
ICSTW 2017

Conference Sponsors

Platinum Sponsor

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Copper Sponsors

2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops

Tokyo, Japan

13-17 March 2017

Conference Information

Copyright Page

Conference Sponsors

Author Index

Papers By Session

The 12th Workshop on Testing: Academia-Industry Collaboration, Practice,
and Research Techniques (TAIC PART 2017)

Message from the TAIC PART 2017 Chairs

by Takashi Kitamura, Emil Alégroth, Rudolf Ramler

Coverage-Based Reduction of Test Execution Time: Lessons from a Very Large Industrial
Project

by Thomas Bach, Artur Andrzejak, Ralf Pannemans

Are CISQ Reliability Measures Practical? A Research Perspective

by Johannes Bräuer, Reinhold Plösch, Manuel Windhager

Impact of Education and Experience Level on the Effectiveness of Exploratory Testing:
An Industrial Case Study

by Ceren Sahin Gebizli, Hasan Sözer

A Test Case Recommendation Method Based on Morphological Analysis, Clustering and

the Mahalanobis-Taguchi Method

by Hirohisa Aman, Takashi Nakano, Hideto Ogasawara, Minoru Kawahara

Results of a Comparative Study of Code Coverage Tools in Computer Vision

by Iulia Nica, Gerhard Jakob, Kathrin Juhart, Franz Wotawa

Test Case Generation and Prioritization: A Process-Mining Approach

by Andrea Janes

Software Testing in Industry and Academia: A View of Both Sides in Japan

by Satoshi Masuda

Industry-Academia Collaboration in Software Testing: An Overview of TAIC PART 2017

by Takashi Kitamura, Emil Alégroth, Rudolf Ramler

1st International Workshop on Testing Extra-Functional Properties and
Quality Characteristics of Software Systems (ITEQS 2017)

Message from the ITEQS 2017 Chairs

by Mehrdad Saadatmand, Birgitta Lindström, Markus Bohlin

A Process for Sound Conformance Testing of Cyber-Physical Systems

by Hugo Araujo, Gustavo Carvalho, Augusto Sampaio, Mohammad Reza Mousavi, Masoumeh
Taromirad

Testing Cache Side-Channel Leakage

by Tiyash Basu, Sudipta Chattopadhyay

Simulation-Based Safety Testing Brake-by-Wire

by Nils Müllner, Saifullah Khan, Md Habibur Rahman, Wasif Afzal, Mehrdad Saadatmand

Targeted Mutation: Efficient Mutation Analysis for Testing Non-Functional Properties

by Björn Lisper, Birgitta Lindström, Pasqualina Potena, Mehrdad Saadatmand, Markus Bohlin

Automatic Test Generation for Energy Consumption of Embedded Systems Modeled in
EAST-ADL

by Raluca Marinescu, Eduard Enoiu, Cristina Seceleanu, Daniel Sundmark

Page 1 of 42017 IEEE International Conference on Software Testing, Verification and Validation...

24/03/2017http://conferences.computer.org/icstw/2017/

Government Sponsorship

Special Sponsorship

Supporters

Runtime Verification for Detecting Suspension Bugs in Multicore and Parallel Software

by Sara Abbaspour Asadollah, Daniel Sundmark, Hans Hansson

Generating Controllably Invalid and Atypical Inputs for Robustness Testing

by Simon Poulding, Robert Feldt

The 12th International Workshop on Mutation Analysis (Mutation 2017)

Message from the Mutation 2017 Chairs

by Jens Krinke, Nan Li, José Miguel Rojas

MutRex: A Mutation-Based Generator of Fault Detecting Strings for Regular Expressions

by Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene

Towards Security-Aware Mutation Testing

by Thomas Loise, Xavier Devroey, Gilles Perrouin, Mike Papadakis, Patrick Heymans

Speeding-Up Mutation Testing via Data Compression and State Infection

by Qianqian Zhu, Annibale Panichella, Andy Zaidman

Applying Mutation Analysis on Kernel Test Suites: An Experience Report

by Iftekhar Ahmed, Carlos Jensen, Alex Groce, Paul E. McKenney

Mutation Patterns for Temporal Requirements of Reactive Systems

by Mark Trakhtenbrot

How Good Are Your Types? Using Mutation Analysis to Evaluate the Effectiveness of
Type Annotations

by Rahul Gopinath, Eric Walkingshaw

Reducing Mutants with Mutant Killable Precondition

by Chihiro Iida, Shingo Takada

Finding Redundancy in Web Mutation Operators

by Upsorn Praphamontripong, Jeff Offutt

An Architecture for the Development of Mutation Operators

by Macario Polo Usaola, Gonzalo Rojas, Isyed Rodríguez, Suilen Hernández

Are Deletion Mutants Easier to Identify Manually?

by Vinicius H. S. Durelli, Nilton M. De_Souza, Marcio E. Delamaro

6th International Workshop on Combinatorial Testing (IWCT 2017)

General Message from the IWCT Workshop Chairs

by Dimitris Simos, Rachel Tzoref-Brill

IWCT 2017 Organizers

by Dimitris Simos, Rachel Tzoref-Brill

Test Case Generation & Quality Assessment

A Model for T-Way Fault Profile Evolution during Testing

by D. Richard Kuhn, Raghu N. Kacker, Yu Lei

Mutation Score, Coverage, Model Inference: Quality Assessment for T-Way
Combinatorial Test-Suites

by Hermann Felbinger, Franz Wotawa, Mihai Nica

Optimizing IPOG's Vertical Growth with Constraints Based on Hypergraph Coloring

by Feng Duan, Yu Lei, Linbin Yu, Raghu N. Kacker, D. Richard Kuhn

Test Case Generation with Regular Expressions and Combinatorial Techniques

by Macario Polo Usaola, Francisco Ruiz Romero, Rosana Rodríguez-Bobada Aranda, Ignacio García
Rodríguez

Applications of Combinatorial Testing: I

Applying Combinatorial Testing to High-Speed Railway Track Circuit Receiver

by Chang Rao, Jin Guo, Nan Li, Yu Lei, Yadong Zhang, Yao Li, Yaxin Cao

Applications of Practical Combinatorial Testing Methods at Siemens Industry Inc.,
Building Technologies Division

by Murat Ozcan

Using Timed Base-Choice Coverage Criterion for Testing Industrial Control Software

by Henning Bergström, Eduard Paul Enoiu

Modelling

Building Combinatorial Test Input Model from Use Case Artefacts

by Preeti S., Milind B., Medhini S. Narayan, Krishnan Rangarajan

Combinatorial Methods for Modelling Composed Software Systems

Page 2 of 42017 IEEE International Conference on Software Testing, Verification and Validation...

