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   Abstract— This paper introduces an abstract specification 
of mutation operators that (1) we have used to create tradi-
tional operators and, (2) we are currently using to define and 
implement mutation operators for context-aware, mobile ap-
plications that come from a list of common errors reported by 
three companies. This specification describes the structure and 
behavior of mutation operators at a high abstraction level, thus 
supporting the specification of new mutation operators accord-
ing to the evolving state of the art of context-awareness. The 
paper also gives some notes about BacterioWeb, a web-based 
mutant tool with an execution engine for Android applications. 

   Keywords— mutant generation; context-awareness; mu-
tation operators design; mutation operators architecture. 

I.  INTRODUCTION  
Software Testing evolves as new technological features 

are incorporated by software systems. The rapid evolution of 
ubiquitous computing has extended the set of aspects for 
which quality must be assured. In particular, a relevant factor 
in developing mobile applications is their sensibility to 
changes in the context they are executed [1].  

In this scenario, the adoption of Mutation Analysis in-
creasingly demands the definition of specific mutation opera-
tors for these new features. It is desirable that these new op-
erators can be added to the mutation environment for repro-
ducing those new errors that appear over time. 

The main contributions of this paper are: (1) the devel-
opment of a hierarchical architecture for mutation operators 
that minimizes the dependence of external libraries and that 
facilitates the implementation of new operators; (2) Bacte-
rioWeb, a new mutation tool that performs all the mutation 
tasks in the web; (3) some mutation operators specifically 
designed for reproducing some common context-aware er-
rors reported by mobile applications developers; (4) a com-
parison of the proposed architecture with those in other tools. 

Migrating Bacterio to the web holds several important 
advantages: (1) projects can be shared amongst testers; (2) 
operators implemented by a developer are automatically 
available in all the testing projects; (3) for mobile testing, 
emultaro and devices are connected to the server and, thus, 
testers do not need to have all the target devices connected 
to their computers. 

The remainder of this paper is structured as follows: 
Section II describes the background of our research; Section 
III introduces the proposed architecture, by describing the 
adopted mutation strategy and the main components of the 

mutation operators’ architecture, including their structure 
and behavior; Section IV describes two examples of new 
context-aware operators, defined from the introduced archi-
tecture; Section V compares the architectural design of our 
operators with those in other mutation tools. Finally, Section 
VI presents some conclusions and future work perspectives. 

II. BACKGROUND 
Mutation operators insert faults in the system under test 

that should be similar to those that programmers uninten-
tionally introduce into their systems. Software evolution has 
led to the proposal and development of multiple operators 
for all kind of testing levels, programming languages, para-
digms and platforms. Thus, for example, first works about 
mutation testing targeted individual functions and methods 
of Fortran programs, in a kind of unit testing [2]; later, mu-
tation operators for integration testing were developed [3], 
[4]; Ma and Offutt [5] proposed specific operators for object 
orientation, and implemented them in MuJava; Reales et al. 
[6] defined 58 mutation operators for testing multi-class 
systems at the integration and system levels; different au-
thors have proposed specific operators for several program-
ming languages (C [7], C# [8], C++ [9], Python [10] or PHP 
[11]); there are also mutation operators for other contexts: 
for relational databases [12], the ATL model-transformation 
language [13] or BPEL [14]. Jia and Harman [15] cite works 
about the application of mutation to state machines, Estelle 
specifications, Petri nets, network protocols, security poli-
cies and web services.  

The variety of works is as wide the variety of systems, 
platforms and environments. Mutation operators for a cer-
tain type of system, paradigm or language are responsible of 
inserting the common faults that programmers and develop-
ers commit when they build the system: the virtual modifier 
insertion operator for C++ [9], for example, has nothing to 
do with a BPEL or a PHP specification. 

Mobile software has recently received the attention of 
mutation researchers: Deng et al. [1] propose eleven muta-
tion operators for testing several characteristics of Android 
apps, although they explicitly left for the future the imple-
mentation of others, specially those related to the context-
awareness. 

