
ICSTW 2017

Conference Sponsors

Platinum Sponsor

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Copper Sponsors

2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops

Tokyo, Japan

13-17 March 2017

Conference Information

Copyright Page

Conference Sponsors

Author Index

Papers By Session

The 12th Workshop on Testing: Academia-Industry Collaboration, Practice,
and Research Techniques (TAIC PART 2017)

Message from the TAIC PART 2017 Chairs

by Takashi Kitamura, Emil Alégroth, Rudolf Ramler

Coverage-Based Reduction of Test Execution Time: Lessons from a Very Large Industrial
Project

by Thomas Bach, Artur Andrzejak, Ralf Pannemans

Are CISQ Reliability Measures Practical? A Research Perspective

by Johannes Bräuer, Reinhold Plösch, Manuel Windhager

Impact of Education and Experience Level on the Effectiveness of Exploratory Testing:
An Industrial Case Study

by Ceren Sahin Gebizli, Hasan Sözer

A Test Case Recommendation Method Based on Morphological Analysis, Clustering and

the Mahalanobis-Taguchi Method

by Hirohisa Aman, Takashi Nakano, Hideto Ogasawara, Minoru Kawahara

Results of a Comparative Study of Code Coverage Tools in Computer Vision

by Iulia Nica, Gerhard Jakob, Kathrin Juhart, Franz Wotawa

Test Case Generation and Prioritization: A Process-Mining Approach

by Andrea Janes

Software Testing in Industry and Academia: A View of Both Sides in Japan

by Satoshi Masuda

Industry-Academia Collaboration in Software Testing: An Overview of TAIC PART 2017

by Takashi Kitamura, Emil Alégroth, Rudolf Ramler

1st International Workshop on Testing Extra-Functional Properties and
Quality Characteristics of Software Systems (ITEQS 2017)

Message from the ITEQS 2017 Chairs

by Mehrdad Saadatmand, Birgitta Lindström, Markus Bohlin

A Process for Sound Conformance Testing of Cyber-Physical Systems

by Hugo Araujo, Gustavo Carvalho, Augusto Sampaio, Mohammad Reza Mousavi, Masoumeh
Taromirad

Testing Cache Side-Channel Leakage

by Tiyash Basu, Sudipta Chattopadhyay

Simulation-Based Safety Testing Brake-by-Wire

by Nils Müllner, Saifullah Khan, Md Habibur Rahman, Wasif Afzal, Mehrdad Saadatmand

Targeted Mutation: Efficient Mutation Analysis for Testing Non-Functional Properties

by Björn Lisper, Birgitta Lindström, Pasqualina Potena, Mehrdad Saadatmand, Markus Bohlin

Automatic Test Generation for Energy Consumption of Embedded Systems Modeled in
EAST-ADL

by Raluca Marinescu, Eduard Enoiu, Cristina Seceleanu, Daniel Sundmark

Page 1 of 42017 IEEE International Conference on Software Testing, Verification and Validation...

24/03/2017http://conferences.computer.org/icstw/2017/

Government Sponsorship

Special Sponsorship

Supporters

Runtime Verification for Detecting Suspension Bugs in Multicore and Parallel Software

by Sara Abbaspour Asadollah, Daniel Sundmark, Hans Hansson

Generating Controllably Invalid and Atypical Inputs for Robustness Testing

by Simon Poulding, Robert Feldt

The 12th International Workshop on Mutation Analysis (Mutation 2017)

Message from the Mutation 2017 Chairs

by Jens Krinke, Nan Li, José Miguel Rojas

MutRex: A Mutation-Based Generator of Fault Detecting Strings for Regular Expressions

by Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene

Towards Security-Aware Mutation Testing

by Thomas Loise, Xavier Devroey, Gilles Perrouin, Mike Papadakis, Patrick Heymans

Speeding-Up Mutation Testing via Data Compression and State Infection

by Qianqian Zhu, Annibale Panichella, Andy Zaidman

Applying Mutation Analysis on Kernel Test Suites: An Experience Report

by Iftekhar Ahmed, Carlos Jensen, Alex Groce, Paul E. McKenney

Mutation Patterns for Temporal Requirements of Reactive Systems

by Mark Trakhtenbrot

How Good Are Your Types? Using Mutation Analysis to Evaluate the Effectiveness of
Type Annotations

by Rahul Gopinath, Eric Walkingshaw

Reducing Mutants with Mutant Killable Precondition

by Chihiro Iida, Shingo Takada

Finding Redundancy in Web Mutation Operators

by Upsorn Praphamontripong, Jeff Offutt

An Architecture for the Development of Mutation Operators

by Macario Polo Usaola, Gonzalo Rojas, Isyed Rodríguez, Suilen Hernández

Are Deletion Mutants Easier to Identify Manually?