24/03/2017http://conferences.computer.org/icstw/2017/

by Ludwig Kampel, Bernhard Garn, Dimitris E. Simos

Combinatorial Interaction Testing for Automated Constraint Repair

by Angelo Gargantini, Justyna Petke, Marco Radavelli

A Composition-Based Method for Combinatorial Test Design

by Anna Zamansky, Amir Shwartz, Seri Khoury, Eitan Farchi

Applications of Combinatorial Testing: II

Applying Combinatorial Testing to Data Mining Algorithms

by Jaganmohan Chandrasekaran, Huadong Feng, Yu Lei, D. Richard Kuhn, Raghu Kacker

Combinatorial Testing on Implementations of HTML5 Support

by Xi Deng, Tianyong Wu, Jun Yan, Jian Zhang

Combinatorial Testing on MP3 for Audio Players

by Shaojiang Wang, Tianyong Wu, Yuan Yao, Beihong Jin, Liping Ding

Poster Session

Finding Minimum Locating Arrays Using a SAT Solver

by Tatsuya Konishi, Hideharu Kojima, Hiroyuki Nakagawa, Tatsuhiro Tsuchiya

Test Optimization Using Combinatorial Test Design: Real-World Experience in
Deployment of Combinatorial Testing at Scale

by Saritha Route

4th International Workshop on Software Test Architecture (InSTA 2017)

Messages from the InSTA 2017 Chairs

by Satoshi Masuda

Research

Analysing Test Basis and Deriving Test Cases Based on Data Design Documents

by Tsuyoshi Yumoto, Tohru Matsuodani, Kazuhiko Tsuda

Improvement of Description for Reusable Test Type by Using Test Frame

by Keiji Uetsuki, Mitsuru Yamamoto

Emerging

Suggestion of Practical Quantification Measuring Method of Test Design Which Can
Represent the Current Status

by Sunil Chon, Jihwan Park

Software Testing Design Techniques Used in Automated Vehicle Simulations

by Satoshi Masuda

Closing the Gap between Unit Test Code and Documentation

by Karsten Stöcker, Hironori Washizaki, Yoshiaki Fukazawa

Test Conglomeration - Proposal for Test Design Notation Like Class Diagram

by Noriyuki Mizuno, Makoto Nakakuki, Yoshinori Seino

Defining the Phrase "Software Test Architecture" Emerging Idea

by Jon D. Hagar

13th Workshop on Advances in Model Based Testing (A-MOST 2017)

Message from the A-MOST 2017 Chairs

by Paolo Arcaini, Xavier Devroey, Shuai Wang

Functional MBT

Mutation-Based Test-Case Generation with Ecdar

by Kim G. Larsen, Florian Lorber, Brian Nielsen, Ulrik M. Nyman

Reducing the Concretization Effort in FSM-Based Testing of Software Product Lines

by Vanderson Hafemann Fragal, Adenilso Simao, André Takeshi Endo, Mohammad Reza Mousavi

Property-Based Testing with External Test-Case Generators

by Bernhard K. Aichernig, Silvio Marcovic, Richard Schumi

Non-Functional MBT

Planning-Based Security Testing of the SSL/TLS Protocol

by Josip Bozic, Kristoffer Kleine, Dimitris E. Simos, Franz Wotawa

Towards Decentralized Conformance Checking in Model-Based Testing of Distributed
Systems

by Bruno Miguel Carvalhido Lima, João Carlos Pascoal Faria

Page 3 of 42017 IEEE International Conference on Software Testing, Verification and Validation...

24/03/2017http://conferences.computer.org/icstw/2017/

Pattern-Based Usability Testing

by Fernando Dias, Ana C. R. Paiva

10th IEEE International Conference on Software Testing, Verification and
Validation - Posters Track (ICST 2017 Posters)

A Mechanism of Reliable and Standalone Script Generator on Android

by Kuei-Chun Liu, Yu-Yu Lai, Ching-Hong Wu

EarthCube Software Testing and Assessment Framework

by Emily Law

Using Model-Checking for Timing Verification in Industrial System Design

by Laurent Rioux, Rafik Henia, Nicolas Sordon

Challenges of Operationalizing Spectrum-Based Fault Localization from a Data-Centric
Perspective

by Mojdeh Golagha, Alexander Pretschner

Towards a Gamified Equivalent Mutants Detection Platform

by Thomas Laurent, Laura Guillot, Motomichi Toyama, Ross Smith, Dan Bean, Anthony Ventresque

Cloud API Testing

by Junyi Wang, Xiaoying Bai, Haoran Ma, Linyi Li, Zhicheng Ji

Automated A/B Testing with Declarative Variability Expressions

by Keisuke Watanabe, Takuya Fukamachi, Naoyasu Ubayashi, Yasutaka Kamei

Weighting for Combinatorial Testing by Bayesian Inference

by Eun-Hye Choi, Tsuyoshi Fujiwara, Osamu Mizuno

Impact of Static and Dynamic Coverage on Test-Case Prioritization: An Empirical Study

by Jianyi Zhou, Dan Hao

BDTest, a System to Test Big Data Frameworks

by Alexandre Langeois, Eduardo Cunha De Almeida, Anthony Ventresque

What You See Is What You Test - Augmenting Software Testing with Computer Vision

by Rudolf Ramler, Thomas Ziebermayr

Framework for Model-Based Design and Verification of Human-in-the-Loop Cyber-
Physical Systems

by Filip Cuckov, Grant Rudd, Liam Daly

Automated Test Case Generation from OTS/CafeOBJ Specifications by Specification
Translation

by Ryusei Mori, Masaki Nakamura

This site and all contents (unless otherwise noted) are Copyright ©2017 IEEE. All rights reserved.

Page 4 of 42017 IEEE International Conference on Software Testing, Verification and Validation...

24/03/2017http://conferences.computer.org/icstw/2017/

Test case generation with regular expressions and
combinatorial techniques

Macario Polo Usaola, Francisco Ruiz Romero, Rosana Rodríguez-Bobada Aranda, Ignacio García Rodríguez
Department of Information Systems and Technologies

University of Castilla-La Mancha
Ciudad Real, Spain

Abstract—A test case describes a specific execution scenario of
the system under test (SUT). Its goal is to discover errors by
means of its oracle, that emits a pass or fail verdict depending on
the SUT behavior. The test case has a sequence of calls to SUT's
operations with specific test data, which may come from the
application of a combinatorial algorithm. This paper describes a
method to describe generic test scenarios by means of regular
expressions, whose symbols point to a SUT operation. The tester
assigns values to each operation's parameter. A further step
expands the regular expression and produces a set of operation
sequences, which are then passed to a combinatorial algorithm to
generate actual test cases. Regular expressions are annotated
with a set of when clauses, that are processed by the combinatori-
al algorithm to include the oracle in the generated test cases.

Index Terms— Software testing, Test case generation, Oracles,
Regular expressions

I. INTRODUCTION
est automation involves at least: (1) test data generation,
(2) test case generation, (3) test case execution and (4)

result analysis. Whilst test case execution and result analysis
are both in research and in industrial practice solved problems,
only 13% of companies use automation tools to generate test
data [1]: the others use anonymized (or not) production data,
spreadsheets and, for testing from the user interface, data built
on the fly during exploratory testing.

Test cases consist in general of three parts [2][3]: (1) speci-
fication of the initial situation, to lead the SUT (the system
under test) into the desired starting state, (2) execution of
operations, and (3) comparison of the obtained and the ex-
pected results with an oracle to check whether the case has or
has not found errors in the SUT.

