists, it does not necessarily have to materialize if the
person playing both roles finds the right balance between the interests related tq
each of them. In a very small team without external client, the dual role solution is
perfectly viable as long as the Scrum Master/Product Owner is able to support the
team while ensuring they keep a sustainable development pace. In this case, time
constraints may be the main problem to deal with, as performing the tasks related
to both roles can be quite time-consuming.

We kept all of the elements to implement in the Product Backlog (PB), and made it
accessible for everyone via Google Docs (now Google Drive). The items in the PB
were prioritized by the Product Owner. The PB was a living artifact, dividing the
top-priority items into more specific and granular ones when we had enough
knowledge to do so. Occasionally, implementing some items led to the discovery
of new requirements, as well as to a change of scope; this was subsequently
reflected in the PB. The whole team took part in estimating the effort that PB items
would take.

The effort required for the elements in the PB was not always as small as
recommended by Scrum experts. Due to some of the items requiring a lot of
research and trial and error, it was impossible to break them down into smaller
items. For this same reason, some of the items did not fit a sprint, which meant that
we broke one of the rules of Scrum.

We had a Sprint Backlog (SB) for each Sprint. An example of the structure of the
SB is given in Table 1. The items in the Sprint Backlog were extracted from the
top-priority items in the PB. We kept the status of each item (“pending” — “done”)
in the SB, along with an estimate of the remaining time to be completed. This
estimate was updated by the Development Team every day after the Daily Scrum.
We also used Sprint burn-down charts to monitor the progress of the Sprint and the
remaining effort, since the SB always had the information of the remaining effort
updated to present estimates (Fig. 2 shows an example). The SB, like the PB, was
accessible via Google Docs. We did not find it necessary to have a physical board
to keep the information about the tasks, as we found it more useful to keep it
centralized in the SB.

We started each Sprint with a Sprint planning meeting where the whole team took
part. The first point in this meeting was to establish the duration of the Sprint. At
first, the Sprints were three weeks long, but we later decided to make them four
weeks long, since the nature of the tasks (longer than what is usual in software
development) made it feel more consistent to have longer Sprints. The main
advantage of a shorter sprint is allowing the team to detect earlier if the product
being developed does not meet the needs of the client. This way, the risk of
developing the wrong product is reduced. In our case, this potential risk was not a
problem, since the Product Owner attended the Daily Scrums and was completely
aware of the progress being made during the Sprint. More information about the
Sprints is given in Table 2. Once the duration of the Sprint was established, the
team revised the PB and decided as a group which set of PB items would be




Using Agile Methods to Implement a Laboratory for Software Product Quality Evaluation 151

implemented. The set was decided based on the priorities assigned by the Product
Owner, as well as the effort estimation made by the whole team. Based on this
information, the team would decide which set of items would be achievable in the
time box established for the Sprint. Once the items were chosen, the whole team
debated which tasks each item would entail and in which order they should be
performed. The list of tasks to perform for each item was also included in the SB.
The recommendation to have tasks that require one day or less of work was often
difficult to fulfill, due to what has been explained above —the degree of research
and experimentation involved. The planning meeting usually took us about an
hour.

Table 1. Structure of the Sprint Backlog and example of part of its content during Sprint #9

PB Item Remaining | Status Tasks
effort
Visualization module: | 12 Pending | Pending:
AQC Lab-web - Include Line chart for evolution of

Characteristic values for selected project
in Historic page

- Include Line chart for evolution of
Subharacteristic values for selected
project in Historic page

Done:

- Include TreeMap chart with info from
all projects in Home Page

- Include Kiviat chart of selected project
in Characteristic page

- Include Kiviat chart of selected project
in Subcharacteristic page

,Talidalion of the test | O Done Pending:
method Done:

- Research and select software products
to use in validation

- Download source code of selected
products

- Evaluate selected products

- Extract information from bug tracking
systems

* In each Sprint, the team performed the different tasks for the PB items that had
been committed to in a collaborative way. For the PB items that involved software
development, the recommendations of Scrum were followed: the team focused on
Producing, within the Sprint, software that had been tested and which, at the end of
the Sprint, actually worked. For other PB items, like documents or forms, we also
tried to always have a revised version at the end of the Sprint.