by Vinicius H. S. Durelli, Nilton M. De_Souza, Marcio E. Delamaro

6th International Workshop on Combinatorial Testing (IWCT 2017)

General Message from the IWCT Workshop Chairs

by Dimitris Simos, Rachel Tzoref-Brill

IWCT 2017 Organizers

by Dimitris Simos, Rachel Tzoref-Brill

Test Case Generation & Quality Assessment

A Model for T-Way Fault Profile Evolution during Testing

by D. Richard Kuhn, Raghu N. Kacker, Yu Lei

Mutation Score, Coverage, Model Inference: Quality Assessment for T-Way
Combinatorial Test-Suites

by Hermann Felbinger, Franz Wotawa, Mihai Nica

Optimizing IPOG's Vertical Growth with Constraints Based on Hypergraph Coloring

by Feng Duan, Yu Lei, Linbin Yu, Raghu N. Kacker, D. Richard Kuhn

Test Case Generation with Regular Expressions and Combinatorial Techniques

by Macario Polo Usaola, Francisco Ruiz Romero, Rosana Rodríguez-Bobada Aranda, Ignacio García
Rodríguez

Applications of Combinatorial Testing: I

Applying Combinatorial Testing to High-Speed Railway Track Circuit Receiver

by Chang Rao, Jin Guo, Nan Li, Yu Lei, Yadong Zhang, Yao Li, Yaxin Cao

Applications of Practical Combinatorial Testing Methods at Siemens Industry Inc.,
Building Technologies Division

by Murat Ozcan

Using Timed Base-Choice Coverage Criterion for Testing Industrial Control Software

by Henning Bergström, Eduard Paul Enoiu

Modelling

Building Combinatorial Test Input Model from Use Case Artefacts

by Preeti S., Milind B., Medhini S. Narayan, Krishnan Rangarajan

Combinatorial Methods for Modelling Composed Software Systems

Page 2 of 42017 IEEE International Conference on Software Testing, Verification and Validation...

24/03/2017http://conferences.computer.org/icstw/2017/

by Ludwig Kampel, Bernhard Garn, Dimitris E. Simos

Combinatorial Interaction Testing for Automated Constraint Repair

by Angelo Gargantini, Justyna Petke, Marco Radavelli

A Composition-Based Method for Combinatorial Test Design

by Anna Zamansky, Amir Shwartz, Seri Khoury, Eitan Farchi

Applications of Combinatorial Testing: II

Applying Combinatorial Testing to Data Mining Algorithms

by Jaganmohan Chandrasekaran, Huadong Feng, Yu Lei, D. Richard Kuhn, Raghu Kacker

Combinatorial Testing on Implementations of HTML5 Support

by Xi Deng, Tianyong Wu, Jun Yan, Jian Zhang

Combinatorial Testing on MP3 for Audio Players

by Shaojiang Wang, Tianyong Wu, Yuan Yao, Beihong Jin, Liping Ding

Poster Session

Finding Minimum Locating Arrays Using a SAT Solver

by Tatsuya Konishi, Hideharu Kojima, Hiroyuki Nakagawa, Tatsuhiro Tsuchiya

Test Optimization Using Combinatorial Test Design: Real-World Experience in
Deployment of Combinatorial Testing at Scale

by Saritha Route

4th International Workshop on Software Test Architecture (InSTA 2017)

Messages from the InSTA 2017 Chairs

by Satoshi Masuda

Research

Analysing Test Basis and Deriving Test Cases Based on Data Design Documents

by Tsuyoshi Yumoto, Tohru Matsuodani, Kazuhiko Tsuda

Improvement of Description for Reusable Test Type by Using Test Frame

by Keiji Uetsuki, Mitsuru Yamamoto

Emerging

Suggestion of Practical Quantification Measuring Method of Test Design Which Can
Represent the Current Status

by Sunil Chon, Jihwan Park

Software Testing Design Techniques Used in Automated Vehicle Simulations

by Satoshi Masuda

Closing the Gap between Unit Test Code and Documentation

by Karsten Stöcker, Hironori Washizaki, Yoshiaki Fukazawa

Test Conglomeration - Proposal for Test Design Notation Like Class Diagram

by Noriyuki Mizuno, Makoto Nakakuki, Yoshinori Seino

Defining the Phrase "Software Test Architecture" Emerging Idea

by Jon D. Hagar

13th Workshop on Advances in Model Based Testing (A-MOST 2017)

Message from the A-MOST 2017 Chairs

by Paolo Arcaini, Xavier Devroey, Shuai Wang

Functional MBT

Mutation-Based Test-Case Generation with Ecdar

by Kim G. Larsen, Florian Lorber, Brian Nielsen, Ulrik M. Nyman

Reducing the Concretization Effort in FSM-Based Testing of Software Product Lines

by Vanderson Hafemann Fragal, Adenilso Simao, André Takeshi Endo, Mohammad Reza Mousavi