The results returned by several test cases with the same ini-
tial situation and sequence of operations depend on the test
data. Fig. 1 shows three test cases for a supposed banking
Account class, all of them including three calls to the same
three methods in the same order:
• The first case corresponds to a "normal" situation,

where the tester deposits 1000, withdraws 200 and
transfers 100. So, no exceptions are expected and the
account balance should 700.

• The sequence of operations in the second test case is
the same, but now the values are respectively 1000, 400
and 100. Neither we expect exceptions, but the account
balance should be 500.

• Operations in the third case are also the same, but the
values are now 1000, 200 and 50,000. So, we expect
the SUT throws an InsufficientBalanceException.

@Test
public void testNormal_700() {
 Account account=new Account();
 try {
 account.deposit(1000);
 account.withdraw(200);
 account.transfer(new Account(), "Telephone", 100);
 assertTrue(account.getBalance()==700);
 }
 catch (Exception e) {
 fail("No exception expected");
 }
}
@Test
public void testNormal_500() {
 Account account=new Account();
 try {
 account.deposit(1000);
 account.withdraw(400);
 account.transfer(new Account(), "Telephone", 100);
 assertTrue(account.getBalance()==500);
 }
 catch (Exception e) {
 fail("No exception expected");
 }
}
@Test
public void testInsufficientBalance () {
 Account account=new Account();
 try {
 account.deposit(1000);
 account.withdraw(200);
 account.transfer(new Account(), " Telephone ", 50000);
 fail("InsufficientBalanceException expected");
 }
 catch (InsufficientBalanceException e) {}
 catch (Exception e) {
 fail("InsufficientBalanceException expected");
 }
}

Fig. 1. Three test cases with the same initial situation and operation calls,
but with different oracle

The three test cases in the figure come from the same se-
quence, but their final structure depends on the test data
passed to their operations. Combinatorial techniques resolve
the problem of generating the test data, and even the genera-
tion of part of the test case code (initial situation and operation
sequence). However, they do not resolve the problem of add-
ing the oracle due to the strong dependence of the test data
values. This makes that, in industrial practice, test cases are
finally most times written by hand.

This article describes a method and a tool to solve the prob-
lem described, completely automating test case generation
with the inclusion of oracles. The generation method is based
on regular expressions (to describe test scenarios), combinato-
rial algorithms (to combine generic test cases with test data)
and test templates. Regular expressions are enriched with a set
of when clauses that determine the test template that must be
applied to each test case.

T

10th IEEE International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-6676-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSTW.2017.38

189

10th IEEE International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-6676-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSTW.2017.38

189

10th IEEE International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-6676-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSTW.2017.38

189

The article is organized as follows: Section II briefly re-
views regular expressions and introduces the idea of expand-
ing them to generate test cases. Section III gives a concrete
example of the problem to be solved and depicts the proposed
solution. Section IV describes our algorithms to expand regu-
lar expressions. Section V, which is the core of the article,
explains in parallel the algorithms and the tool. Section VI
describes the algorithms and coverage criteria used to reduce
and prioritize the test suite. Different examples of use of the
tool are presented in Section VIII. Section VIII reviews the
related work. Finally, we draw our conclusions and future
lines of work.

II. REGULAR EXPRESSIONS
Regular expressions are a very powerful mechanism to de-
scribe sequences of words accepted by a regular language.
Brookshear [4] gives a recursive definition of a regular ex-
pression for an alphabet ∑:

1) ∅ is a regular expression.
2) Each member in ∑ is a regular expression.
3) If p and q are regular expressions, then (p|q) is also a

regular expression, where | is the union of p and q.
4) If p and q are regular expressions, then the concatena-

tion of p and q (pq) is also a regular expression.
5) If p is a regular expression, p* (Kleene closure) is also

a regular expression.
In general, regular expressions are used to check whether a

given string matches the enclosed structure. For example, the
word abbabbabb belongs to the language described by the
regular expression abb(abb)*, since this one encloses all se-
quences of at least one abb sequence. Although its basic nota-
tion is the contained in the Brookshear’s definition (mainly
union, concatenation and Kleene closure), software environ-
ments have extended the possibilities with new operators to
exclude, include, define sets of symbols, define maximum
lengths, etc. For example, the + operator is commonly used to
describe sequences with one or more elements: (abb)+ is so
the same that abb(abb)*. In the same way, it is usual to accept
that (abb){1,5} describes all sequences of one to five occur-
rences of abb.

The most common application of regular expressions is the
detection of matching patterns: in fact, most programming
languages have regular expression libraries to check text pat-
terns, as well as word processors also have engines for search-
ing texts using regular expressions notation.

An opposite approach could try to generate all the words
accepted by means of the expansion of the regular expression.
Consider for example the regular expression a(a|b)+a. Instead
of checking whether abba or any other word belongs to its
accepted language, we could play to generate the infinite
number of words it accepts, such as: aaa, aba, aaaa, aaba,
abaa, abba, etc.

III. DESCRIPTION OF A PROBLEM
Since test cases have a sequence of calls to the SUT's opera-

tions, regular expressions are an effective mechanism to de-
scribe such sequences. Consider we must test the behavior of
the banking Account class shown in Fig. 2.

Fig. 2. A banking Account class

Likely, test cases will start by the creation of a new instance
followed by an indeterminate number of calls to deposit, with-
draw, transfer and getBalance. The structure of all these test
cases will be very similar and, thus, the set of call sequences
in test cases could be described by a regular expression like
this:
new Account·[deposit|withdraw|transfer|getBalance]*

The expansion of that regular expression could generate a
good number of sequences, such as:

• new Account()·deposit(double)
• new Account()·withdraw(double)
• new Account()·deposit(double)·withdraw(double)

• ...
These sequences are not yet test cases, since they still lack

of the test values that must be passed to the parameters (i.e.,
for the amount parameters in deposit, withdraw and transfer,
for targetAccount and for concept).

Having a sequence coming from a regular expression and a
set of parameter values, actual test cases could be generated by
applying a combinatorial algorithm to the sequence. For the
test template new Account()·deposit(double) and the val-
ues {50, 100}, we can get two test cases with no oracle:

• new Account()·deposit(50)
• new Account()·deposit(100)

Let us assume the Account methods can throw three differ-

ent types of exceptions:
• NegativeAmountException, if any of the amount pa-

rameters is <=0.
• InsufficientBalanceException, if the account’s bal-

ance is not enough for the amount to be withdrawn or
transferred.

• NullTargetAccountException, if the targetAccount
parameter of transfer is not set.

The first two test cases of Fig. 1 (that correspond to "nor-

mal" scenarios) could proceed from a generic test case tem-
plate for the situations where no exceptions are expected. The
top side in Fig. 3 is a possible generic test template for this.

The third test case, which expected an InsufficientBal-
anceException, cannot come from the same template, since its
structure is significantly different. So, we would need addi-
tional test case templates such as that in the bottom row of Fig.
3. When a test case is to be generated, the test case generation
engine will select one or another template depending on the
corresponding test data.