As developers of mutation tools, we are also concerned 
with the development of mutation operators for mobile apps. 
Both testooj [16] and Bacterio [17] deal with Java applica-
tions. Whilst testooj takes the mutants generated by MuJava 
[5] as input, Bacterio includes a mutant generator that in-
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serts the faults directly in the bytecode. We are now build-
ing BacterioWeb, a version of Bacterio that runs on the web 
and performs all the mutation testing tasks on the server: 
from the mutant generation to the result analysis, and 
through the test case execution.  

BacterioWeb is being developed almost from scratch, 
bearing in mind the goal of keeping quite easy the imple-
mentation and addition of new mutation operators. Further-
more, in this new tool we are focused on the mutation test-
ing of mobile applications: the user interface of Bacterio-
Web offers the tester a list of the mobile devices and emula-
tors that are available in the server. Then, the server runs the 
test cases against the app under test on the selected device or 
emulator. 

III. ARCHITECTURE OF OPERATORS 
Android developers usually write most of the application 

code in Java, commonly with Android Studio. The deploy-
ment of an application onto a mobile device requires several 
steps: (1) a translation of .java files to .class; (2) a new 
translation of each .class into a .dex file (which is the ma-
chine language understood by the Android Runtime and that 
is compatible with Dalvik, the virtual machine used before 
Android 5.0); and (3) the packaging of the .dex and other 
resource files into an .apk file that holds application. 

As other tools, BacterioWeb also introduces mutants in 
the Java bytecode of the SUT. We use ASM, a powerful 
API to directly manipulate the bytecode produced by the 
Java compiler [18]. With ASM, a .class file can be loaded 
into a ClassNode, an object that wraps the class, holds all 
the information required to know the wrapped class details 
and offers all kind of operations to manipulate it. Thus, a 
ClassNode has the collections of fields and methods in two 
respective lists of FieldNode and MethodNode. Besides oth-
er information (name, annotations, exceptions...), every 
MethodNode has its bytecode instructions in a InsnList ob-
ject, which implements a doubly-linked list of Ab-
stractInsnNode objects (Fig. 1). 

A. Mutable instructions and mutant generation 
The behavior of a mutant generator may consist in going 

through every mutation operator and asking it to get the 
mutants of the class to mutate. 

Supposing (for the shake of clarity) that only construc-
tors and methods can be mutated, the operator goes through 
every operation in the class and, for each operation, it goes 
in turn over all its instructions to determine whether it can or 
cannot mutate the method.  

Fig. 2 shows the pseudocode of a possible implementa-
tion of a generateMutants(c : Class) method that belongs to 
the Operator class: as observed, it adds to a mutableMeth-
ods collection all the methods in c that it can mutate. For 
every mutable method, it calls an additional mutate(c : 
Class, m : Method) function, that applies the mutation oper-
ator to the method passed as parameter. 

The behavior described in the pseudocode of Fig. 2 is 
common for all the mutation operators: thus, even though 
the Operator class must be abstract (because the change 

implementation obviously depends on the self operator), this 
operation may be concrete. 

 
Fig. 1. Class hierarchy of instructions 

The function called by generateMutants (i.e., mutate(c : 
Class, m : Method)) goes over the instructions of m and gets 
the corresponding mutants: if the operator can produce p 
mutants for a given instruction and there are q mutable in-
structions in the method, the operator must generate p x q 
mutants. 

∅
∅

∪

∪

Fig. 2. Pseudocode of Operator::generateMutants(c : Class) 

Thus, for each mutable instruction in m, mutate(c, m) 
calls mutate(c, m, instruction), that: 

(1) Gets the list of changes applicable to the instruction 
passed. 

(2) For each change, performs the mutation by calling 
performMutation(method, instruction, change).

 
Obviously, both getting the list of changes and perform-

ing the mutation depend on the concrete operator: for exam-
ple, the application of UOI (Unary Operator Insertion) to 
this.i=v; returns this.i=-v, this.i=v++, this.i=v--, this.i=++v 
and this.i=--v, whereas AOR (Arithmetic Operator Re-
placement) would return nothing. 