Property-Based Testing with External Test-Case Generators

by Bernhard K. Aichernig, Silvio Marcovic, Richard Schumi

Non-Functional MBT

Planning-Based Security Testing of the SSL/TLS Protocol

by Josip Bozic, Kristoffer Kleine, Dimitris E. Simos, Franz Wotawa

Towards Decentralized Conformance Checking in Model-Based Testing of Distributed
Systems

by Bruno Miguel Carvalhido Lima, João Carlos Pascoal Faria

Page 3 of 42017 IEEE International Conference on Software Testing, Verification and Validation...

24/03/2017http://conferences.computer.org/icstw/2017/

Pattern-Based Usability Testing

by Fernando Dias, Ana C. R. Paiva

10th IEEE International Conference on Software Testing, Verification and
Validation - Posters Track (ICST 2017 Posters)

A Mechanism of Reliable and Standalone Script Generator on Android

by Kuei-Chun Liu, Yu-Yu Lai, Ching-Hong Wu

EarthCube Software Testing and Assessment Framework

by Emily Law

Using Model-Checking for Timing Verification in Industrial System Design

by Laurent Rioux, Rafik Henia, Nicolas Sordon

Challenges of Operationalizing Spectrum-Based Fault Localization from a Data-Centric
Perspective

by Mojdeh Golagha, Alexander Pretschner

Towards a Gamified Equivalent Mutants Detection Platform

by Thomas Laurent, Laura Guillot, Motomichi Toyama, Ross Smith, Dan Bean, Anthony Ventresque

Cloud API Testing

by Junyi Wang, Xiaoying Bai, Haoran Ma, Linyi Li, Zhicheng Ji

Automated A/B Testing with Declarative Variability Expressions

by Keisuke Watanabe, Takuya Fukamachi, Naoyasu Ubayashi, Yasutaka Kamei

Weighting for Combinatorial Testing by Bayesian Inference

by Eun-Hye Choi, Tsuyoshi Fujiwara, Osamu Mizuno

Impact of Static and Dynamic Coverage on Test-Case Prioritization: An Empirical Study

by Jianyi Zhou, Dan Hao

BDTest, a System to Test Big Data Frameworks

by Alexandre Langeois, Eduardo Cunha De Almeida, Anthony Ventresque

What You See Is What You Test - Augmenting Software Testing with Computer Vision

by Rudolf Ramler, Thomas Ziebermayr

Framework for Model-Based Design and Verification of Human-in-the-Loop Cyber-
Physical Systems

by Filip Cuckov, Grant Rudd, Liam Daly

Automated Test Case Generation from OTS/CafeOBJ Specifications by Specification
Translation

by Ryusei Mori, Masaki Nakamura

This site and all contents (unless otherwise noted) are Copyright ©2017 IEEE. All rights reserved.

Page 4 of 42017 IEEE International Conference on Software Testing, Verification and Validation...

24/03/2017http://conferences.computer.org/icstw/2017/

An architecture for the development of mutation operators

Macario Polo Usaola
Dept. of Information Systems and Technologies

University of Castilla-La Mancha
Ciudad Real, Spain

Gonzalo Rojas, Isyed Rodríguez, Suilen Hernández
Dept. of Computer Science
University of Concepción

Concepción, Chile

 Abstract— This paper introduces an abstract specification
of mutation operators that (1) we have used to create tradi-
tional operators and, (2) we are currently using to define and
implement mutation operators for context-aware, mobile ap-
plications that come from a list of common errors reported by
three companies. This specification describes the structure and
behavior of mutation operators at a high abstraction level, thus
supporting the specification of new mutation operators accord-
ing to the evolving state of the art of context-awareness. The
paper also gives some notes about BacterioWeb, a web-based
mutant tool with an execution engine for Android applications.

 Keywords— mutant generation; context-awareness; mu-
tation operators design; mutation operators architecture.

I. INTRODUCTION
Software Testing evolves as new technological features

are incorporated by software systems. The rapid evolution of
ubiquitous computing has extended the set of aspects for
which quality must be assured. In particular, a relevant factor
in developing mobile applications is their sensibility to
changes in the context they are executed [1].

In this scenario, the adoption of Mutation Analysis in-
creasingly demands the definition of specific mutation opera-
tors for these new features. It is desirable that these new op-
erators can be added to the mutation environment for repro-
ducing those new errors that appear over time.

The main contributions of this paper are: (1) the devel-
opment of a hierarchical architecture for mutation operators
that minimizes the dependence of external libraries and that
facilitates the implementation of new operators; (2) Bacte-
rioWeb, a new mutation tool that performs all the mutation
tasks in the web; (3) some mutation operators specifically
designed for reproducing some common context-aware er-
rors reported by mobile applications developers; (4) a com-
parison of the proposed architecture with those in other tools.