190190190

@Test
public void testNormal_XXX() {
 Account account=new Account();
 try {
 account.deposit(AMOUNT_DEPOSIT);
 account.withdraw(AMOUNT_WITHDRAW);
 account.transfer(new Account(), "Telephone",
 AMOUNT_TRANSFER);
 assertTrue(account.getBalance()==
 AMOUNT_DEPOSIT-AMOUNT_WITHDRAW-AMOUNT_TRANSFER);
 }
 catch (Exception e) {
 fail("No exception expected");
 }
}
@Test
public void testInsufficientBalance_XXX() {
 Account account=new Account();
 try {
 account.deposit(AMOUNT_DEPOSIT);
 account.withdraw(AMOUNT_WITHDRAW);
 account.transfer(new Account(), "Telephone",
 AMOUNT_TRANSFER);
 fail("InsufficientBalance expected");
 }
 catch (InsufficientBalance e) {}
 catch (Exception e) {
 fail("InsufficientBalance expected");
 }
}

Fig. 3. Two possible test case templates for normal (top) and insufficient
balance (bottom) scenarios

The template selection will be resolved by the combinatori-
al algorithm at test case generation time with when clauses. A
when clause groups a set of test data values and points to a test
case template. When clauses are associated to regular expres-
sions, nor to sequences. For example, a regular expression that
calls to withdraw or transfer before depositing will have asso-
ciated a test case template that always will expect an excep-
tion.

Fig. 4 describes the whole process. In summary:
• In a first step, the tester describes the scenarios under test

by means of regular expressions. Symbols in the regular
expression correspond to operations, and each operation
knows the test data to be used in its parameters. Moreo-
ver, the regular expression holds one or more when
clauses described as a function of the parameters' values.

• Then, an expansion engine expands regular expressions
and produces a set of sequences. Each generic test tem-
plate represents a sequence of messages, but with neither
test data nor oracle to determine the expected behavior.

• Finally, a combinatorial algorithm iterates taking each
sequence and combining it with the test data. The algo-
rithm decides the test case template to be used for the test
data set it receives using the when clauses.

IV. ALGORITHMS TO EXPAND REGULAR EXPRESSIONS

We will deal with regular expressions having the following
operators: union (p|q), concatenation (pq), Kleene closure
(p*), positive closure (p+) and option (p?: zero or one occur-
rences of p).

The expansion of a regular expression is a function that
takes two parameters: the self regular expression and the max-
imum length desired.

expand : RegularExpressions x Natural {String}

Depending on the regular expression type, the expansion
algorithm is different.

Fig. 4. General view of the test case generation process

A. Expansion of simple symbols
The expansion of a simple alphabet's symbol produces the

symbol itself:
expand(symbol, length) = {symbol}

B. Expansion of the concatenation
The expansion of the concatenation of n regular expressions

is the concatenation of the expansions of all of them. In the
next example we use a dot (·) to represent concatenation:

expand(p·q·r, length) =
 expand(p, length) · expand(q, length) · expand(r, length)

Since expand produces a set of strings, the concatenation
operator in the above expression needs to be defined. Being S,
T two sets of strings:

S·∅ = ∅·S = S
S·T = {si·tj, ∀ si ∈ S, tj ∈ T}
Moreover, the expressions whose length is greater than

length are removed from the result.

C. Expansion of the union
The expansion of n regular expressions related by the union

operator is the union of the expansion of the n regular expres-
sions. For example:

expand(p | q | r, length) = expand(p, length) |
 expand(q, length) | expand(r, length)
Those expressions whose length is greater than length are

removed from the result.

D. Expansion of positive and Kleene's closure
The only difference between both closures is the inclusion

of the empty regular expression (let be λ) in the Kleene clo-
sure. This is, being p a regular expression:

p*={λ} | p+

191191191

Fig. 5 is a pseudocode with the expansion function of the
positive closure. In practice, it calculates length times the
Cartesian product of the expansion of re with itself.

1) The first argument is a regular expression re with the
positive closure operator (+) applied.

2) Initially, it builds seqs, a set of string sequences with the
expansion of re.

3) The result is flatten. I.e., all the sequences contained in
the possibly obtained sets are extracted and put into aux1.

4) The algorithm iterates in three nested loops, adding to re-
sult the concatenation of the strings that are progressively
built.

5) After the function, expressions longer than length will be
discarded.

function expand(re+, length) : Set(String)
 // seqs, result, aux1 and aux2 are sets of strings
 seqs = expand(re, length)
 for i=1 to |seqs|
 result = result ∪ seqsi
 next

 aux1 = flat(result)

 for i=1 to length
 aux2 = ∅
 for j=1 to |aux1|
 for k=1 to |seqs|
 aux2 = aux2 ∪ { aux1j·seqk} // a·b=ab
 next
 result = result ∪ { flat(aux2) }
 aux1 = aux2
 next
 next

 return result
}

Fig. 5. Expansion function for the positive closure

V. IMPLEMENTATION
We have developed a web tool1 (available at

http://alarcosj.esi.uclm.es/CombTestWeb/) implementing the
test case generation process described in Section II.

The test engineer uploads a single XML file structured in
several sections: Calls, Regular expressions and Test case
templates. When the tool has processed this file, the tester
selects a combinatorial algorithm to generate the test cases.

A. Description of the XML file
1) Calls.
In this section, the test engineer describes all the messages’

calls that can be included in any test case. A message descrip-
tion consists of a signature, an alias (which is used to write
regular expressions more comfortably) and a list of parameters
with their values. Additionally, the tester may add text that
will be included before or after the message call.

Code in Fig. 6 shows the complete description of the Ac-
count’s constructor and its deposit method. Regarding the
constructor:

1 You can log into the tool using reviewer@reviewer.com as login and re-

viewer as password.

• The message attribute contains the text that will be
written in the test case. Although the code of the exam-
ple is Java, it could be also C#, Cobol, the structure of a
byte array, a SOAP message, or even natural language.
The alias assigns this message the “A” letter: when the
tester writes later the regular expression, s/he will ref-
erence this constructor using “A”.

• The before tag includes code that will be inserted be-
fore any call made to this message in the test case.

Fig. 6. Description of calls

So, test cases containing calls to the constructor will have
this form:
 @Test
 ppubliic void test1() {
 double obtained=0;
 Account account= new Account();

 ...
The deposit message in Fig. 6 includes also the test data for

its amount parameter. Furthermore, it has an after tag. Inside
this after, the tester has written the expression
obtained+=<parameter name=”amount”/>;. So, each test
case calling deposit will include code that will sum the current
value of the amount parameter to the obtained variable. Sup-
posing 50 is the value of amount for a test case, the code pro-
duced will add the two last lines (***):
 @Test
 public void test1() {
 double obtained=0;
 Account account= new Account();
 account.deposit(50); ***
 obtained+=50; ***

 ...
2) Regular expressions
The test engineer writes a regular expression for each se-

quence of messages s/he desires to generate. A regular expres-
sion description holds: (1) the regular expression itself, written
in terms of the messages’ aliases, (2) the maximum length of
the generated sequences, (3) one or more when rules that de-
note which test case template must be used depending on the
parameter values, and (4) a whenElse tag, which only contains
the name of the test case template to be used when none of the
previous when tags are applicable. The whenElse tag has been
specially appreciated by the companies that have so far used
the tool.