B. Defining the operators architecture 
Since our goal is to define a reusable architecture to 

easily implement mutation operators, we have defined an 
abstract Operator class that holds as many concrete methods 
as possible. In Fig. 3: 

• Each operator has two fields: the class file name 
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(which is used to process its bytecode with ASM) 
and the family, which is used to group the operators 
by categories in the web user interface. Some values 
of the family field can be "Traditional" (in the sense 
of the classification given in [5]) or "Sensors" 
(meaning that the operator is designed to sensors). 

• Since we want to give the tool a plugin architecture 
(i.e., new operators can be added, loaded at applied 
at runtime), the class constructor is protected and is 
not visible from the outside. To instantiate and load 
the operators, the tool will look for all the concrete 
specializations of Operator and, over every one, it 
will call its constructor with a reflective call to its 
newInstance method (inside the java.lang.Class). 

• getName returns the class operator name, and it is 
the acronym shown in the user interface. For exam-
ple, if the AOR operator is implemented in the 
AOR.class file, it reflectively returns the "AOR" 
string. 

• getDescription is abstract, because it returns a textu-
al description of the operator. For AOR, for exam-
ple, it returns "Arithmetic Operator Replacement". 

• Both mutate methods implement the tasks described 
in the previous subsection, and they are concrete. 

• instructionIsMutable is abstract, since its implemen-
tation depends on the concrete operator. 

• performMutation modifies the method and instruc-
tion whose indexes are passed as parameters. The 
change may be a single instruction (substituting ma-
chine instructions IADD by ISUB, for example) or a 
list of instructions: thus, the third parameter is a list 
of instructions (i.e., an instance of InsnList). This is 
the method that actually builds up each mutant, re-
turning it as a ClassNode object with its bytecode. 

 
Fig. 3. Structure of the abstract Operator 

As we pointed out, some operators, such as AOR, con-
sist in the simple substitution of one bytecode instruction by 
another one, whereas others require the insertion of 
bytecode lines at a specific position of the method's Insn-
List. For this, Operator has the two direct, abstract speciali-
zations shown in Fig. 4 (InsertionOperator and Replace-
mentOperator). This figure shows also the operators hierar-
chy for four of the "traditional" mutation operators imple-
mented in Bacterio Web: AOR, ABS (Absolute value inser-
tion), ROR (Relational Operator Replacement) and UOI 
(which is implemented in several classes). 

 
Fig. 4. Design of four of the Traditional operators 

IV. ADDITION OF CONTEXT-AWARE OPERATORS 
Taking advantage of the proposed architecture, we have 

defined and implemented several mutation operators for 
common context-awareness errors. These errors (TABLE I) 
come from the experience of three companies that are in-
volved with us in a private research & development project. 
These errors will drive the definition and implementation of 
new operators. 

The number and nature of the errors may grow up, 
which is one of the main reasons for (1) developing the hi-
erarchy-based mutation operators design and (2) trying our 
best to keep the implementation of the actual mutation oper-
ators as simple as possible. 

TABLE I. Categories and errors identified

Category Errors 
User interface 14 
Connectivity 5 
Screen orientation 6 
Sensors 8 
Interaction with other apps 2 
Internal interaction 12 
Database  6 
Other errors 7 

Total 60 
 

A. A replacement operator
In Android, data from sensors are received in classes 

implementing the android.hardware.SensorEventListener 
interface, that offers the onSensorChanged(SensorEvent 
event) method. A SensorEvent holds the sensor measures in 
an array of floats (the values field is final and, therefore, 
cannot be changed), a reference to the source Sensor, the 
measure accuracy and the timestamp. This section describes 
some operators for sensors and explains how to arrive to the 
final implementation of one of them. 

Usually, the app requests the use of a Sensor by means 
of the getDefaultSensor(int sensorId) operation in a Sen-
sorManager instance. In turn, this instance is recovered by 
the getSystemService(int) method of the app's Context. The 
sensor speed is set up with the registerListener method. 
When the sensor is no longer needed, it must be released 

145145145



with a call to unregisterListener(SensorListener) in Sen-
sorManager. This common cycle of operations is summa-
rized in Fig. 5. Some of the specific errors reported for Sen-
sors appear in TABLE II. 