Migrating Bacterio to the web holds several important
advantages: (1) projects can be shared amongst testers; (2)
operators implemented by a developer are automatically
available in all the testing projects; (3) for mobile testing,
emultaro and devices are connected to the server and, thus,
testers do not need to have all the target devices connected
to their computers.

The remainder of this paper is structured as follows:
Section II describes the background of our research; Section
III introduces the proposed architecture, by describing the
adopted mutation strategy and the main components of the

mutation operators’ architecture, including their structure
and behavior; Section IV describes two examples of new
context-aware operators, defined from the introduced archi-
tecture; Section V compares the architectural design of our
operators with those in other mutation tools. Finally, Section
VI presents some conclusions and future work perspectives.

II. BACKGROUND
Mutation operators insert faults in the system under test

that should be similar to those that programmers uninten-
tionally introduce into their systems. Software evolution has
led to the proposal and development of multiple operators
for all kind of testing levels, programming languages, para-
digms and platforms. Thus, for example, first works about
mutation testing targeted individual functions and methods
of Fortran programs, in a kind of unit testing [2]; later, mu-
tation operators for integration testing were developed [3],
[4]; Ma and Offutt [5] proposed specific operators for object
orientation, and implemented them in MuJava; Reales et al.
[6] defined 58 mutation operators for testing multi-class
systems at the integration and system levels; different au-
thors have proposed specific operators for several program-
ming languages (C [7], C# [8], C++ [9], Python [10] or PHP
[11]); there are also mutation operators for other contexts:
for relational databases [12], the ATL model-transformation
language [13] or BPEL [14]. Jia and Harman [15] cite works
about the application of mutation to state machines, Estelle
specifications, Petri nets, network protocols, security poli-
cies and web services.

The variety of works is as wide the variety of systems,
platforms and environments. Mutation operators for a cer-
tain type of system, paradigm or language are responsible of
inserting the common faults that programmers and develop-
ers commit when they build the system: the virtual modifier
insertion operator for C++ [9], for example, has nothing to
do with a BPEL or a PHP specification.

Mobile software has recently received the attention of
mutation researchers: Deng et al. [1] propose eleven muta-
tion operators for testing several characteristics of Android
apps, although they explicitly left for the future the imple-
mentation of others, specially those related to the context-
awareness.

As developers of mutation tools, we are also concerned
with the development of mutation operators for mobile apps.
Both testooj [16] and Bacterio [17] deal with Java applica-
tions. Whilst testooj takes the mutants generated by MuJava
[5] as input, Bacterio includes a mutant generator that in-

10th IEEE International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-6676-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSTW.2017.31

143

10th IEEE International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-6676-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSTW.2017.31

143

10th IEEE International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-6676-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSTW.2017.31

143

serts the faults directly in the bytecode. We are now build-
ing BacterioWeb, a version of Bacterio that runs on the web
and performs all the mutation testing tasks on the server:
from the mutant generation to the result analysis, and
through the test case execution.

BacterioWeb is being developed almost from scratch,
bearing in mind the goal of keeping quite easy the imple-
mentation and addition of new mutation operators. Further-
more, in this new tool we are focused on the mutation test-
ing of mobile applications: the user interface of Bacterio-
Web offers the tester a list of the mobile devices and emula-
tors that are available in the server. Then, the server runs the
test cases against the app under test on the selected device or
emulator.

III. ARCHITECTURE OF OPERATORS
Android developers usually write most of the application

code in Java, commonly with Android Studio. The deploy-
ment of an application onto a mobile device requires several
steps: (1) a translation of .java files to .class; (2) a new
translation of each .class into a .dex file (which is the ma-
chine language understood by the Android Runtime and that
is compatible with Dalvik, the virtual machine used before
Android 5.0); and (3) the packaging of the .dex and other
resource files into an .apk file that holds application.

As other tools, BacterioWeb also introduces mutants in
the Java bytecode of the SUT. We use ASM, a powerful
API to directly manipulate the bytecode produced by the
Java compiler [18]. With ASM, a .class file can be loaded
into a ClassNode, an object that wraps the class, holds all
the information required to know the wrapped class details
and offers all kind of operations to manipulate it. Thus, a
ClassNode has the collections of fields and methods in two
respective lists of FieldNode and MethodNode. Besides oth-
er information (name, annotations, exceptions...), every
MethodNode has its bytecode instructions in a InsnList ob-
ject, which implements a doubly-linked list of Ab-
stractInsnNode objects (Fig. 1).

A. Mutable instructions and mutant generation
The behavior of a mutant generator may consist in going

through every mutation operator and asking it to get the
mutants of the class to mutate.