152 J. Verdugo, M. Rodriguez, and M. Piattini

Sprint #1 Burndown chart

4
TOI

g EF

010

120092010

Fig. 1. Burn-down chart for Sprint #1. The line with dots shows the estimated remaining effort,
which was updated after the Daily Scrum. The straight thin line represents the ideal trend. As
we can see in this figure, the initial estimations were too optimistic and the team could not keep
the velocity necessary to complete all the committed PB items.

e We conducted a Sprint review and retrospective meeting after every Sprint. We

usually had the review meeting first, which took us about an hour; right afterwards,
we had the planning meeting for the next Sprint. The whole team took part in the
review, and the Product Owner led the discussion about which committed PB items
had been done and which had not been carried out. The experimental nature of
some of the tasks made them rather unpredictable as regards the effort they would
take. Because of that, in the first Sprints our estimates were quite off target and
usually there would be many unfinished items at the end of each Sprint.
Nonetheless, as we gained experience, our estimates of the effort required for the
PB items and related tasks got better, which led us to choose a more adequate
amount of tasks to perform in later Sprints. After reviewing the work completed,
the group then discussed what problems they had had during the Sprint, outlining
how they were solved. We then had a live demonstration of the work products that
involved software development (some elements of the evaluation framework). For
other work products, we did not usually have a live demonstration of what had
been done during the Sprint, because it was often the case that there was not a
product to show per se. The result of a task would often be a document or a section
of a document, and these results were reviewed as they were produced, not at the
end of the Sprint. After the review, we would usually have a quick retrospective
meeting to look back on and discuss the process. It usually took only a short time,
as the whole team was comfortable with the process and we all felt few
adjustments were necessary.



Using Agile Methods to Implement a Laboratory for Software Product Quality Evaluation 153

Table 2. Details of some Sprints in the implementation of AQC Lab

Sprint #

Dates

Main goals

01

| 27/08/10 - 21/09/10

Research and define Metrics for Maintainability.
Research tools that provide values for the metrics in the
Maintainability model.

21/09/10 - 15/10/10

Define functions to aggregate metric values and obtain
values for high-level elements of the Maintainability
model.

Set thresholds for metric values.

18/10/10-12/11/10

Design the architecture of the evaluation framework.
Document the Maintainability model.

Produce the QMS Quality Manual.

Refine metrics (filter rules from static source code
analyzers).

04

15/11/10 - 03/12/10

Develop business domain and data layer of the
evaluation framework.

Document administrative procedures (documentation
control, organization, and personnel).

Document technical procedures (tool configuration).

05

03/12/10 - 24/12/10

Develop the evaluation engine of the evaluation
framework (tool result integration and aggregation of
values).

Create personnel records (training, authorizations, etc.).

06

10/01/11 - 31/01/11

Develop the evaluation engine of the evaluation
framework (tool result integration and aggregation of
values).

Define and document evaluation process (test method).
Document administrative procedures (internal audits,
management reviews).

07

31/01/11 - 18/02/11

Develop automation module of the evaluation
framework (plugin for Maven).

Document technical procedures (threshold revision).
Create forms and records related to administrative
procedures (document control, internal audits, etc.)

08

21/02/11 - 11/03/11

Develop visualization module of the evaluation
framework (data visualization).

Improve core of evaluation framework: improve multi-
module product evaluation.

Define procedure for validation of the test method.

02/05/12 - 01/06/12

Perform the internal audit.
Carry out evaluation of product AAA for client BBB.

=]
LF5]

04/06/12 - 06/07/12

Define and implement corrective actions for non-
conformities detected in internal audit.
Carry out evaluation of product XXX for client YYY.

24

16/07/12 - 10/08/12

Receive accreditation audit.

Produce documentation requested by accreditation
body auditors.

Define and implement corrective actions for non-
conformities detected in accreditation audit.




154 J. Verdugo, M. Rodriguez, and M. Piattini

e We conducted Daily Scrums; the whole team, including the Product Owner, took
part in these. In these quick meetings each team member reported on what had
been done the previous day, the problems he had faced, and what he would do that
day. The Daily Scrums were usually kept to no more than fifteen minutes, though
there were days on which discussing some topics (like how to tackle the problems
the team members faced) would prolong the meeting. However, we sometimes
found it useful to go beyond the fifteen minute time-box, since this gave us a good
opportunity to share the vision of the Product Owner about topics that mattered to
the development team.

