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Digitally collected data suffers from many data quality issues, such as duplicate, incorrect, or incomplete data. A common
approach for counteracting these issues is to formulate a set of data cleaning rules to identify and repair incorrect, duplicate and

missing data. Data cleaning systems must be able to treat data quality rules holistically, to incorporate heterogeneous constraints

within a single routine, and to automate data curation. We propose an approach to data cleaning based on statistical relational
learning (SRL). We argue that a formalism - Markov logic - is a natural fit for modeling data quality rules. Our approach

allows for the usage of probabilistic joint inference over interleaved data cleaning rules to improve data quality. Furthermore, it

obliterates the need to specify the order of rule execution. We describe how data quality rules expressed as formulas in first-order
logic directly translate into the predictive model in our SRL framework.

1. INTRODUCTION

Having access to high quality data is of great importance in data analysis. However, data in the real world is often
considered dirty: it contains inaccurate, incomplete, inconsistent, duplicated, or stale values. A number of distinct
data quality issues are known in the field of data quality management such as data consistency, currency, accuracy,
deduplication and information completeness [Fan and Geerts 2012]. As previous work has observed, such data quality
issues are detrimental to data analysis [Council 2013],[Fan and Geerts 2012] and cause huge costs to businesses
[Eckerson 2002]. Therefore, improving data quality with respect to business and integrity constraints is a crucial
component of data management. A common approach to increase data quality is to formulate a set of data cleaning
rules that detect semantic errors by utilizing data dependencies [Fan and Geerts 2012], [Arasu et al. 2009], [Dallachiesa
et al. 2013], [Geerts et al. 2013]. However, previous research identified a number of requirements and accompanying
challenges, which are associated with creating such rule sets (c.f., Section 2):

Interleaved rules. First, while each such rule usually addresses one data quality issue individually, the individual
rules as a whole typically interact [Fan and Geerts 2012], [Fan et al. 2014]. For instance, a rule that deletes duplicates
might perform better after missing data has already been imputed, while, on the other hand, a rule that imputes missing
data might perform better if duplicates have already been removed. Therefore, we argue to model data quality rules
such as deduplication and missing value imputation jointly, rather than as separate processes. Second, rules in such a
rule-set may need to be modeled ”soft” and ”hard” in order to balance constraints of different importance [Yakout
et al. 2013], especially within a set of interacting rules.

Automation. Different execution orders of interleaved rules produce different results [Dallachiesa et al. 2013]. Im-
posing the difficult problem of manually specifying the execution order on the user conflicts with the automation
principle of data curation systems [Stonebraker et al. 2013].
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Usability and domain knowledge integration. Various languages and statistical approaches for data curation exist
[Dallachiesa et al. 2013], [Chu et al. 2013], [Geerts et al. 2013]. However, there is a need for expressiveness and
customization of the rules in order to integrate arbitrary constraints into data cleaning without having to specify
complex user-defined functions.

In this paper, we present an approach to data cleaning based on statistical relational learning (SRL) [Getoor and
Taskar 2007] and probabilistic inference (c.f., Section 3). SRL is a branch of machine learning that models joint
distributions over relational data. Generally, data quality rules represent relationships between attributes in the database
schema. These rules are mainly based on integrity constraints such as functional dependencies [Abiteboul et al. 1995],
[Fan and Geerts 2012] on top of a database schema. We show how to translate such functional dependencies, expressed
as first-order logic formulas, into probabilistic-logical languages, which allows us to reason over inconsistencies,
duplicates or missing values in a probabilistic way (c.f., Section 3.1). During automatic data cleaning, the optimal
order of rules execution is hardly achievable [Dallachiesa et al. 2013]. Therefore, we propose to use joint inference for
the simultaneous rules execution.

The contributions of this paper are the following:

We propose how to model data cleaning rules based on integrity constraints within the probabilistic framework of
Markov logic (Section 3.1).
We describe how data repair leverages joint inference on probabilistic graphical models and allows us to treat data
curation rules holistically, which obliterates the need to specify execution order (Section 3.2).
We present an extensive empirical study of holistic modeling and error prediction in data cleaning using Markov
logic. Modelling data quality rules in a probabilistic way enables statistical inference of data quality errors. Our
experimental evaluation reveals that the simultaneous treatment of data cleaning rules leads to higher accuracy in
data curation. We show that joint inference for data correction prediction outperforms sequential execution of data
cleaning rules on a dataset comprised of hundred thousands tuples with 10% of noisy values, and results in an
improved F1-score of 0.95 (Section 4).

2. CHALLENGES IN DATA CLEANING

Next, we showcase limitations of rule-based data cleaning. Therefore, we introduce the following data cleaning sce-
nario:

Table I. CUSTOMER table (with errors)

id firstname lastname street city zipcode phone

c1 Ron Howard 1 Sun Dr. Los Angeles 90001 12345
c2 Max Miller 12 Hay St. Napa 94558 11234

Table II. TRANSACTION table (with errors)

id item firstname lastname street city zipcode phone

t1 iPhone6 R. Howard 1 Sun Dr. L.A. null null
t2 Galaxy5 null Miller 12 Hay St. null 94558 11234
t3 Nexus5 Howard Ron null null 90001 12345

Consider two relational tables: the CUSTOMER table (c.f., Table I) records address and contact details of each
customer. The TRANSACTION table (c.f., Table II) records each purchased item, together with the personal details
entered by the customer during the purchase. The example data has several quality issues: (1) Missing values in the
TRANSACTION table, indicated by null values; (2) incorrect values, e.g., the customer “Ron Howard” is involved in
Paper 23, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016.
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Fig. 1. Overview of the proposed data cleaning approach

transaction t3 , but in the transaction table his name is falsely recorded as “Howard Ron”; (3) semantic heterogenities,
which represent the same concept, e.g., the city of “Los Angeles” is sometimes entered into the table as “L.A.” and the
first name “Ron” is once abbreviated as “R.”.

The example table is heavily corrupted, it is very hard to define data cleaning rules which do not introduce errors.
Instead, we would prefer to define a number of soft rules that aggregate evidence.