192192192

Fig. 7. A collapsed view of a regularExpression tag

Fig. 7 is an example of a regular expression (A(B|C|D)*E)
corresponding to sequences containing up to 5 messages
(maxLength=5) starting by a call to the constructor (alias A),
ending with a call to getBalance (alias E), and with intermedi-
ate, arbitrarily sorted calls to deposit, withdraw and transfer
(respectively B, C and D, according to Fig. 6).

Let us suppose test cases proceeding from this regular ex-
pression must: (1) throw a NegativeAmountException when
any of the amount parameters passed to any operation is -100
or zero, (2) check an “All positive” oracle if all parameters are
positive, (3) throw a NullPointerException when the targetAc-
count is null in transfer calls, and (4) check a “General case”
oracle otherwise.

Figures 10 and 11 show two of the when clauses:
(1) The first one (Fig. 8) is a when of type OR for the Nega-

tiveAmountException situation. I.e., we are saying: “when the
value of any of the amount parameters of deposit, withdraw or
transfer is -100 or 0, use the test case template called Nega-
tiveAmountException expected”.

(2) The second clause (Fig. 9) is a when of AND type. It
says: Wwhen the amount parameter of deposit, withdraw and
transfer are positive, use the All positive test case template”.

The whenElse clause only holds a pointer to the name of
test case template that must be used when the test case param-
eter values do not fit with any of the other when clauses. Test
cases coming from the whenElse tag correspond to situations
that the tester has not foreseen and, therefore, the pointed test
template should emit a fault verdict to report the tester of these
cases.
<regularExpression expression="A(B|C|D)*E" maxLength="5">
 <when type="OR">
 <parameter operationName="account.deposit(amount);"
 operationAlias="B" parameterName="amount">
 <item value="-100"/>
 <item value="0"/>
 </parameter>
 <parameter operationName="account.withdraw(amount);"
 operationAlias="C" parameterName="amount">
 <item value="-100"/>
 <item value="0"/>
 </parameter>
 <parameter
 operationName="account.transfer(targetAccount,
 concept,amount);"
 operationAlias="D" parameterName="amount">
 <item value="-100"/>
 <item value="0"/>
 </parameter>
 <template name="NegativeAmountException expected"/>
 </when>
 ...

Fig. 8. A when of the OR type

<when type="AND">
 <parameter operationName="account.deposit(amount);"
 operationAlias="B" parameterName="amount">

 <item value="50"/>
 <item value="1000"/>
 </parameter>
 <parameter operationName="account.withdraw(amount);"
 operationAlias="C" parameterName="amount">
 <item value="50"/>
 </parameter>
 <parameter operationName="account.transfer(targetAccount, concept,
 amount);" operationAlias="D" parameterName="amount">
 <item value="50"/>
 </parameter>
 <template name="All positive"/>
</when>
 ...

Fig. 9. An example of a when of the AND type

3) Test case templates
A test case template has an XML attribute with its name and

likely a piece of plain text with a <sequence> tag (Fig. 10).
<template name="NegativeAmountException expected">
 @Test
 public void testTCNUMBER() {
 try {
 <sequence separator="\n"/>
 fail("NegativeAmountException expected");
 }
 catch (NegativeAmountException e) {}
 catch (Exception e) {
 fail("NegativeAmountException expected");
 }
 }
</template>

Fig. 10. An example of a test case template

The test case template in Fig. 10 (whose name is Nega-
tiveAmountException expected) is the one pointed by the when
clause in Fig. 8. When a test case is generated with this tem-
plate, all the code between <template> and </template> is
directly copied into the test case code, although the sequence
tag is substituted by the sequence of calls produced by this
regular expression. Note the presence of the TCNUMBER
token in the head of the test case code: the generation engine
will substitute it by the number corresponding to the test case
order. Although the text in the test case template used in this
example is Java code, it could be any kind of programming
language or other structure.

For example, one of the possible sequences proceeding
from the A(B|C|D)*E regular expression is ABCE, which cor-
responds to Account·deposit·withdraw·getBalance. Supposing
amount takes the values -100 and 50 for deposit and withdraw,
the NegativeAmountException expected test case template
must be used: for this combination, the tool copies the test
template code and substitutes the sequence tag by the actual
calls, taking into account the possible presence of before and
after tags into the call sections (Fig. 11).
@Test
// Generated from A(B|C|D)*E, maxLength=5
ppublicc void test1() {
 try {
 double obtained=0; // Proceeds from A's before
 Account account= new Account(); // From A
 account.deposit(-100); // From B
 obtained+=-100; // From B's after
 account.withdraw(50); // From C
 obtained-=50; // From C's after
 double balance=account.getBalance(); // From E
 fail("NegativeAmountException expected");
 }

193193193

 ccatch (NegativeAmountException e) {}
 catch (Exception e) {
 fail("NegativeAmountException expected");
 }
}

Fig. 11. A test case

B. Obtaining combinatorial tables
When the test engineer uploads the XML file, the server ex-

pands the regular expressions and produces sequences. From
each sequence, a combinatorial table (described in XML) is
built, which will be processed by the combinatorial algorithm.

The code in Fig. 12 corresponds to the combinatorial table
coming from the ABCE sequence (i.e., new Account, deposit,
withdraw and getBalance). A combinatorial table holds:

(1) The definition of the parameters corresponding to this
sequence. In this example, since B and C are the only opera-
tions in the sequence with parameters, and both of them have
just one, two parameters are declared within the parameters
section: A, which is the deposit's amount, and B, which is the
withdraw's amount. Each parameter tag includes the parame-
ter name (A), its actual name (amount), the operation name
(deposit) and the operation alias (B): <parameter name="A"

actualName="amount" operationName="account.deposit(amount);" ...>,
(2) The test data required by each parameter, inside every

parameter tag. In this case: {-100, 0, 50, 1000} for the amount
parameter in both deposit and withdraw.

(3) The when clauses, but now particularized for this se-
quence.

(4) The test templates in the regular expressions file, but
now particularized for this sequence: the <sequence/> tag is
replaced by the code that annotates each operation in the se-
quence. This code includes the text within the before tag, the
value of the message attribute and the text within the after tag.
Note also that the parameter values in the code templates are
referenced by special tokens #[A], #[B], etc. The combinatori-
al algorithm will substitute these tokens by the values of the
corresponding parameter declared in the parameters section:
for example, since the #[A] token corresponds to the declara-
tion <parameter name="A" actualName="amount" operation-

Name="account.deposit(amount);" ...>, which has four item tags
associated with the values {-100, 0, 50, 1000}, the combinato-
rial algorithm will replace #[A] by -100, 0, 50 or 100.