4 Conclusions and Future Work

Methodologies and process frameworks, such as Scrum, are supported by a lot of
effort and empirical research whose goal is to test how the practices they define
interrelate and work together to attain their intended benefits. Each one of their
components and practices serves a specific purpose and is essential to the successful
usage of the methodology or process framework. In a nutshell, they are not part of the
methodology simply because of some whim; teams have to take that into account
when they adapt a methodology to their own circumstances.

Nonetheless, we advocate for a contextual approach to Agile methods, adapting the
elements to suit the context in which they are adopted. It seems paradoxical to affirm
that an Agile method cannot be adapted and that it must be followed strictly.

Even though it is a software development framework, we found Scrum really
useful for our purpose of implementing a software evaluation laboratory. We believe,
moreover, that it can be easily adapted to other contexts outside the realm of software
development, since it focuses mainly on project management. We do concur that
method adaptations have to be done carefully, though. You have to be perfectly clear
about the purpose of each element of the method that you are changing, as well as
how that change affects what really matters, i.e., the performance of the team.

We found Scrum to be really well-crafted for project management. It enabled us to
get different levels of zoom on the information required to monitor the progress of the
project:

e The Product Backlog provided us with a general snapshot of what has to be done,
with the advantage that it was not a static snapshot, since it was updated constantly
to reflect newly-discovered scope throughout the project. Moreover, this snapshot
provided closer detail about what was most important at each point in time, via the
priorities specified for its items.

e The Sprint Backlog provided a sharper focus on what was important within the
time box of a month (or less). It allowed us to concentrate on the most urgent
items, taking an incremental approach that made implementation easier,

e The Daily Scrum allowed us to know how we were progressing on a day-by-day

basis. We found the Daily Scrum to be the most useful practice in Scrum, as it

improved our decision-making by keeping the whole team involved. It made for



Using Agile Methods to Implement a Laboratory for Software Product Quality Evaluation 155

better performance; since everybody in the team knew what the others were doing,
each individual could lend a hand to other members when they had issues to solve.

Achieving the accreditation may be considered a major milestone in the
implementation of AQC Lab. However, that did not mean that we had reached the end
of the road. Since the accreditation, we have been working on expanding the scope of
the evaluations carried out by the laboratory; we are defining evaluation models for
other quality characteristics, like Functional Suitability and Usability, or researching
and developing tools to measure the metrics related to those characteristics; we are
also researching tools to evaluate Maintainability on software products developed
with other programming languages not supported initially, like Groovy and Objective
C, etc. We are still using Scrum to manage all this work.

In addition, maintaining accreditation requires the continual improvement of the
QMS that governs the activity of the laboratory. This correct operation and
improvement is monitored by the accreditation body via follow-up audits. We have
just received our first follow-up audit and we have had very positive feedback from
the audit team. The effectiveness of our QMS is a consequence of the fact that we also
use Scrum to manage the operation of AQC Lab, which involves carrying out
software quality evaluation tests and performing administrative and technical
activities, as well as implementing improvement actions.

Acknowledgements. This work has been funded by the GEODAS-BC project
(Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo
Regional FEDER, TIN2012-37493-C03-01) and by the ECU: Evaluacién y
Certificacién de la fUncionalidad del Producto Software project (Consejeria de
Empleo y Economifa y Fondo Europeo de Desarrollo Regional FEDER,
1313CALT0056).

References

1. SO/IEC 25000:2005 - Software Engineering — Software product Quality Requirements and
Evaluation (SQuaRE) — Guide to SQuaRE. International Organization for Standardization,
Geneva, Switzerland (2005)

ISO/IEC 25010:2011 - Software Engineering — Software product Quality Requirements

and Evaluation (SQuaRE) — System and software quality models. International

Organization for Standardization, Geneva, Switzerland (2005)

3. ISO/IEC 25040:2011 - Software Engineering — Software product Quality Requirements
and Evaluation (SQuaRE) - Evaluation process. International Organization for
Standardization, Geneva, Switzerland (2005)

4. Schwaber, K.: Scrum Development Process. In: Business Object Design and
Implementation, pp. 117-134. Springer, London (1997)

5. ISO/EC 17025:2005 - General requirements for the competence of testing and calibration
laboratories. International Organization for Standardization, Geneva, Switzerland (2005)

6. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Boston
(2000)

_r\.)