For the firstname field in transaction t1 in Table II, we could define a rule indicating that the values “R.” and “Ron”
refer to the same name, but cannot always be certain whether this is the case. To include additional evidence, we create
the following matching dependency (MD) [Fan and Geerts 2012] to link transaction t1 to customer c1:

md : TRANSACTION[lastname, city, street] = CUSTOMER[lastname, city, street] ∧TRANSACTION[firstname] ≈ CUSTOMER[firstname]

→ TRANSACTION[firstname] 
 CUSTOMER[firstname]

This rule (see operators explanation in Table III) shows how the notion of similarity may be included in rules, but
only within first-order logic, i.e., the similarity condition is either true or false. In reality, we are able to determine
a more fine graded similarity, i.e., some types of similarity that we deem to be more probable (“L.A.” and “Los
Angeles”), and others that are less probable (“R.” and “Ron”). Moreover, we may have different levels of confidence
regarding the functional dependencies or matching dependencies that we define.

The functional dependency [Abiteboul et al. 1995]: fd : TRANSACTION([city, phone] → [street, zipcode]) de-
clares that the two fields city and phone in the TRANSACTION table together uniquely determine the two fields
street and zipcode. Although two instances of the customer “Ron Howard” in Table II are recorded, one is miss-
ing the phone value. In this case, the rule only applies when combined with additional data cleaning rules. The rule
cfd : TRANSACTION([zipcode] → [city], T1 = (90001 || Los Angeles)) denotes conditional functional dependency
(CFD) [Fan and Geerts 2012] and states that every tuple in which the value for zipcode equals 90001 must have its
city attribute set to “Los Angeles”. In our example in Table II, this rule corrects the null value in transaction t3.

3. PROPOSED APPROACH

We propose to model data cleaning rules in the Markov logic [Domingos and Lowd 2009] formalism and to leverage
probabilistic inference for data cleaning. Markov logic is a knowledge representation system that combines first-order
logic as a declarative language with probabilistic graphical models (undirected Markov Networks). We perform proba-
bilistic inference on top of this representation. In the following sections, we illustrate how to transfer data cleaning rules
into Markov logic and how to leverage probabilistic inference to determine data repair operations for a given dataset.
Figure 1 shows a high-level overview of our approach. We distinguish between three major components: I) Rule-
based Data Quality Management, where we specify data-agnostic quality rules to address different data quality issues;
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Fig. 2. In context of a data cleaning workflow, the Markov Logic Network grounding process consists of two phases: 1) MLN definition by (a)
fixing MLN schema by defining observed and hidden predicates (b) domain, which is created from the existing data by considering the MLN
schema, and (c) specification of weighted first-order logic formulas that represent data cleaning rules; 2) MLN instantiation by assigning truth
values to all possible instantiations of the MLN predicates by consideration of the domain (Random Variables) and using these ground atoms in
formulas. These ground formulas constitute a Markov Network in order to compute MAP inference and to estimate the most likely data repairs.

II) Statistical Inference with Markov Logic to compute data repairs based on probabilistic inference performed by the
Markov logic framework; and the III) Data Layer, which interacts with the previous two components by providing
both integrity constraints and evidence data from a number of data sources including relational and semi-structured
data for Markov logic.

3.1 Compilation of Data Cleaning Rules to Predicate Calculus

The base of Markov logic programs is predicate calculus [Genesereth and Nilsson 1987], because Markov logic con-
sists of first-order logic sentences. Therefore, we discuss a general method to compile formal constraint-based data
cleaning rules into predicate calculus. We define data cleaning rules in the form of CFDs and MDs. For example, we
express φ as first-order logic sentence, given the following functional dependency φ : X → Y [Fagin 1982], [Burdick
et al. 2015]:

∀x, y1, y2, z1, z2R(x, y1, z1) ∧R(x, y2, z2)⇒ y1 = y2 (1)

In following, we show that first-order logic sentences are crucial for the compilation of data cleaning rules into
predictive models. Consider the logical equivalence of the data quality rule φ in 1 as a composite component, consisting
of subcomponents such as atomic sentences (attribute), logical and quantified sentences (RHS and LHS in FD φ). We
choose symbols that designate the elements of our conceptualization in order to describe the structure of φ in predicate
calculus. In connection to the fundamentals of data quality management [Abiteboul et al. 1995], [Fan and Geerts
2012], we define the vocabulary to use for the compilation of data quality rules:

The Universe of Disclosure is specified as the set of all objects from domain dom(U) that is fixed for the set of
attributes attr(R). A term names an object in the universe of discourse. We define variables to denote arguments in
atoms and constants to denote data constants of a particular domain dom(Ui) of the i-th attribute Ui ∈ attr(R). To
designate a tuple in relation R(x1, x2, . . . , xn), we use the atomic sentences attr-X1(id, v1) . . . attr-Xn(id, vn) where
attr-Xi(id, vi) means that vi is the attribute value of the i-th attribute inR(x1, x2, . . . , xn) of the id-th tuple in relation
R. Relation constants denote relations between several objects:
Paper 23, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016.
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Similarity: similar(x1, x2) means that x1 similar to x2 (e.g., by using different similarity measures like cosine or
Jaccard similarity).
Equality: equal-X(id1, id2) means that the values of the attribute X of two tuples id1 and id2 should be equal.
Matching: match-X(id1, id2) means that values of two tuples id1 and id2 of the attribute X are identified to match.
Custom Predicate: encodes diverse semantic constraints (e.g. contains, between, less etc.), which are not part of the
data constraints.

Given this vocabulary, we describe our conceptualization of the data quality rules with predicate-calculus sentences.
For example, we compile the functional dependency φ : X → Y and the first-order logic sentence in Formula 1 to the
corresponding Markov logic formula as follows:

attr-X(id1, x) ∧ attr-X(id2, x)⇒ equal-Y(id1, id2)

Analogously, we translate a matching dependency µ : S1[x1] ≈ S2[x2]→ S1[y1] 
 S2[y2] on a database instance
D with two relational schemas S1 and S2 as follows:

attr-X/S1(id1, x1) ∧ attr-X/S2(id2, x2) ∧ similar(x1, x2)⇒ S1/match-Y/S2(id1, id2)

If we specify a matching dependency using two relations, we need to mark the attributes corresponding to a relation
with that relation attr-X/R. Furthermore, as introduced above, we use predicates to represent operators as shown in
Table III.