1) Sensor request: 

2) Use of the sensor via asynchronous calls to: 

3) Sensor release:

Fig. 5. Typical cycle of a sensor use 

TABLE II. Some errors for sensors 

Method Error 
getDefaultSensor a wrong sensor is requested 

getDefaultSensor the device has not the requested 
sensor 

registerListener wrong speed 

onSensorChanged values are used in a wrong order. 
i.e.: {z, x, y} instead of {x, y, z}  

onSensorChanged values are incorrectly interpreted, 
i.e.: {- x, -y, -z} instead of {x, y, z } 

onSensorChanged the sensor sends a null measurement 
 
The first error (wrong sensor requested) appears when 

the programmer asks for a sensor different than the one 
needed (i.e., TYPE_LINEAR_ACCELERATION instead of 
TYPE_ACCELEROMETER). Since the change to reproduce 
this error just consists in substituting the value of the con-
stant representing the sensor, the corresponding mutation 
operator for this error is a specialization of ReplacementOp-
erator that must be applied when the getDefaultSensor 
method is called. In bytecode: 

 
The first instruction (ICONST_1) refers the constant 

value of the TYPE_ACCELEROMETER: it can be another 
constant (up to ICONST_5) or a BIPUSH value instruction 
for higher values. The second one is the call to the method.  

Therefore, the mutation operator will be applied before 
the second instruction. If the value loaded before this meth-
od is a constant (from ICONST_0 to ICONST_5), this value 
will be changed by a different one. If it is a higher value, it 
will be changed by ICONST_1. 

The implementation of the operator is straightforward: 
besides the implementation of three simple methods (the 
constructor, getDescription and performMutation), the main 
difficulties are in instructionIsMutable and in getChanges: 

• instructionIsMutable returns true only when the in-
structions is a call to Sensor::getDefaultSensor. 

• getChanges returns a InsnList with just one instruc-
tion, which is the new InsnNode. 

B. An insertion operator  
One of the reported errors with respect to the use of the 

screen comes from unexpected events from the user, such as 
touching twice on a widget or rotating the device. This event 
produces a change of the coordinates where the user touch-
es: the screen center, instead of being (x, y), passes to be (y, 
x). 

Depending on the operation where the event is collected, 
the data in the event may arrive in a different type of object. 
For example, the onTouchEvent method of the View class 
receives a MotionEvent object as its only parameter.  

To simulate the change of coordinates, it is enough to 
add a call to the setLocation(float, float) method as the first 
line of any implementation of onTouchEvent, interchanging 
the coordinates with getX and getY: 

The insertion of this single Java statement requires the 
insertion of six new bytecode instructions. We must redefine 
methodIsMutable method (which has a default implementa-
tion in Operator, see Fig. 3) and instructionIsMutable:  

• methodIsMutable returns true only for the on-
TouchEvent(MotionEvent) of the View class. 

• Since the mutation is introduced as the first instruc-
tion of the method, this operator requires a boolean 
field isFirstInstruction, in such way that instruction-
IsMutable returns true only the first time is executed. 

Fig. 6 shows the inclusion of these two operators in the 
architecture. 

V. COMPARISON WITH OTHER TOOLS 
Other tools make also use of inheritance for implement-

ing their mutation operations, and all of them require exter-
nal libraries to manipulate the bytecode. Both inheritance 
and external libraries increase the system coupling.  

Coupling “is a qualitative measure of the degree to 
which classes are connected to one another” [19]. The cou-
pling may be better or worse depending on the impact that a 
change in a part of the system has on the others. Lethbridge 
and Laganiére define several coupling categories [20]. In-
heritance introduces Content coupling, probably the most 
dangerous of all, since the structure and behavior of all sub-
classes have a complete dependence on all their ancestors; 
thus, the modification of a superclass affects all its descend-
ants. If the superclass is implemented in a third-party com-
ponent, then the evolution of our system becomes complete-
ly dependent on the evolution of such external system. 

146146146



 
Fig. 6. Addition of CoordinatesInterchange as an InsertionOperator 

 Type use is a “not so bad” type of coupling. It occurs 
when “component A uses a data type defined in component 
B” [19]. If B is the external library and this does not evolve 
according to A's requirements, A must be modified, maybe 
with the substitution of B by a new library. This type of 
coupling is better than content coupling because the struc-
ture and behavior of A is actually implemented in A itself, 
being under the control of A's developer. 