156

7

J. Verdugo, M. Rodriguez, and M. Piattini

Hoda, R., Kruchten, P., Noble, J., Marshall, S.: Agility in Context. In: Proceedings of the
ACM International Conference on Object Oriented Programming Systems, Languages, and
Applications (OOPSLA 2010), pp. 74-88. ACM, New York (2010)

Conboy, K., Fitzgerald, B.: The Views of Experts on the Current State of Agile Method
Tailoring. In: McMaster, T., Wastell, D., Ferneley, E., DeGross, J.1. (eds.) Organizational
Dynamics of Technology-Based Innovation: Diversifying the Research Agenda. IFIP
International Federation for Information Processing, vol.235, pp. 217-234. Springer,
Heidelberg (2007)

Hicks, M., Foster, J.S.: Adapting Scrum to Managing a Research Group. Technical Report
CS-TR-4966, University of Maryland, Department of Computer Science (2010)

Willeke, M.H.H.: Agile in Academics: Applying Agile to Instructional Design. In:
Proceedings of the 2011 Agile Conference (AGILE 2011), pp. 246-251. IEEE Computer
Society, Washington (2011)

. van Solingen, R., Sutherland, I., de Waard, D.; Scrum in Sales: How to Improve Account

Management and Sales Processes. In: Proceedings of the 2011 Agile Conference (AGILE
2011), pp. 284-288. IEEE Computer Society, Washington (2011)

DeFauw, R.: Can Marketing Go Agile? In: Proceedings of the 2012 Agile Conference
(AGILE 2012), pp. 136-140. IEEE Computer Society (2012)

Mazzanti, G.: Agile in the Bathtub: Developing and Producing Bathtubs the Agile Way.
In: Proceedings of the 2012 Agile Conference (AGILE 2012), pp. 197-203. IEEE
Computer Society (2012)




Abrahamsson. Pekka 126
Allan, George 260
Alvi, Usman Sattar 187

Bache, Emily 320
Bache, Geoffrey 320
Barabino, Giulio 234
Berger, Christian 171
Bosch, Jan 171, 327
Brox, Oliver 294

Chaudron, Michel 46

Cohn, Mike 32

Conboy, Kieran 203

Concas. Giulio 157, 234, 269
Corona. Erika 234

Correal, Dario 302
Counsell, Steve 157

Das, Sutirtha 242
Datta. Subhajit 242
Destefanis, Giuseppe 15
Doyle, Maureen 32

-
i

Evbota, Felix 46

Fagerholm, Fabian 218
Fontana, Rafaela Mantovani 94

Gencel, Cigdem 187
Grechi, Daniele 234
Gregory, Peggy 1

Heeager. Lise Tordrup 62
Hunt, Johanna 251

Jauns-Seyfried, Stefanie = 294

Kaisti, Matti 16
Kettunen, Petri 285
Kiesling, Stephan 110
Knauss, Eric 46
Knieke, Christoph 294
Kramer, Michael 294

Author Index

Lade, Prasanth 242
Lehtonen, Teijo 16
Liskin, Olga 110
Lunesu, Ilaria 126

Majumder, Subhashis 242
Makila, Tuomas 16
Malucelli, Andreia 94
Matta, Martina 126
Mercado, Mauricio 302
Monni, Cristina 269
Mujunen, Tapio 16
Munoz, Rafael 302

Nilsson. Agneta 171
Nobl, James 260

QOlsson. Helena Holmstrém
Orru, Matteo 269

Pagels, Max 218

Peters, Henrik 294
Petersen, Kai 187

Pham, Raphael 110
Piattini, Mario 143
Plonka, Laura 1

Power. Ken 203, 277, 312

Rantala, Ville 16
Reinehr, Sheila 94
Rejab, Mawarny Md. 260
Rikkila, Juha 126
Rodriguez, Moisés 143
Rooksby, John 251
Rubin, Kenneth S. 32

Sandberg, Anna 46
Sarkar, Proshanta 242
Schneider, Kurt 110
Schulze, Andreas 294
Sekitoleko, Nelson 46
Shah, Syed Muhammad Ali
Sharp. Helen 1

Sreshtha, Sonu 242
Stettina, Christoph Johann

46,

18

78

327

—

iy



338 Author Index

Taylor, Katie
Tigano, Danilo
Tonelli, Roberto

Urrego. Juan

1

234

302

157, 269

Verdugo, Javier 143

Wang, Xiaofeng 126, 251
Williams, Laurie 32

Zijdemans, Shi Hao 78