Table III. Markov logic predicates used for data
cleaning.

Concept Operator Predicate

Similarity S1[x1] ≈ S2[x2] similar(x1, x2)

Equality y1 = y2 equal-Y(id1, id2)
Matching S1[y1] 
 S2[y2] S1/match-Y/S2(id1, id2)

We assume that integrity constraints have already been determined by methods reviewed in [Liu et al. 2012], or have
been specified by domain experts manually. To demonstrate the compilation of the data cleaning rules into Markov
logic, have a look at the CFD from the motivation example in Section 2:

fd : TRANSACTION([city, phone]→ [street, zipcode])

To enable straightforward compilation, we assume that CFDs are provided in normal form. This means if ψ(X →
Y1, Y2, . . . , Tp), then ψ will be decomposed into several CFDs whereRHS(ψ) (right hand side of ψ) becomes a single
attribute: ψ1(X → Y1, Tp), ψ2(X → Y2, Tp) . . . . Following the normalization rule for functional dependencies, we
split the fd rule into two rules:

cfd1 : TRANSACTION([city, phone]→ [street], t1 = ( , ‖ ))

cfd2 : TRANSACTION([city, phone]→ [zipcode], t2 = ( , ‖ ))

In accordance with [Fagin 1982], we represent cfd1 and cfd2 as two first-order logic formulas:

1) ∀ city, phone, street1, street2TRANSACTION(city, phone, street1) ∧TRANSACTION(city, phone, street2)⇒ street1 = street2
2) ∀ city, phone, zip1, zip2 TRANSACTION(city, phone, zip1)∧TRANSACTION(city, phone, zip2)⇒ zip1 = zip2

Once we have formulated our integrity constraints as first-order logic formulas, we translate them into Markov
logic syntax. Given that every attribute from the schema TRANSACTION is expressed as a predicate, we need two
predicates, namely city(id, city) and phone(id, phone) to encode the LHS of fd. They indicate the values for the fields
city and phone for each tuple (Table IV gives the full example of predicate translation and data translation from
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Table IV. MLN declaration process and creation of grounded
atoms for Tuple 2 in the TRANSACTIONS example table.

Phase Example

1) Schema definition
t2(item, firstname, lastname, street,
city, zipcode, phone)

2) Observed predicates
MLN declaration

firstname(id, firstname)
lastname(id, lastname)

street(id, street)
city(id, city)
zip(id, code)

phone(id, num)

3) Data
t2(Galaxy 5, NULL, Miller,
12 Hay St., NULL, 818, 11234)

4) Grounded (evidence) atoms

item(2,Galaxy5)
lastname(2,Miller)
street(2, 12HaySt.)
zip(2, 818)
phone(2, 11234)

into grounded atoms). Additionally, we define two predicates for our data quality rule, namely equal-street(id, id) and
equal-zip(id, id). These predicates model equality of two values of the attribute street respectively zip (as denoted by
the fd rule above):

1)city(id1, city) ∧ city(id2, city) ∧ phone(id1, phone)∧phone(id2, phone)⇒ equal-street(id1, id2)

2)city(id1, city) ∧ city(id2, city) ∧ phone(id1, phone)∧phone(id2, phone)⇒ equal-zip(id1, id2)

Note that using the same arguments in predicates city(id, city) and phone(id, phone) encodes equality of the cor-
responding values into the Markov logic program. The two different tuples are distinguished by id1 and id2. These
data quality rules form the basis for a Markov logic program. A particular advantage of Markov logic is its modular-
ity while modeling. We consider each declared data quality rule as an ”atomic” probabilistic model. In combination,
these small models form a ”compound” model. Having declared the data quality rules by capturing all correlations and
constraints, we now infer potential predicates, such as equal-street(id, id). This predicate holds the information about
possible repairs on the attribute street in the TRANSACTIONS table. Reasoning about such hidden predicates allows us
to decide which attributes get a particular repair.

3.2 Data Repair as Joint Inference

Markov logic defines a knowledge representation system that combines first-order logic as a declarative language
with probabilistic graphical models (undirected Markov Networks MLNs) on top of which we perform probabilistic
inference. Semantically, a MLN is a log-linear model, which defines the probability distribution over possible worlds,
in our case all possible repairs in the database.

We create MLNs by writing a set of first-order logic rules (c.f., Section 3.1) with weights by using predicates
that represent relations between these objects. In order to specify soft and hard rules in our experiments we set the
weight of soft rules to 1.0, whereas hard rules are assigned infinite weights. We distinguish between observed and
hidden predicates. Observed predicates are relations between objects which exist in a given dataset: attr-X1(id, v1)
. . . attr-Xn(id, vn). The predicate attr-Xi has value vi on tuple id. In addition, an MLN may have a number of hidden
predicates, which are not present in the input data, but may be inferred through rules. In our case, equal-Y(id1, id2)
and S1/match-Y/S2(id1, id2) are hidden. We define the MLN in such a way that reasoning about hidden predicates
given evidence and data cleaning rules allows us to determine data repair operations. In other words, we perform an
inference task as prediction for data cleaning. An important step in our method is the grounding of the MLN (illustrated
Paper 23, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016.
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Table V. Evaluation of the data repair method based on Markov logic applied on the HOSP and TPC-H datasets. (a)-(c) Data repair on
HOSP with an extended Markov logic method. (d)-(f) Experimental study of the Markov logic data cleaning on synthetic dataset TPC-H.
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in Figure 2 in details). We take the content of the database (a set of tuples) and produce a set of grounded predicates by
replacing predicate variables with domain constants. We use these groundings in the joint inference for data cleaning.