Due to these risks (ASM is an external library), the de-
velopment of operators in BacterioWeb uses Type use cou-
pling (Fig. 7) and  the dependence on changes of ASM is 
not so strong as with Content coupling. The "old" Bacterio 
used ASM too. Although it had no dependence on hierarchy 
from classes in ASM, we have taken advantage of the les-
sons learned during its development in this new implemen-
tation. 

Next sections review the operators in two other tools. 

 
Fig. 7. Dependencies of our Operator with respect to ASM 

A. MuJava 
µJava [5] was first released in 2003, although it has un-

dergone several improvements over time. It performs muta-
tion at bytecode level using OpenJava [21], a library to ma-
nipulate Java bytecode that, according to its webpage, has 
not been updated since 2007.  

Fig. 8 shows a partial view of the hierarchy of mutation 
operators in MuJava: ABS and ABS_AOR_LCR_ROR_UOI 
are "traditional" operators, whilst IHD is an object-oriented 
operator. As observed, there is a strong coupling by inher-
itance of all the operators with respect to OpenJava: note 
that all the classes in the MuJava core (those with no pack-
age name in Fig. 8) are descendant of classes included in 
this external library. Thus, the discontinuation in the devel-

opment of OpenJava seriously threatens the evolution of this 
interesting mutation tool. 

 
Fig. 8. Operators' architecture in MuJava 

B. Javalanche 
Javalanche is another tool developed by Schuler and 

Zeller [22]. As BacterioWeb, it uses the ASM library to in-
sert the changes in the bytecode. As MuJava, its operators 
are also specializations of classes in the external library. In 
spite of ASM is evolving from 2002 to 2016, the github site 
of Javalanche has no commits since march 2012.  

C. Pitest 
This tool [23] also performs mutation at bytecode level 

using ASM. Pitest is Maven-based and, thus, is not explicit-
ly invoked by the tester, but it is added as a plugin to the 
pom.xml project file. As most tools, it also has Content cou-
pling by inheritance with ASM classes. As an example, Fig. 
9 illustrates that how the GregorMutationEngine uses a 
GregorMutater that, in turn, uses a MutatingClassVisitor 
that directly inherits from the ASM ClassVisitor. Anyway, 
most of the core Pitest classes are decoupled from ASM via 
a very strong use of wrappers, and the use of interfaces 
probably allows the development of independent mutation 
engines. 

 
Fig. 9. A sample of content coupling in Pitest 

VI. CONCLUSIONS AND FUTURE WORK 
This paper has presented the architecture of mutation 

operators we are developing for BacterioWeb. Its goal is to 
make easy the development of new operators, as well as to 
reduce the dependence of external libraries. The class 
hierarchy has been carefully designed to minimize the code 
required in the implementation of new operators. 

The architecture supports the implementation of classic 
operators, but also of others for specific methods by means 
of the methodIsMutable operation defined in Operator, the 
root of the hierarchy. Overriding this method makes 
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possible to build particular operators for specific operations 
of the system under test that, for example, can be identified 
by its name. methodIsMutable, together to 
instructionIsMutable, are specially useful for the context-
awareness characteristics of mobile applications, which is 
one of our current research areas. On the other side, the use 
of reflection for recovering the implemented mutation 
operators gives a plugin architecture to the mutant 
generation module of BacterioWeb: operators can be written 
and added on the fly, and the tool is able to apply them 
immediately. 

Although it has not been the focus of this paper, the 
development of this web version of Bacterio is also a 
challenge. In fact: (1) it changes the way of dealing with the 
project under test, that is hosted in the server and can be 
shared with other testers; (2) WebSockets give the user 
feedback about the execution advance; (3) testers may also 
share mutation operators; (4) testers do not need to deal with 
mobile devices or emulators, which are connected to the 
server; (5) we will need to face performance problems when 
different testers execute several test suites of different 
projects, maybe with cloud approach and parallel execution 
of mutants [24]. 
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