Supposing (for the shake of clarity) that only construc-
tors and methods can be mutated, the operator goes through
every operation in the class and, for each operation, it goes
in turn over all its instructions to determine whether it can or
cannot mutate the method.

Fig. 2 shows the pseudocode of a possible implementa-
tion of a generateMutants(c : Class) method that belongs to
the Operator class: as observed, it adds to a mutableMeth-
ods collection all the methods in c that it can mutate. For
every mutable method, it calls an additional mutate(c :
Class, m : Method) function, that applies the mutation oper-
ator to the method passed as parameter.

The behavior described in the pseudocode of Fig. 2 is
common for all the mutation operators: thus, even though
the Operator class must be abstract (because the change

implementation obviously depends on the self operator), this
operation may be concrete.

Fig. 1. Class hierarchy of instructions

The function called by generateMutants (i.e., mutate(c :
Class, m : Method)) goes over the instructions of m and gets
the corresponding mutants: if the operator can produce p
mutants for a given instruction and there are q mutable in-
structions in the method, the operator must generate p x q
mutants.

∅
∅

∪

∪

Fig. 2. Pseudocode of Operator::generateMutants(c : Class)

Thus, for each mutable instruction in m, mutate(c, m)
calls mutate(c, m, instruction), that:

(1) Gets the list of changes applicable to the instruction
passed.

(2) For each change, performs the mutation by calling
performMutation(method, instruction, change).

Obviously, both getting the list of changes and perform-

ing the mutation depend on the concrete operator: for exam-
ple, the application of UOI (Unary Operator Insertion) to
this.i=v; returns this.i=-v, this.i=v++, this.i=v--, this.i=++v
and this.i=--v, whereas AOR (Arithmetic Operator Re-
placement) would return nothing.

B. Defining the operators architecture
Since our goal is to define a reusable architecture to

easily implement mutation operators, we have defined an
abstract Operator class that holds as many concrete methods
as possible. In Fig. 3:

• Each operator has two fields: the class file name

144144144

(which is used to process its bytecode with ASM)
and the family, which is used to group the operators
by categories in the web user interface. Some values
of the family field can be "Traditional" (in the sense
of the classification given in [5]) or "Sensors"
(meaning that the operator is designed to sensors).

• Since we want to give the tool a plugin architecture
(i.e., new operators can be added, loaded at applied
at runtime), the class constructor is protected and is
not visible from the outside. To instantiate and load
the operators, the tool will look for all the concrete
specializations of Operator and, over every one, it
will call its constructor with a reflective call to its
newInstance method (inside the java.lang.Class).

• getName returns the class operator name, and it is
the acronym shown in the user interface. For exam-
ple, if the AOR operator is implemented in the
AOR.class file, it reflectively returns the "AOR"
string.

• getDescription is abstract, because it returns a textu-
al description of the operator. For AOR, for exam-
ple, it returns "Arithmetic Operator Replacement".

• Both mutate methods implement the tasks described
in the previous subsection, and they are concrete.

• instructionIsMutable is abstract, since its implemen-
tation depends on the concrete operator.

• performMutation modifies the method and instruc-
tion whose indexes are passed as parameters. The
change may be a single instruction (substituting ma-
chine instructions IADD by ISUB, for example) or a
list of instructions: thus, the third parameter is a list
of instructions (i.e., an instance of InsnList). This is
the method that actually builds up each mutant, re-
turning it as a ClassNode object with its bytecode.

Fig. 3. Structure of the abstract Operator

As we pointed out, some operators, such as AOR, con-
sist in the simple substitution of one bytecode instruction by
another one, whereas others require the insertion of
bytecode lines at a specific position of the method's Insn-
List. For this, Operator has the two direct, abstract speciali-
zations shown in Fig. 4 (InsertionOperator and Replace-
mentOperator). This figure shows also the operators hierar-
chy for four of the "traditional" mutation operators imple-
mented in Bacterio Web: AOR, ABS (Absolute value inser-
tion), ROR (Relational Operator Replacement) and UOI
(which is implemented in several classes).

Fig. 4. Design of four of the Traditional operators

IV. ADDITION OF CONTEXT-AWARE OPERATORS
Taking advantage of the proposed architecture, we have

defined and implemented several mutation operators for
common context-awareness errors. These errors (TABLE I)
come from the experience of three companies that are in-
volved with us in a private research & development project.
These errors will drive the definition and implementation of
new operators.

The number and nature of the errors may grow up,
which is one of the main reasons for (1) developing the hi-
erarchy-based mutation operators design and (2) trying our
best to keep the implementation of the actual mutation oper-
ators as simple as possible.