Given an MLN that models data cleaning rules, let q ∈ Ln denote a hidden predicate with n literals (random
variables) L1, ..., Ln, where each literal Li has 2 discrete states, Li = {0, 1}. Then, the MLN is a joint distribution
on L1, ..., Ln that is specified by a vector φ(q) of d integer values, where each element represents the number of
true groundings of the corresponding literal in the formula and d denotes the maximum number of literals in a given
formula. Additionally, we have a weight/parameter vector θ ∈ Rd:

Pr (q|θ) = 1

Z(θ)
exp (〈θ, φ(q)〉) , Z(θ) =

∑
q∈Ln

exp (〈θ, φ(q)〉)

where 〈θ, φ(q)〉 denotes a dot product. Z(θ) is the normalization constant also called the partition function. Since the
partition function is a constant and the exponential is monotonic, finding the MAP assignment in our data cleaning
problem is equivalent to finding the assignment qM that maximizes the probability Pr (q|θ).

The output of the inference are data repair operations; e.g., the hidden predicate equal-street may be determined
to have (among other groundings) the following likely value: equal-street(1, 3), indicating that the street field for
transaction 3 should have the same value as the street field of transaction 1. In this case, the data repair operation is to
replace the NULL value in transaction 3 with the address “1 Sun Dr.”. The inference produces the most likely state of
the entire Markov Logic Network with regards to all integrity constraints. The probabilities for the hidden predicates
are therefore influenced by all defined data quality rules. By running the inference over the entire database, we predict
the most likely data repairs for our dataset by determining the most likely grounding of the hidden predicates and this
reduces to computing MAP inference on the MLN model.

The difficulty in designing algorithms for MAP inference arises when finding an efficient way to reason about
the large number of groundings. Amongst the numerous techniques that are available to solve MAP inference prob-
lems, we choose to cast the inference problem as an integer linear program (ILP)[Sontag 2010]. Another competitive
approach called message passing performs belief propagation along the edges of the graphical model. Although, mes-
sage passing is straightforward to implement, it has troubles converging [Schwing et al. 2011], [Felzenszwalb and
Huttenlocher 2006] and tends not to give as good results as ILP [Noessner et al. 2013].
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Table VI. Scalability of the data cleaning
for TPC-H and HOSP datasets (with fixed

noise 4%).

dataset numer
of tuples

number
of formulas

runtime
(sec)

63K 21 242
HOSP 83K 21 477

143K 21 1107

20K 15 41
TPC-H 40K 15 131

100K 15 732

Table VII. Markov logic predicates used in data quality rules.

HOSP TPC-H MSAG

observed
predicates

providerNr/ HOSP(hid, pn)
hospitalName/ HOSP(hid, n)
address/ HOSP(hid, add)
city/ HOSP(hid, c)
state/ HOSP(hid, st)
zipCode/ HOSP(hid, code)
phoneNumber/ HOSP(hid, numb)
condition/ HOSP(hid, cond)
measureCode/ HOSP(hid, mcode)
score/ HOSP(hid, score)
zip/ ZIPCODE(zid, code)
state/ ZIPCODE(zid, st)

custKey(id, key)
name(id, n)
addr(id, add)
natKey(id, nkey)
phone(id, ph)
acc(id, a)
mrkt(id, m)
orderKey(id, okey)
totalPrice(id, p)
orderDate(id, d)
orderPriority(id, pr)
clerk (id, c)

publishYear(paperid, pubyear)
author(paperid, authorid)
affiliation(paperid, affilid)
inRange(pubyear, pubyear)
originAffiliationName(affilid, oname)
normalAffiliationName(affilid, nname)

hidden
predicates

equal-HospitalName/ HOSP(hid, hid)
equal-Address/ HOSP(hid, hid)
equal-City/ HOSP(hid, hid)
equal-State/ HOSP(hid, hid)
equal-ZipCode/ HOSP(hid, hid)
equal-PhoneNumber/ HOSP(hid, hid)
equal-Condition/ HOSP(hid, hid)
HOSP/match-State/ ZIPCODE(hid, zid)
HOSP/match-ZipCode/ ZIPCODE(hid, code)

equal-Names(id, id)
equal-Addr(id, id)
equal-Natkey(id, id)
equal-Phone(id, id)
equal-Acc(id, id)
equal-Mrkt(id, id)
match-Phone(id, id)
match-Addr(id, id)

equal-Affiliation(paperid, paperid)
equal-OriginNames(oname, oname)
equal-OriginNamesByPaperId (paperid, paperid)
equal-NormalNames(nname, nname)
equal-NormalNamesByPaperId (paperid, paperid)
missingOriginName(paperid, oname)

Table VIII. F1 measure comparison of the jointly modeled data cleaning
rules based on CFD and MD to the baseline system [Dallachiesa et al.
2013]. The experiments conducted on fixed HOSP data size 90K and

different noise level from 2% to 10%.
System 2% 4% 6% 8% 10%

Baseline system [Dallachiesa et al. 2013] 0.69 0.71 0.75 0.83 0.85
SLR based approach 0.82 0.89 0.90 0.91 0.93

4. EXPERIMENTAL STUDY

We evaluate our method through an experimental study on well-known datasets, which have been used for assessing
other data cleaning systems [Dallachiesa et al. 2013], [Chu et al. 2013], [Geerts et al. 2013], [Bohannon et al. 2005].
Paper 23, ICIQ 2016, Ciudad Real (Spain), June 22-23, 2016.
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4.1 Experimental Setting

We conduct our experiments on the following real-life and synthetic datasets.
HOSP. The HOSP dataset has been published by the US Department of Health & Human Services1. This dataset

comprises 9 attributes: addr, city, cond, country, hospname, measure, phone, state, zip. We use 6 CDFs and one MD,
which have been manually designed. These data quality rules have been generously provided to us by the researchers
Dallachiesa et al. from [Dallachiesa et al. 2013]. They define an MD that makes use of another table, namely US ZIP
codes: ZIPCode2. This additional dataset contains 43K tuples with two attributes: zip and state. The MD defines that
if two tuples from hosp and ZIPCode possess the same zip code values, and the state values are distinct, then the state
value from the ZIPCode table should be adopted.

TPC-H. The TPC-H3 dataset is well-known dataset used in decision support benchmarks for databases. For our
experiments we use two relations, Customer and Orders, which we join in order to introduce duplications on the
Customer relations data. The resulting dataset consists of 17 attributes of schema T : c custkey, c name, c address,
c nationkey, c phone, c acctbal, c mtksegment, c comment, o orderkey, o custkey, o orderstatus, o totalprice,
o orderdate, o orderpriority, o clerk, o shippriority, o comment.