<table>
 <parameters>
 <parameter name="A" actualName="amount"
 operationName="account.deposit(amount);" operationAlias="B">
 <item value="-100"/>
 <item value="0"/>
 <item value="50"/>
 <item value="1000"/>
 </parameter>
 <parameter name="B" actualName="amount"
 operationName="account.withdraw(amount);"
 operationAlias="C">
 <item value="-100"/>
 <item value="0"/>
 <item value="50"/>
 </parameter>
 </parameters>
 <when type="OR">
 <parameter name="A">
 <item value="-100"/>
 <item value="0"/>
 </parameter>
 <template name="NegativeAmountException expected"/>

 </when>
 <when type="OR">
 <parameter name="B">
 <item value="-100"/>
 <item value="0"/>
 </parameter>
 <template name="NegativeAmountException expected"/>
 </when>
 <whenElse>
 <template name="General case"/>
 </whenElse>
 <template name="NegativeAmountException expected">
@Test
public void testTCNUMBER() {
 try {
 double obtained=0;
 Account account= new Account();

 account.deposit(#[A]);
 obtained+=#[A];

 account.withdraw(#[B]);
 obtained-=#[B];

 double balance=account.getBalance();

 fail("NegativeAmountException expected");
 }
 catch (NegativeAmountException e) {}
 catch (Exception e) {
 fail("NegativeAmountException expected");
 }
}
 </template>
 <template name="NullTargetAccountException expected">
 …
</table>

Fig. 12. An excerpt of a combinatorial table for
new·deposit·withdraw·getBalance

C. Test case generation
When the combinatorial tables have been obtained, the test-

er selects one of the several combinatorial algorithms the tool
offers (All combinations, several implementations of pairwise,
and Each choice).

These combinatorial algorithms take a combinatorial table
(such as that in Fig. 12) as input and produce a directly usable
test case file. Sometimes, the file may need some format or
indentation change to make it more legible. But, if the test
templates are adequately written, they are completely legible
and executable.

If a test case fits with more than one test template, the tool
picks up the first template applicable, but adds a warning
comment to the code produced. This is the case of the test case
shown in Fig. 13, that matches in the first time with the Nega-
tiveAmountException, but that actually produces a NullTar-
getAccountException.

VI. REDUCING AND PRIORITIZING THE TEST SUITE
The expansion of the regular expressions and the subse-

quent combinatorial explosion may lead to a huge, unmanage-
able number of test cases, many of which will be moreover
redundant with respect to others.

A test case, t, is redundant with respect to a set of test cases,
T, if the set of test-case requirements covered by t is a subset
of the set of test-case requirements covered by T-{t} [5]. In
general, these test-case requirements are coverage criteria. For
the well known Myer's Triangle-type determination problem
[6], for example, two test cases exercising an equilateral trian-
gle will be likely redundant for any coverage criterion.

194194194

Fig. 13. The obtained test suite

In this context, test suite reduction identifies "a reduced test
suite that provides the same coverage of the software as the
original test suite", whereas test suite prioritization identifies
"an ordering of the test suite according to some criteria" [5].

The method and the tool presented in this article work in
two steps (expansion of the regular expression and application
of a combinatorial algorithm), and in both steps the tester can
limit and prioritize the test cases generated:
• In the first step (expansion of regular expressions), the

tester may select those sequences running "more deeply"
the regular expression using coverage criteria for regular
expressions (see below epigraph A).

• In the second step (combinatorial algorithms), the tester
selects the most appropriate combination technique. If
s/he uses all combinations, s/he will probably obtain re-
dundant test cases. The tool provides other algorithms:
each choice [7], AETG [8] (a greedy pairwise algorithm
with lineal cost), and one exponential-cost pairwise ver-
sion that, however, guarantees the minimum number of
visits to pairs.

A. Coverage criteria for regular expressions
Mariani et al. [9] have proposed specific coverage criteria

for regular expressions that take into account their constitutive
elements:

• Alphabet coverage: a test suite TS satisfies this criterion
if for each symbol a in the alphabet, there is at least a test
case tc in TS that contains a.

• Operator coverage: a test suite TS satisfies this criterion
if: (1) for each union operator (|) occurring in the regular
expression, TS includes at least one test case TCa that
contains the first operand and one test case TCb that con-
tains the second operand; (2) for each Kleene operator
(*), TS includes at least three test cases: TCa that corre-
sponds to no iterations of the operand, TCb that corre-
sponds to exactly one iteration and TCc that corresponds
to more than one iteration of the operand.

• Expression coverage: a test suite TS satisfies this criteri-
on if for each choice of operators that results in a sen-
tence S up to consecutive iterations of the Kleene opera-
tor, it contains at least one test case TC corresponding to
S.

Mariani et al. do not mention the concatenation operator.
An additional coverage criterion for it is: a test suite TS satis-
fies the concatenation operator if it contains at least a test case
that includes the sequence of the concatenated operands.

Besides the Kleene operator, the union and the concatena-
tion, our tool includes two additional, commonly used opera-
tors: the positive closure (+) and the option (?). So, the Opera-
tor coverage can be extended for these ones:

• For the positive closure, a test suite TS must include at
least a test case that corresponds to one iteration and an-
other test case that corresponds to more than one itera-
tion.

• For the option operator, it is required that the test suite
includes a test case corresponding to non-using the oper-
and and another test case that uses the operand.

Considering the equivalence between regular expressions
and finite automate, the idea of these coverage criteria is that
test cases must reach all the final states, using all symbols, but
avoiding redundant transition sequences.

1) Prioritization and reduction of the test suite
Consider the regular expression A(B|CD?)+. According to

the afore mentioned coverage criteria:
• With respect to the alphabet, we need test cases contain-

ing A, B, C and D.
• W.r.t. (CD?), we need: CD and C.
• W.r.t. (B|CD?), we need: B, CD and C.
• W.r.t. (B|CD?)+, we need: B, C, CD, BB, BCD, BC,

CDB, CDCD, CDC, CB, CCD and CC
If we expand the regular expression with a maximum length

of, for example, 7, our expansion engine produces 287 se-
quences. If we later combine each sequence with test data, the
number of test cases will be huge.

So, we provide a method to prioritize the sequence suite
and, if the tester considers its convenience, to reduce its size.
This method sorts the sequence suite according to three crite-
ria:

1) The first criterion calculates the coverage of a node ac-
cording to its type, in a similar way to how a regular expres-
sion is expanded (section IV), but now selecting the minimal
set of acceptable sequences that fulfill the coverage criterion
corresponding to the node type, independently of the maxi-
mum length given to the regular expression expansion. For
example, for (A|B)+ (that requires 1 and 2 iterations) we
would select A, B, AA, AB, BA, BB, but no AABB.

For the regular expression A(B|CD?)+, 12 sequences are
required to fulfill the afore mentioned coverage criteria:

AB, ACD, AC, ABC, ABB, ABCD, ACDB, ACDCD, ACDC,
ACB, ACCD, ACC

In order to prioritize later this set of sequences, we assign
them a weight of 1.

2) With the second criterion we extract a subset of the se-
quences with weight=1. The selected sequences are those
whose starting symbols completely contain any other of the
previously selected sequences. We assign them weight=2. For
example, since AB is the beginning of ABC, ABC is weighted
to 2. In a next iteration it is seen that ABC is the beginning of
ABCD: thus, ABCD is weighted to 2 and the ABC weight is
returned to 1.

195195195

In this way, we have the following two sets for the running
example after this step:

Weight2 = {ABB, ABCD, ACDB, ACDCD, ACB, ACCD}
Weight1 = {AB, ACD, AC, ABC, ACDC, ACC}
3) The last criterion sorts the sequences in every set by its

lengths. This criterion is inspired in the work of Fraser and
Gargantini [10], who have analyzed the relationship between
the test case length with respect to its fault-detection ability,
coverage (according to several criteria) and execution cost.
From their experimentation, they conclude that it is preferable
to have fewer longer test cases instead of many short test cas-
es, even thought long test cases are less understandable than
short ones.