TABLE I. Categories and errors identified

Category Errors
User interface 14
Connectivity 5
Screen orientation 6
Sensors 8
Interaction with other apps 2
Internal interaction 12
Database 6
Other errors 7

Total 60

A. A replacement operator
In Android, data from sensors are received in classes

implementing the android.hardware.SensorEventListener
interface, that offers the onSensorChanged(SensorEvent
event) method. A SensorEvent holds the sensor measures in
an array of floats (the values field is final and, therefore,
cannot be changed), a reference to the source Sensor, the
measure accuracy and the timestamp. This section describes
some operators for sensors and explains how to arrive to the
final implementation of one of them.

Usually, the app requests the use of a Sensor by means
of the getDefaultSensor(int sensorId) operation in a Sen-
sorManager instance. In turn, this instance is recovered by
the getSystemService(int) method of the app's Context. The
sensor speed is set up with the registerListener method.
When the sensor is no longer needed, it must be released

145145145

with a call to unregisterListener(SensorListener) in Sen-
sorManager. This common cycle of operations is summa-
rized in Fig. 5. Some of the specific errors reported for Sen-
sors appear in TABLE II.

1) Sensor request:

2) Use of the sensor via asynchronous calls to:

3) Sensor release:

Fig. 5. Typical cycle of a sensor use

TABLE II. Some errors for sensors

Method Error
getDefaultSensor a wrong sensor is requested

getDefaultSensor the device has not the requested
sensor

registerListener wrong speed

onSensorChanged values are used in a wrong order.
i.e.: {z, x, y} instead of {x, y, z}

onSensorChanged values are incorrectly interpreted,
i.e.: {- x, -y, -z} instead of {x, y, z }

onSensorChanged the sensor sends a null measurement

The first error (wrong sensor requested) appears when

the programmer asks for a sensor different than the one
needed (i.e., TYPE_LINEAR_ACCELERATION instead of
TYPE_ACCELEROMETER). Since the change to reproduce
this error just consists in substituting the value of the con-
stant representing the sensor, the corresponding mutation
operator for this error is a specialization of ReplacementOp-
erator that must be applied when the getDefaultSensor
method is called. In bytecode:

The first instruction (ICONST_1) refers the constant

value of the TYPE_ACCELEROMETER: it can be another
constant (up to ICONST_5) or a BIPUSH value instruction
for higher values. The second one is the call to the method.

Therefore, the mutation operator will be applied before
the second instruction. If the value loaded before this meth-
od is a constant (from ICONST_0 to ICONST_5), this value
will be changed by a different one. If it is a higher value, it
will be changed by ICONST_1.

The implementation of the operator is straightforward:
besides the implementation of three simple methods (the
constructor, getDescription and performMutation), the main
difficulties are in instructionIsMutable and in getChanges:

• instructionIsMutable returns true only when the in-
structions is a call to Sensor::getDefaultSensor.

• getChanges returns a InsnList with just one instruc-
tion, which is the new InsnNode.

B. An insertion operator
One of the reported errors with respect to the use of the

screen comes from unexpected events from the user, such as
touching twice on a widget or rotating the device. This event
produces a change of the coordinates where the user touch-
es: the screen center, instead of being (x, y), passes to be (y,
x).

Depending on the operation where the event is collected,
the data in the event may arrive in a different type of object.
For example, the onTouchEvent method of the View class
receives a MotionEvent object as its only parameter.

To simulate the change of coordinates, it is enough to
add a call to the setLocation(float, float) method as the first
line of any implementation of onTouchEvent, interchanging
the coordinates with getX and getY:

The insertion of this single Java statement requires the
insertion of six new bytecode instructions. We must redefine
methodIsMutable method (which has a default implementa-
tion in Operator, see Fig. 3) and instructionIsMutable:

• methodIsMutable returns true only for the on-
TouchEvent(MotionEvent) of the View class.

• Since the mutation is introduced as the first instruc-
tion of the method, this operator requires a boolean
field isFirstInstruction, in such way that instruction-
IsMutable returns true only the first time is executed.

Fig. 6 shows the inclusion of these two operators in the
architecture.

V. COMPARISON WITH OTHER TOOLS
Other tools make also use of inheritance for implement-

ing their mutation operations, and all of them require exter-
nal libraries to manipulate the bytecode. Both inheritance
and external libraries increase the system coupling.

Coupling “is a qualitative measure of the degree to
which classes are connected to one another” [19]. The cou-
pling may be better or worse depending on the impact that a
change in a part of the system has on the others. Lethbridge
and Laganiére define several coupling categories [20]. In-
heritance introduces Content coupling, probably the most
dangerous of all, since the structure and behavior of all sub-
classes have a complete dependence on all their ancestors;
thus, the modification of a superclass affects all its descend-
ants. If the superclass is implemented in a third-party com-
ponent, then the evolution of our system becomes complete-
ly dependent on the evolution of such external system.