Dirty Data. We introduce noise into the relational datasets HOSP and TPC-H to produce dirty data. Our methods
handles several kinds of noise: missing values, errors from the active domain, and typos. We consider the initial
data to be clean and therefore use it as ground truth. Additionally, we manually assess that the ground truth datasets
are consistent with respect to the CFDs and MDs. Afterwards, we insert noise into the datasets. We conduct our
experiments on the two datasets with different noise rates ranging from noi%=2% to noi%=10%. We introduce this
noise into different dataset sizes ranging from one thousand to one hundred thousand data points. The noise rate depicts
the ratio of the number of erroneous values to the total number of values in the dataset. We only introduce noise to the
attributes which are involved in data quality rules.

MICROSOFT ACADEMIC GRAPH (MSAG). Data quality issues are massively present in the context of the web
due to the integration of heterogeneous data from different sources. Thus we include a third dataset - MICROSOFT
ACADEMIC GRAPH (MSAG)4 [Sinha et al. 2015] - to assess our method on web data cleaning. MSAG is a heteroge-
neous entity graph comprised of six types of entities that model real-life academic relationships: field of study, author,
institution, paper, venue, and conference instances. The raw data has been obtained from different sources (academic
publishers and web-pages indexed by Bing search engine) and is organized in the form of a connected graph schema.
For our experiments, we select three entities from the whole graph: author, organization and paper entities. This part
of MSAG is of interest because it reveals important characteristics of the extracted web data, such as missing and
inconsistent values. In particular, we discover that there are inconsistencies in organization names for the same author.
Furthermore, a number of entries suffer from missing affiliation by an author. In order to model and run data cleaning
on this web dataset, we consider the attributes of the selected entities in MSAG, as presented in Table IX.

Table IX. Entities Paper, Author and
Organization and their attributes that have

been used in experiments for Web data
cleaning with Markov logic.

Paper Author Organization
paper id author id affiliation id

publish year origin name
normalized name

1http://www.medicare.gov/hospitalcompare/Data/Data-Download.html
2http://databases.about.com/od/access/a/zipcodedatabase.htm
3http://www.tpc.org/tpch/
4http://research.microsoft.com/en-us/projects/mag/
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Data Quality Issues. We reproduce data quality issues that we observe in MSAG: namely missing values. In
order to a create gold standard to assess our data cleaning method, we proceed in the following way: We remove
one affiliation entry from each author if there are more than three publications made by the same affiliation. Thus, we
create a dataset with missing affiliation id, origin name, and normalized name attributes. We thereby obtain graph data
where 37% of all authors have one missing edge to theirs affiliation; 27% are missing two edges for theirs institutions;
15% miss three edges. Almost 21% of authors suffer from missing more than three edges.

Evaluation metrics. To assess the accuracy of the data cleaning framework on relational data, we use Precision
(P ), Recall (R), and F-measure (F1). We acquire master data (referred to as gold standard), which is clean and
correct. We assess the efficiency of our method by running experiments on datasets of different sizes ranging from
one thousand to one hundred thousand tuples each. We leverage a state-of-the-art inference engine for Markov logic
called RockIt [Noessner et al. 2013] and the Gurobi solver version 5.6.3. All our experiments apply MAP inference for
statistical relational learning. We execute the experiments on a Linux server with an Intel 3.4GHz 4 Cores CPU and
16 GB of RAM.

4.2 Holistic Data Cleaning: Deduplication and Accuracy

In this experiment, we show that capturing the data issue interaction increases the overall accuracy in data cleaning. In
particular, we study the connection between deduplication and improved data accuracy. We evaluate the accuracy of
our method on different noise rates and different dataset sizes. We introduce noise by adding either typos or replacing
values of attributes (active domain errors). We do not distinguish between these two kinds of errors. Table V shows the
results of using Markov logic programs for data cleaning. The plots (a)-(c) illustrate the results for HOSP, while plots
(d)-(f) depict the results for TPC-H.

In the first series of experiments, we fix the size for HOSP and TPC-H to 90K respectively 20K tuples, while varying
the noise rate from 2% to 10%. The x-axis in Table V (a) and (d) represents the noise rate, the y-axis shows the
corresponding F1 measure values. First, we compare the results of separate executions of CDFs and MDs. After that
we re-run the experiments with combined CFDs and MDs. When CFDs and MDs are modeled together in a single
model for identifying dirty data, they are treated jointly and hence our method automatically picks the order of the
data quality rules execution. The provided results in Table V (a) and (d) clearly demonstrate that jointly modeling
CDFs and MDs improves the overall result because joint execution involves two processes simultaneously: matching
(for values deduplication) and repair (for erroneous values). For this reason repairing supports matching, and by
identifying matches we are able to fix erroneous values.

In particular, the low F1 score of MDs in Table V (a)-(b) and (d)-(e) results from low precision and high recall.
However, By adding CFDs to MDs the overall F1 score improves. The counterintuitive upward trend of the F1 values
while increasing noise in Table V (a) and (d) results from the cutting plane inference (CPI) [Riedel 2008] behavior. In
all experiments, we use the CPI algorithm, which leverages optimization techniques such as integer linear program-
ming (ILP) [Riedel 2008], [Noessner et al. 2013] by maximizing the objective function under set of constraints (every
formula in MLN is being converted into an ILP constraint). CPI performs exact MAP inference and is guaranteed to
converge in a finite number of steps [Riedel 2008]. For almost perfect data with less noise, the algorithm requires only
a short runtime and converges fast by finding the approximately maximum objective score. This however results in
detecting less data violations. Looking at the runtime in Table V (c) and (f), we recognize that, with increasing noise,
the underlying solver calculates a solution until the maximum number of iterations is reached. For that reason, more
data quality rule violations are encountered.