Our tool highlights the required sequences to fulfill the cov-
erage of the regular expression according to these three criteria
(Fig. 14):

1) Sequences with weight=2, ordered from greater to mi-
nor length. The tool highlights them in red.

2) Sequences with weight=1, ordered from greater to mi-
nor length. They are highlighted in orange.

3) Sequences with weight=0, also ordered from greater
to minor length. These sequences are not highlighted.

Note the presence of three buttons on the top: the button la-
beled with "1" generates the whole test file (i.e., containing all
the sequences); button "2" generates the test file for sequences
with weight>0. The third one (button "3") only considers
sequences with weight=2. There are additional buttons to
generate test cases for individual sequences (buttons with "4").

Fig. 14. The tool highlights the sequences required to completely cover the

regular expression

VII. USES OF CTWEB
This section presents two examples of application of the

tool.

A. Testing a simple login functionality
CTWeb offers a single login functionality in a single html

form with two text boxes for writing the user’s email and
password, and a login button. So, there are three messages for
testing this use case.

Two of these messages receive parameters for writing the
login and the password. For this example, we have created a

valid user (pepe@pepe.com, with password “pepe”). We will
use an inexistent user too: john.updike@writers.org.

Since the tool is offered through the web, test cases will be
generated for the Selenium testing framework
(http://www.seleniumhq.org), in its Java variant. A Selenium
test case holds at least one reference to a WebDriver, which is
an object representing a wrapper to manage the navigator
screen. There are different WebDriver implementations for
several common navigators (Firefox, Chrome, etc.).

Thus, a reference to the WebDriver is created and instanced
to the required subtype. The WebDriver offers a findElement
method that returns a WebElement, an interface for accessing
the different widgets in the web page. findElement may recov-
er widgets using several criteria: id, name, xpath, CSS class,
tag name, etc. In turn, WebElement has several methods for
writing (sendKeys), clicking (click), etc.

The three main widgets in the login form appear in Fig. 15:
the two text boxes can be collected by their name attribute; the
button, through an xpath string.

Fig. 15. Important elements in the login form

Therefore, the structure of the test cases will consist in a
simple sequence of calls to A, B, C. Depending on the parame-
ters’ combination, test cases will map either to the Bad login
or the Right login templates. The description of the messages
and the regular expression appear in Fig. 16: note the presence
of a when of AND type, that drives to the Right login test case
template only when the LOGIN and PASSWORD parameters
respectively are pepe@pepe.com and pepe. Otherwise, the Bad
login template is applied thanks to the whenElse clause.

The two test case templates appear in the bottom side of the
same figure: both of them instantiate the driver, point it to the
required URL, find the three interesting widgets, insert the
operations sequence and, finally, check the obtained result: if
the login and password combination is incorrect, the web page
must show the “Bad combination of user name and password”
message; otherwise, it will include a link in the page for log-
ging out.

Fig. 17 shows two of the four test cases produced: the first
one (test3) corresponds to an unauthorized access; the second
(test4) has applied the Right login template since it matches
with the when AND described in the XML file.

B. Industrial experience
We have compared, in several companies, the time expend-

ed to the construction of test cases both by hand and by the
tool. In general, CTWeb requires about 10% of the time de-
voted, although we have got savings greater than 95%.

As an example, a software factory required three business
days to write 36 manual test cases for 35 requirements (this is,
only one requirement was tested by more than one test case).
These test cases described the manual steps that testers should

196196196

execute on the web application of an insurance company. The
number of different parameters was close to 40.

Fig. 16. Calls, regular expressions and test templates for the Login use case

The complete process of designing the requirements with
regular expressions required less than 40 minutes. Then,
CTWeb generated 9219 "oracled" test cases with All combina-
tions, 19 with pairwise and 6 with Each choice in less than 2
seconds.
@Test
ppublic void test3() {
 driver.get(baseUrl + "/CombTestWeb/");
 inputBoxEmail = driver.findElement(By.name("email"));
 inputBoxPwd = driver.findElement(By.name("pwd"));
 buttonLogin = driver.findElement(By.xpath(
 "//form[1]//table[1]//tbody[1]//tr[3]//td[1]//div[1]//input[1]"));
 inputBoxEmail.sendKeys("pepe@pepe.com");
 inputBoxPwd.sendKeys("johnPassword");
 buttonLogin.click();

 String texto = driver.getPageSource();
 Assert.assertTrue(texto
 .indexOf("Bad combination of user name and password") != -1);
}

@Test
ppublic vvoid test4() {
 ... (SAME THAT IN test3)
 try {Thread.sleep(1000);} catch(Exception e) { fail(); }
 String texto = driver.getPageSource();
 Assert.assertTrue(texto.indexOf("Logout") != -1);
}

Fig. 17. Two of the four generated test cases

VIII. RELATED WORK
Automated test case generation is a prolific research line in

software engineering: as an example, a simple search in Sco-
pus for publications with the terms “Test case generation” in
the title throws 233 conference papers and 78 articles, just
from 2011 to 2016 (included). In [11], several authors review
test case generation techniques and classify them into five
categories: (1) symbolic execution and program structural
coverage; (2) model-based test (MBT) case generation; (3)
combinatorial testing; (4) adaptive random testing (ART); and
(5) search-based software testing (SBST).

Our method probably fits between MBT and Combinatorial
testing. In [11], Grieskamp reviews MBT generation tech-
niques and emphasizes research challenges still remain open:
dealing with non-determinism in models; the gap between the
abstraction level of models and code; repeatability of test
cases, overall in distributed and cloud environments; difficul-
ties for tracing from requirements to models; and lack of use
of Model-Driven Engineering in industry. In this sense, our
method and tool decrease the gap between models and code
(test templates can be written in any format: a programming
language, XML, JSON, natural language...), what completely
decouples the models (described as XML files) from the final
execution platform. Moreover, several users in different com-
panies consider the self regular expression as the representa-
tion of all the different scenarios in the requirement, what
makes easy the tracing that Grieskamp highlights.

In the same article, Cohen is in charge of the combinatorial
testing methods revision. According to her, some fruitful fu-
ture directions of combinatorial testing include “automated
model extraction, adapting to model evolution, and developing
techniques that re-use or share information between different
test runs”. The simplicity of our models helps in preserving
the model evolution (changes in the system are translated into
changes in the model). Moreover, since the same file may
contain more than one regular expression, it is possible to
describe scenarios with a subset of the test data of another one:
for example, a regular expression A may be preceded by other
regular expression B. B may hold specific test data represent-
ing one or more scenarios that are prerequisite for executing A.
This is also a contribution in the sense of reusing and sharing
information between different test runs.