146146146

Fig. 6. Addition of CoordinatesInterchange as an InsertionOperator

 Type use is a “not so bad” type of coupling. It occurs
when “component A uses a data type defined in component
B” [19]. If B is the external library and this does not evolve
according to A's requirements, A must be modified, maybe
with the substitution of B by a new library. This type of
coupling is better than content coupling because the struc-
ture and behavior of A is actually implemented in A itself,
being under the control of A's developer.

Due to these risks (ASM is an external library), the de-
velopment of operators in BacterioWeb uses Type use cou-
pling (Fig. 7) and the dependence on changes of ASM is
not so strong as with Content coupling. The "old" Bacterio
used ASM too. Although it had no dependence on hierarchy
from classes in ASM, we have taken advantage of the les-
sons learned during its development in this new implemen-
tation.

Next sections review the operators in two other tools.

Fig. 7. Dependencies of our Operator with respect to ASM

A. MuJava
µJava [5] was first released in 2003, although it has un-

dergone several improvements over time. It performs muta-
tion at bytecode level using OpenJava [21], a library to ma-
nipulate Java bytecode that, according to its webpage, has
not been updated since 2007.

Fig. 8 shows a partial view of the hierarchy of mutation
operators in MuJava: ABS and ABS_AOR_LCR_ROR_UOI
are "traditional" operators, whilst IHD is an object-oriented
operator. As observed, there is a strong coupling by inher-
itance of all the operators with respect to OpenJava: note
that all the classes in the MuJava core (those with no pack-
age name in Fig. 8) are descendant of classes included in
this external library. Thus, the discontinuation in the devel-

opment of OpenJava seriously threatens the evolution of this
interesting mutation tool.

Fig. 8. Operators' architecture in MuJava

B. Javalanche
Javalanche is another tool developed by Schuler and

Zeller [22]. As BacterioWeb, it uses the ASM library to in-
sert the changes in the bytecode. As MuJava, its operators
are also specializations of classes in the external library. In
spite of ASM is evolving from 2002 to 2016, the github site
of Javalanche has no commits since march 2012.

C. Pitest
This tool [23] also performs mutation at bytecode level

using ASM. Pitest is Maven-based and, thus, is not explicit-
ly invoked by the tester, but it is added as a plugin to the
pom.xml project file. As most tools, it also has Content cou-
pling by inheritance with ASM classes. As an example, Fig.
9 illustrates that how the GregorMutationEngine uses a
GregorMutater that, in turn, uses a MutatingClassVisitor
that directly inherits from the ASM ClassVisitor. Anyway,
most of the core Pitest classes are decoupled from ASM via
a very strong use of wrappers, and the use of interfaces
probably allows the development of independent mutation
engines.

Fig. 9. A sample of content coupling in Pitest

VI. CONCLUSIONS AND FUTURE WORK
This paper has presented the architecture of mutation

operators we are developing for BacterioWeb. Its goal is to
make easy the development of new operators, as well as to
reduce the dependence of external libraries. The class
hierarchy has been carefully designed to minimize the code
required in the implementation of new operators.

The architecture supports the implementation of classic
operators, but also of others for specific methods by means
of the methodIsMutable operation defined in Operator, the
root of the hierarchy. Overriding this method makes

147147147

possible to build particular operators for specific operations
of the system under test that, for example, can be identified
by its name. methodIsMutable, together to
instructionIsMutable, are specially useful for the context-
awareness characteristics of mobile applications, which is
one of our current research areas. On the other side, the use
of reflection for recovering the implemented mutation
operators gives a plugin architecture to the mutant
generation module of BacterioWeb: operators can be written
and added on the fly, and the tool is able to apply them
immediately.

Although it has not been the focus of this paper, the
development of this web version of Bacterio is also a
challenge. In fact: (1) it changes the way of dealing with the
project under test, that is hosted in the server and can be
shared with other testers; (2) WebSockets give the user
feedback about the execution advance; (3) testers may also
share mutation operators; (4) testers do not need to deal with
mobile devices or emulators, which are connected to the
server; (5) we will need to face performance problems when
different testers execute several test suites of different
projects, maybe with cloud approach and parallel execution
of mutants [24].

VII. ACKNOWLEDGMENTS
This work has been developed within the GINSENG

Project, TIN2015-70259-C2-1-R, Fondo Europeo de Desar-
rollo Regional & Ministerio de Economía y Competitividad.