In the second series of experiments, we fix the overall noise rate to 10% on HOSP (c.f., Table V (b)) and to 2% on
the synthetic TPC-H (c.f., Table V (e)). We run three combinations of data cleaning rules on dataset sizes ranging from
one thousand to one hundred thousand tuples. In Table V (b) respective (e), the x-axis represents the data size and the
y-axis shows the F1-measure values. These two plots in (b) and (e) tell us that due to convergence guarantees of CPI
our data cleaning method delivers robust results independently from the data size despite of the increasing runtime of
the algorithm (c.f., Table V (c) and (f)) by growing the size of the dataset.
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Table X. (a) MSAG cleaning: Recall and F1 values; (b) MSAG Experiments
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Our results (c.f., Table VIII) are in line with the observations made in [Dallachiesa et al. 2013]. There, the NADEEF
system demonstrates an overallF1-measure improvement. With a holistic treatment of FDs and MDs, NADEEF achieves
an F1-measure of 0.85. We compare our results to theirs, as our results are based on the identical data cleaning prob-
lem, the same evaluation methodology, as well as the same dataset HOSP. Although their system demonstrates better
performance for MD rules than ours, we get higher F1-score values for the joint execution of the deduplication and
accuracy rules: We achieve an overall performance of 0.93 and 0.99 for HOSP respectively TPC-H datasets. Therefore,
we report an accuracy improvement by a factor of 1.2 against this reference system.

We conclude from this experiment that the joint modeling and joint inference improves the accuracy achieved by
running single data quality rules. We also study the runtime of our method for different data sizes and noise rates.
Table V (c) for HOSP and Table V (f) for TPC-H show the general trend for the runtime values (y-axis) for every
data size (x-axis) setting. Each plot denotes different noise percentages. We see that the runtime on both, real-life and
synthetic data, shows an upward trend. Cleaning datasets with joint inference will take longer the larger the data is
and the more noise it contains. In particular, for the real-life HOSP data of size 100K with increasing noise rate, we
observe that the runtime increases by a factor 1.2 for every noise setting.

Additionally, Table VI provides detailed runtime values for different data sizes of HOSP and TPC-H by fixing the
noise to 4%. We observe that while we increase the data size from 20 to 143 thousands tuples, the average runtime
growth rate is 1.9. This is again a characteristic of the underlying MAP inference algorithm [Riedel 2008]: Having
less noise causes the algorithm converge faster, hence results in faster run time values for data with less noise.

4.3 Holistic Data Cleaning: Missing Value and Consistency Issues Interaction

We extend the applicability of Markov logic to web data and provide initial results on cleaning the highly imperfect
graph structured MSAG dataset. We study the efficiency of data cleaning on web data by leveraging the connection
between information completeness and data consistency. These two data issues interact with each other: missing values
imputation helps to fix inconsistencies, and by correcting values, we identify missing entities.

In this experiment, we partition our data and run inference for each author in isolation. We obtain a subgraph per
Author-entity with at least 10 Paper-Author edges. Next, we randomly select 600 Author-entities.

Table X (a) shows the accuracy of our approach on the sample of MSAG dataset. We show the accuracy as relation
between recall (x-axis) and F1-score (y-axis). We distinguish between three kinds of Author-nodes (which are marked
separately in Table X (a)): nodes with one or two missing Author-Organization edges, nodes with three or four miss-
ing values for the Author Organization connection, and finally nodes with more than 5 missing edges. Additionally,
Table X (b) provides another perspective on this experiment by revealing the exact distribution of corrected Author-
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entities (x-axis) by F1-score (y-axis). The result shows the following: The method demonstrates overall F1 score
greater than 50% and recall greater than 78% for Author-entities with one to two missing edges. Starting from three
missing edges, we still achieve a recall ranging from 0.8 to 1.0, though the precision (and therefore F1 score) drops.
This happens because our approach selects more false positives with an increasing number of missing values. This
experiment tells us that our method produces satisfying results on web data with very little noise only (e.g., missing
values). In future work, extending data cleaning rules with domain specific information should be studied further in
order to reduce the false positives rate. We are not able to compare ourselves to another system directly here, because
the MSAG dataset has only recently been published and related work in data cleaning systems only provides results
for cleaning relational data.

4.4 Impact of Rule Execution Order

Next, we study the effects of different orders of data cleaning rule execution, to show that specifying the optimal order
of rules manually is hardly achievable [Dallachiesa et al. 2013]. We investigate whether it is beneficial to leverage joint
inference for simultaneous rule execution instead of manual specification of the optimal order of data cleaning rule
execution. We verify the result in Figure 3 by investigating the F1-score (y-axis) distribution of various data quality
settings executed on varying noise rates (x-axis). We run our Markov logic program on the attributes state and zip of
the HOSP dataset because they both participate in CFD and MD. Furthermore, we fix the dataset size at 90,000 tuples
with a noise rate varying from 2% to 10%. Each experiment consists of three parts: First, we run the MD rules and then
the CFDs, which gives us the overall worst accuracy. This results agree with the previous experiment about the joint
modeling data cleaning rules (c.f., Table V (a) and Section 4.2). The MD rules perform poorer than CFDs. The overall
F1 score ranges between 0.01 and 0.02, which we explain by low precision and recall values due to error propagation
from MDs to CFDs. In the second part of the experiment, we change the sequence of execution to running CFD rules
before MD rules. This slightly improves the F1 scores by increasing them from 0.1 to 0.3 for different noise values.
We attribute this to the fact that CFDs initially detect more violations. However, analogous to the previous part, error
propagation leads to unsatisfactory results.

In the third and final part of the experiment, we perform the simultaneous execution of CFD and MD rules, where
we model matching (for values deduplication) and repair (for erroneous values) processes together. Here we see a
rapid increase of all accuracy values from 0.86 for 2% noise to 0.95 on 10% noise in comparison to the previously
performed sequential execution of data cleaning rules. The growing trend of the F1 scores has the same explanation as
the results of the experiment about holistic data cleaning (c.f., Table V (a) and Section 4.2): namely the functionality
of the CPI algorithm. These results confirm our hypotheses that it is highly beneficial to execute multiple data cleaning
rules simultaneously.

The NADEEF system [Dallachiesa et al. 2013], which also treats various types of rules holistically, ran an analogous
experiment. Note that, on data with 10% noise, we improve the F1-score by 10% over the values reported by NADEEF.