A. The oracle problem
A very recent survey of Barr et al. [12] reviews almost forty

years of research about the oracle problem. According to these
authors, the oracle is a “current open problem representing a
significant bottleneck that inhibits greater test automation and
uptake of automated testing methods and tools more widely”.
In fact, as well as the generation of test cases may be a prob-
lem relatively solved, the addition of oracles to each test case
remains practically unsolved. Bertolino also emphasized the
automation of the oracle generation as one of the main chal-
lenges of software testing research [13]. For her, an “ideal
oracle” should provide “the expected outputs for each given
test case”. Such ideal oracle would be an “engine/heuristic that
can emit a pass/fail verdict over the observed test outputs”.
Baresi and Young [14] also mentioned the concept of “ideal
oracle”, which “would satisfy desirable properties of program

197197197

specifications such as being complete but avoiding over-
specification, while also being efficiently checkable”. Formal
methods or complete system models are currently the most
suitable artifact for automatically developing oracles, but they
need the “over-specification” mentioned by Baresi and Young.
Pérez et al. [15], for example, derive oracled test cases from
UML sequence models in Software Product Lines. Their ap-
proach requires, in fact, a quite precise specification of the test
scenarios with their pre and postconditions, messages, parame-
ters, etc. The proposal is economically viable because it is
highly reusable in the SPL context within it is framed, but it is
too expensive for the development of isolated developments.

But, as Barr et al. pointed out, “for many systems and most
testing as currently practiced in industry, the tester does not
have the luxury of formal specifications or assertions, or au-
tomated partial test oracles. […] The tester faces the daunting
task of manually checking the system’s behavior for all test
cases”.

For generating the oracle, our approach applies the same
method a tester employs: after having inspected the initial
state of the SUT, s/he observes the calls in the test case,
checks the parameter values and decides about the correspond-
ing oracle. This is exactly what our method does.

B. Test case generation in compilers testing
The expansion of regular expressions may remind some al-

gorithms used for testing compiler parsers. The most relevant
is that of Purdom [16], which iterates over the production rules
of the grammar for using each production rule at least once,
but preserving the length of the language strings produced in a
minimum. Several authors have modified the original algo-
rithm ([17][18]), although the idea behind these proposals
remains the same. The difference with our approach is quite
significant, because we deal with regular expressions (i.e.,
with finite automate), whilst compilers deal with stack autom-
ata.

C. Protocol testing
Finite state machines have been also extensively used in

protocol testing. In many papers (e.g., [19]), Bochmann and
others have described different algorithms for deriving test
sequences for finite state machines. But to our best
knowledge, expanding regular expressions to get sequences of
events or messages, as we do in this article, has been never
used in software testing.

IX. CONCLUSIONS AND FUTURE WORK
This article has presented a method and a tool (with around

600 users registered) to generate test cases from systems' spec-
ifications using regular expressions.

The implemented tool accepts XML files containing the
complete description of the set of interesting scenarios by
means of annotated regular expressions, that are later expand-
ed by a specific engine. Each regular expression produces a
number of test sequences, which are combined with test data
to get executable test cases. Oracles are also described in the
XML file using generic templates and a simple set of tags.
Combinatorial algorithms are in charge of combining test
templates, test data and generic oracles to produce test cases
with the desired structure and the adequate oracle.

We are currently modifying CTWeb to describe the scenar-
ios with annotated finite automata instead of with regular
expressions (remind they are equivalent). This change has
been suggested by several companies that have used the tool:
actually, a model is more visual and understandable than an
XML file.

X. ACKNOWLEDGMENTS
This work has been developed within the GINSENG and

the SEQUOIA projects (respectively TIN2015-70259-C2-1-R
and TIN2015-63502-C3-1-R), Fondo Europeo de Desarrollo
Regional and Ministerio de Economía y Competitividad.

REFERENCES
[1] Capgemini, HP, and Sogeti, “World Quality Report 2015-2016,” Sogeti.

[Online]. Available: http://www.sogeti.com/explore/reports/world-quality-
report-2015-2016/. [Accessed: 02-Nov-2015].

[2] IEEE Computer Society, “IEEE Standard 829 for Software and System
Test Documentation,” 2008.

[3] K. Beck and E. Gamma, “Test-infected: programmers love writing
tests,” in More Java Gems, Cambridge University Press, 2000.

[4] J. Glenn Brookshear, Theory of Computation: Formal Languages, Au-
tomata, and Complexity. Benjamin-Cummings Publishing Co., Inc., 1989.

[5] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization
for modified condition/decision coverage,” IEEE Transactions on Software
Engineering, vol. 29, no. 3, pp. 195–209, Mar. 2003.

[6] G. J. Myers, The Art of Software Testing, Second Edition, 2nd ed.
Wiley, 2004.

[7] P. Ammann and J. Offutt, “Using formal methods to derive test frames
in category-partition testing,” in Proceedings of the Ninth Annual Conference
on Computer Assurance, 1994. COMPASS ’94 Safety, Reliability, Fault
Tolerance, Concurrency and Real Time, Security, 1994, pp. 69–79.

[8] D. Cohen, I. C. Society, S. R. Dalal, M. L. Fredman, and G. C. Patton,
“The AETG System: An Approach to Testing Based on Combinatorial De-
sign,” IEEE Transactions on Software Engineering, vol. 23, pp. 437–444,
1997.

[9] L. Mariani, M. Pezzè, and D. Willmor, “Generation of Integration Tests
for Self-Testing Components,” in Applying Formal Methods: Testing, Per-
formance, and M/E-Commerce, M. Núñez, Z. Maamar, F. L. Pelayo, K.
Pousttchi, and F. Rubio, Eds. Springer Berlin Heidelberg, 2004, pp. 337–350.

[10] G. Fraser and A. Gargantini, “Experiments on the test case length in
specification based test case generation,” in ICSE Workshop on Automation of
Software Test, 2009. AST ’09, 2009, pp. 18–26.

[11] S. Anand et al., “An orchestrated survey of methodologies for auto-
mated software test case generation,” Journal of Systems and Software, vol.
86, no. 8, pp. 1978–2001, Aug. 2013.

[12] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
Oracle Problem in Software Testing: A Survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, May 2015.

[13] A. Bertolino, “Software Testing Research: Achievements, Challeng-
es, Dreams,” in Future of Software Engineering, 2007. FOSE ’07, 2007, pp.
85–103.

[14] Luciano Baresi and Michal Young, “Test oracles, Technical Report
CIS-TR-01-02.” University of Oregon, Dept. of Computer and Information
Science, 2001.

[15] B. Pérez Lamancha, M. Polo, D. Caivano, M. Piattini, and G. Visag-
gio, “Automated generation of test oracles using a model-driven approach,”
Information and Software Technology, vol. 55, no. 2, pp. 301–319, Feb. 2013.

[16] P. Purdom, “A sentence generator for testing parsers,” BIT, vol. 12,
no. 3, pp. 366–375, Sep. 1972.

[17] B. A. Malloy, “An interpretation of Purdom’s algorithm for automat-
ic generation of test cases,” in In 1st Annual International Conference on
Computer and Information Science, 2001, pp. 3–5.

[18] F. Bazzichi and I. Spadafora, “An Automatic Generator for Compil-
er Testing,” IEEE Transactions on Software Engineering, vol. SE-8, no. 4, pp.
343–353, Jul. 1982.

[19] S. Fujiwara, G. v Bochmann, F. Khendek, M. Amalou, and A.
Ghedamsi, “Test selection based on finite state models,” IEEE Transactions
on Software Engineering, vol. 17, no. 6, pp. 591–603, Jun. 1991.

198198198