REFERENCES
[1] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, “Mu-
tation operators for testing Android apps,” Inf. Softw. Tech-
nol., vol. 81, pp. 154–168, Jan. 2017.
[2] R. A. DeMillo, R. J. Lipton, and F. G. Sayward,
“Hints on Test Data Selection: Help for the Practicing Pro-
grammer,” Computer, vol. 11, no. 4, pp. 34–41, 1978.
[3] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur,
“Interface Mutation: an approach for integration testing,”
IEEE Trans. Softw. Eng., vol. 27, no. 3, pp. 228–247, 2001.
[4] S. Ghosh and A. P. Mathur, “Interface mutation,”
Softw. Test. Verification Reliab., vol. 11, no. 4, pp. 227–
247, 2001.
[5] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: an
automated class mutation system: Research Articles,” Softw
Test Verif Reliab, vol. 15, no. 2, pp. 97–133, Jun. 2005.
[6] P. Reales, M. Polo, and J. Offutt, “Mutation at the
multi-class and system levels,” Sci. Comput. Program., vol.
78, no. 4, pp. 364–387, 2012.
[7] E. S. Hiralal Agrawal Richard A.DeMillo, Bob Hath-
away, William Hsu, Wynne Hsu, E. W.Krauser, R. J.Martin,
Aditya P.Mathur, “Design of Mutant Operators for the C
Programming Language,” Purdue University, Mar. 1989.
[8] A. Derezińska, “Advanced mutation operators appli-
cable in C# programs,” in Software Engineering Tech-
niques: Design for Quality, K. Sacha, Ed. Springer US,
2007, pp. 283–288.
[9] P. Delgado-Pérez, I. Medina-Bulo, J. J. Domínguez-

Jiménez, A. García-Domínguez, and F. Palomo-Lozano,
“Class mutation operators for C++ object-oriented systems,”
Ann. Telecommun. - Ann. Télécommunications, pp. 1–12,
Sep. 2014.
[10] A. Derezińska and K. Hałas, “Analysis of Mutation
Operators for the Python Language,” in Proceedings of the
Ninth International Conference on Dependability and Com-
plex Systems DepCoS-RELCOMEX. June 30 – July 4, 2014,
Brunów, Poland, W. Zamojski, J. Mazurkiewicz, J. Sugier,
T. Walkowiak, and J. Kacprzyk, Eds. Springer International
Publishing, 2014, pp. 155–164.
[11] P. Brady, “Halleck45/MutaTesting,” GitHub.
[Online]. Available: http://bit.ly/2jCZrx5. [Accessed: 04-
Sep-2014].
[12] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva, “Mu-
tating database queries,” Inf. Softw. Technol., vol. 49, no. 4,
pp. 398–417, Apr. 2007.
[13] J. Troya, A. Bergmayr, L. Burgueño, and M. Wim-
mer, “Towards systematic mutations for and with ATL
model transformations,” in 8th Int. Conf. on Software Test-
ing, Verification and Validation Workshops (ICSTW), 2015,
pp. 1–10.
[14] A. Estero-Botaro, F. Palomo-Lozano, and I. Medina-
Bulo, “Quantitative Evaluation of Mutation Operators for
WS-BPEL Compositions,” in Proceedings of the 2010 Third
International Conference on Software Testing, Verification,
and Validation Workshops, Washington, DC, USA, 2010,
pp. 142–150.
[15] Y. Jia and M. Harman, “An Analysis and Survey of
the Development of Mutation Testing,” IEEE Trans. Softw.
Eng., vol. 37, no. 5, pp. 649–678, 2011.
[16] M. Polo, S. Tendero, and M. Piattini, “Integrating
techniques and tools for testing automation: Research Arti-
cles,” Softw Test Verif Reliab, vol. 17, no. 1, pp. 3–39, Mar.
2007.
[17] P. Reales and M. Polo, “Bacterio: Java mutation test-
ing tool: A framework to evaluate quality of tests cases,” in
28th IEEE Int. Cong. on Software Maintenance (ICSM),
2012, pp. 646–649.
[18] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: a
code manipulation tool to implement adaptable systems.”
[19] R. S. Pressman, Software Engineering: A Practition-
er’s Approach. New York: McGraw-Hill, 2009.
[20] T. Lethbridge and R. Laganiere, Object-Oriented
Software Engineering: Practical Software Development
Using UML and Java, Edición: 2. London: McGraw-Hill,
2004.
[21] “OJ : An Extensible Java.” [Online]. Available:
http://www.csg.ci.i.u-tokyo.ac.jp/openjava/. [Accessed: 01-
Dec-2016].
[22] D. Schuler and A. Zeller, “Javalanche: efficient muta-
tion testing for Java,” 2009, p. 297.
[23] Henry Coles, “Pitest.” [Online]. Available:
http://pitest.org/. [Accessed: 01-Dec-2016].
[24] P. Reales and M. Polo, “Parallel mutation testing,”
Softw. Test. Verification Reliab., vol. 23(4), pp. 315–350,
Mar. 2012.

148148148