4.5 Modeling Data Cleaning Rules

To assess the usability of our method, we adopt the research methodology from UMUX-LITE [Lewis et al. 2013]
and discuss two items from the UMUX-LITE questionnaire: ”Markov logic capabilities meet the requirements of data
cleaning systems” and ”Markov logic is easy to use”. As explained in the previous Sections 3, 4.2, 4.3 and 4.4, Markov
logic meets the main requirements of data cleaning systems such as holistic data quality rules treatment [Fan et al.
2014], [Dallachiesa et al. 2013], automation [Stonebraker et al. 2013] and heterogeneous rules incorporation [Chu
et al. 2013]. In the following, we focus on the second item from UMUX-LITE - ”Markov logic is easy to use” - and
provide our experience in how we modeled data cleaning rules by using Markov logic on all three datasets HOSP,
TPC-H and MSAG.

HOSP Quality Rules. In our data cleaning method for the HOSP data, we use 6 manually designed CDFs and one
MD, which result in 15 normalized CFDs. One MD rule is transformed into 2 formulas. All data cleaning rules are pos-
itive. Finally, all interleaved rules are translated into 21 Markov logic formulas. In Table XI, we provide an example of
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Fig. 3. The evaluation of the different experimental settings of
the execution order of data cleaning rules translated into Markov
Logic.

Fig. 4. The part of the MSAG dataset illustrating missing orga-
nization values. Markov logic allows us to capture the following
evidence: if two papers of the same author have been published
in the same year, then they may be published by the author of the
same organization. Nodes notation: A - denotes Author entity; O -
Organization and P - Paper entities. Missing edges are marked as
dashed lines.

these data quality rules, which are defined on pairs of tuples. The MD rule is specified on two relations. Markov logic
predicates used for data quality formulas are shown in Table VII. After transforming the 100k HOSP tuples into Markov
logic grounded atoms, the resulting data comprises 1.3M evidence atoms, which are used for inference. We empirically
observe that extending the data quality rules set for additional conditions makes consideration of similar tuples unnec-
essary and reduces the search space and therefore converges much faster than the ”pure” model. This means that each
first order logic formula, which represents the RHS of the normalized data quality rule attr(id1, v1) ∧ attr(id2, v2),
becomes an inverse part !attr(id1, v2) ∧ !attr(id2, v1). This additional part denotes that we consider only tuples with
different values. Here the normalized CFD rules are being compiled as demonstrated in the Table XI.

TPC-H Quality Rules. We write 9 CFDs and 3 MDs for this dataset. One example of the rules is a CFD that states
if two tuples match on c custkey, then they should match on the c name and c address attributes. MDs are designed
on the same schema TPC-H (T, T). These MDs state that if the LHS is similar for any pair of tuples (t1, t2), then the
attribute values on the RHS should be identified. We provide an except of the data quality rules we created for TPC-H
in Table XI. Table VII shows the Markov logic predicates which we use for data quality rules. After transforming the
100k TPC-H tuples into Markov logic grounded atoms, the resulting data comprises 1 Mio evidence atoms, which are
leveraged by the inference.

MSAG Quality Rules. Due to the graph nature of the MSAG data (c.f., Figure 4), we develop data quality rules,
which are based on CFDs, extended CFDs [Chen et al. 2009], and equality axioms, such as symmetry and transitivity.
For the Paper-Author-Organization subgraph we define two CFDs, one extended CFD and 8 additional rules that
comprises equality axioms for hidden predicates. Considering the semantical meaning of the data, we profit from the
ability to add supporting knowledge into the data cleaning process. For example, the CFD M([author id, year]→
→ [affiliation id], t1 = ( , ‖ )) allows us to capture all missing affiliations by the same author, which published in
the same year. In real life, we know that in academia an average contract lasts around 2-3 years. Therefore we will
extend our search range by incorporating this knowledge in the form of a predicate inRange(year, year). Additionally
we enable capturing more missing values by adding equality axioms. For example, the hard rule
equal-Affiliation(id1, id2) ∧ equal-Affiliation (id2, id3)⇒ equal-Affiliation(id1, id3) denotes a transitive relationship
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Table XI. Modeling data cleaning rules as Markov logic programs (an excerpt). To specify soft rules, the weights wi are set to 1.0 and hard rules are
marked as rules with infinite weights: ∞.

Dataset Data Cleaning Rules Markov Logic Formulae

HOSP
cfd1 : HOSP([zip]→ [state, city], t1 = ( ‖ , ))

w1 : zip/ HOSP(id1, code) ∧ zip/ HOSP(id2, code) ∧
state/ HOSP(id1, s1) ∧ state/ HOSP(id2, s2) ∧
!state/ HOSP(id1, s2) ∧ !state/ HOSP(id2, s1) ⇒ equal-state/ HOSP(id1, id2)

w2 : zip/ HOSP(id1, code) ∧ zip/ HOSP(id2, code) ∧
city/ HOSP(id1, c1) ∧ city/ HOSP(id2, c2) ∧
!city/ HOSP(id1, c2) ∧ !city/ HOSP(id2, c1) ⇒ equal-city/ HOSP(id1, id2)

md1 : HOSP[zip] = ZIPCODE[zip] ∧ HOSP[state] 6= ZIPCODE[state]

→ HOSP[state] 
 ZIPCODE[state]

w3 : zip/ HOSP(id1, code) ∧ zip/ ZIPCODE(id2, code) ∧
state/ HOSP(id1, s1) ∧ state/ ZIPCODE(id2, s2)
⇒ HOSP/match-State/ ZIPCODE(id1, id2)

TPC-H
cfd1 : T([c custkey]→ [c name,c address], t1 = ( ‖ , ))

w1 : custKey(id1, key) ∧ custKey(id2, key)∧
name(id1, n1) ∧ name(id2, n2) ∧
!name(id1, n2) ∧ !name(id2, n1)⇒ equal-Names(id1, id2)

w2 : custKey(id1, key) ∧ custKey(id2, key)∧
addr(id1, addr1) ∧ addr(id2, addr2) ∧
!addr(id1, addr2) ∧ !addr(id2, addr1)⇒ equal-Names(id1, id2)

md1 : T[c address] = T[c address]→ T[c phone] 
 T[c phone]

w3 : addr(id1, addr) ∧ addr(id2, addr) ∧
phone(id1, phone1) ∧ phone(id2, phone2) ∧
⇒ match-Phone(id1, id2)

MSAG

cfd1 : M([author id, year]→ [affiliation id], t1 = ( , ‖ ))
w1 : author(pid1, aid1) ∧ author(pid2, aid2)∧

publishYear(pid1, y) ∧ publishYear(pid2, y)⇒ equal-Affiliation(pid1, pid2)

eCfd1 : M([author id, year]→ [affiliation id],

t1 = ( , diff( ) ≤ 2 ‖ ))

w2 : author(pid1, aid1) ∧ author(pid2, aid2)∧
publishYear(pid1, y1) ∧ publishYear(pid2, y2)∧
inRange(y1, y2)⇒ equal-Affiliation(pid1, pid2)

symmetry :
∞ : equal-Affiliation(pid1, pid2)⇒ equal-Affiliation(pid2, pid1)

transitivity :

∞ : equal-Affiliation(pid1, pid2) ∧ equal-Affiliation(pid2, pid3)
⇒ equal-Affiliation(pid1, pid3)

between three different entities Organization. In total, our Markov logic program then consists of 21 lines of code (we
provide an excerpt in Table XI).

This part of our experimental study demonstrates how the expressiveness of Markov logic enables us to model data
cleaning rules.

4.6 Summary

The results of our experimental study indicate that multiple types of data cleaning rules should be considered holis-
tically (c.f., Section 4.2 and 4.3), which confirms previous research [Dallachiesa et al. 2013], [Fan and Geerts 2012].
Adding domain or structural knowledge about data into the Markov logic program improves the quality of data clean-
ing. Furthermore, joint inference enables us to achieve highly satisfactory results without having to define the order of
the execution of the data cleaning rules. We find that joint modeling of data quality rules results in higher accuracy of
data correction (c.f., Section 4.4). By using the probabilistic-logical framework of Markov logic, we benefit from its
flexibility in constraint definition and joint inference over different data repair and matching rules. The direct transla-
tion of data cleaning rules into first-order logic (Markov logic formulas) simplifies the process of writing data cleaning
routines (c.f., Section 4.5).

5. RELATED WORK

Our research builds on previous work from two areas: Data quality management and Statistical relational learning.
Data Quality Management: Holistic data cleaning methods based on integrity constraints and denial constraints

with ad-hoc predicates have also been studied in [Chu et al. 2013]. This approach considers the generalization of
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integrity constraints by translating them into denial constraints. However, denial constraints cannot express inclusion
dependencies, hence in our work, we use the clausal form of the first-order predicate logic to express all kinds of
integrity constraints. A generalization of dependencies was also proposed by the Llunatic system in [Geerts et al.
2013]. They introduce a new language based on equality generated dependencies to standardize the way in which
to express intra- and inter-dependencies. The NADEEFF system from [Dallachiesa et al. 2013] is the system closest
to ours with regard to the coverage of requirements for data cleaning systems. Analogous to our system, they treat
data quality rules holistically. In contrast to NADEEFF, we use first-order logic (declarative approach) to define all
the kinds of data quality rules and, therefore do not need black-boxes in the form of user-defined functions. We
perform data cleaning as an inference process on Markov networks. Statistical inference for data cleaning has been
used by Mayfield and his team in [Mayfield et al. 2010]. Their system ERACER has been designed to perform missing
values imputation. In our work, we also use statistical inference to predict missing values, repair data, and detect
duplicate entries. We model data quality rules based on FDs, CFDs, and MDs. Applying machine learning for entity
deduplication has been demonstrated in [Guo et al. 2010]. The work in [Beskales et al. 2010] uses a probabilistic
model for duplicate detection with uncertain outcomes. Throughout our work we use SRL for detection of all possible
data quality issues. Recently suggested in [Prokoshyna et al. 2015] logical and statistical data cleaning applies metric
functional dependencies as integrity constraint interface and proposes a strategy to choose a high-quality minimal
repair. Assessing the effectiveness of data cleaning by introducing the statistical distortion metric is investigated in
[Dasu and Loh 2012]. The most recent work in data curation is the Data Timer System [Stonebraker et al. 2013],
which is an end-to-end system that performs massive data curation and data deduplication by combining two elements:
machine learning and expert (human) feedback. In our work, we do not require human input to achieve high accuracy
results, instead, we fully rely on the MAP-inference results to predict errors. Using machine learning and likelihood
methods for cleaning noisy databases by predicting possible data updates has been introduced in SCARE system
[Yakout et al. 2013]. In contrast to SCARE, our solution is capable of modeling and predicting not only missing values
imputation and data consistency but also data deduplication. Recently proposed declarative approach in [Burdick et al.
2015] to data deduplication adopts link-to-source constraints and theoretically proofs a connection of entity linking to
a probabilistic framework based on MLN. In our work, we empirically show that MLN based data cleaning is a natural
fit for solving data quality issues.

Statistical Relational Learning: An advantage of probabilistic modeling for data quality has been investigated
in [Naus et al. 1972] and [Chen et al. 2011]. Markov logic as a formalism for joint inference has been successfully
used in a number of tasks, including natural language processing [Riedel and Meza-Ruiz 2008], ontology alignment,
data integration [Noessner et al. 2013] and co-reference resolution [Poon and Domingos 2008]. These research results
demonstrate the advantage of joint modeling vs. pipeline execution. We are the first to apply this formalism to data
cleaning and to show the benefits of a joint data cleaning approach that uses MLNs as a framework for interacting data
quality rules.

6. CONCLUSION

We presented a declarative data cleaning approach based on statistical relational learning and probabilistic inference.
We demonstrated how integrity constraints, expressed as first-order logic formulas, are translated into probabilistic
logical languages, allowing us to reason over inconsistencies or duplicates in a probabilistic way. Our approach allows
the usage of probabilistic joint inference over interleaved data cleaning rules to improve data quality. By using a
declarative probabilistic-logical formalism such as Markov logic, we are able to incorporate more semantic constraints
and, therefore, extend traditional data quality rules. The results that we have presented in this paper indicate that taking
a holistic view on data cleaning and that modeling this intuition within a Markov logic framework is a feasible and
effective means to create data cleaning systems.
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