2009 16th Working Conference
on Reverse Engineering

WCRE 2009

Table of Contents

Message from the General Chair... ix
Message from the Program Chairs... x
Organizing Committee.. xii
Steering Committee... xiii
Program Committee.. xiv
Additional Reviewers... xv

Keynotes

Beyond the Lone Reverse Engineer: Insourcing, Outsourcing and Crowdsourcing ...3
Margaret-Anne D. Storey

Legacy and Future of Data Reverse Engineering ... 4
Jean-Luc Hainaut

WCRE 1999 Most Influential Paper

Ten Years Later, Experiments with Clustering as a Software Remodularization Method ... 7
Nicolas Anquetil and Timothy C. Lethbridge

Session I – Mining Software Repositories

Who are Source Code Contributors and How do they Change? ... 11
Massimiliano Di Penta and Daniel M. German

A Study of the Time Dependence of Code Changes ... 21
Omar Alam, Bram Adams, and Ahmed E. Hassan

Relating Identifier Naming Flaws and Code Quality: An Empirical Study ... 31
Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp

Techniques for Identifying the Country Origin of Mailing List Participants ... 36
Ran Tang, Ahmed E. Hassan, and Ying Zou
Session II – Dynamic Analysis

NTrace: Function Boundary Tracing for Windows on IA-32 ... 43
 Johannes Passing, Alexander Schmidt, Martin von Löwis, and Andreas Polze

Recovering Views of Inter-System Interaction Behaviors ... 53
 Christopher Ackermann, Mikael Lindvall, and Rance Cleaveland

Mining Quantified Temporal Rules: Formalism, Algorithms, and Evaluation 62
 David Lo, Ganesan Ramalingam, Venkatesh Prasad Ranganath, and Kapil Vaswani

Session III – Empirical Software Engineering

An Exploratory Study of the Impact of Code Smells on Software Change-proneness 75
 Foutse Khomh, Massimiliano Di Penta, and Yann-Gaël Guéhéneuc

An Empirical Study on Inconsistent Changes to Code Clones at Release Level 85
 Nicolas Bettenburg, Weyi Shang, Walid Ibrahim, Bram Adams, Ying Zou, and Ahmed E. Hassan

Lexicon Bad Smells in Software .. 95
 Surafel Lemma Abebe, Sonia Haiduc, Paolo Tonella, and Andrian Marcus

Session IV – Remodularization and Reengineering

Automatic Package Coupling and Cycle Minimization ... 103
 Hani Abdeen, Stéphane Ducasse, Houari Sahraoui, and Ilham Alloui

Identifying Cycle Causes with Enriched Dependency Structural Matrix 113
 Jannik Laval, Simon Denier, Stéphane Ducasse, and Alexandre Bergel

The Logical Modularity of Programs ... 123
 Daniel Ratiu, Radu Marinescu, and Jan Jürjens

On the Use of ADM to Contextualize Data on Legacy Source Code for Software Modernization 128
 Ricardo Pérez-Castillo, Ignacio García-Rodriguez de Guzmán, Orlando Ávila-Garcia,
 and Mario Piattini

Session V - Change and Defect Proneness

On the Relationship Between Change Coupling and Software Defects 135
 Marco D’Ambros, Michele Lanza, and Romain Robbes

Tracking Design Smells: Lessons from a Study of God Classes .. 145
 Stéphane Vaucher, Foutse Khomh, Naouel Moha, and Yann-Gaël Guéhéneuc

Bug-Inducing Language Constructs ... 155
 Javed Ferzund, Syed Nadeem Ahsan, and Franz Wotawa

Design Patterns and Change Proneness: A Replication Using Proprietary C# Software 160
 Matt Gatrell, Steve Counsell, and Tracy Hall

Session VI – Static Analysis and Security

Automatic Static Unpacking of Malware Binaries .. 167
 Kevin Coogan, Saumya Debray, Tasneem Kaochar, and Gregg Townsend

Computing the Structural Difference between State-Based Models .. 177
 Kirill Bogdanov and Neil Walkinshaw

Extraction of Inter-procedural Simple Role Privilege Models from PHP Code 187
 Dominic Letarte and Ettore Merlo
Session VII – Traceability

Traceability Recovery Using Numerical Analysis .. 195
*Giovanni Capobianco, Andrea De Lucia, Rocco Oliveto, Annibale Panichella,
and Sebastiano Panichella*

Benchmarking Lightweight Techniques to Link E-Mails and Source Code 205
Alberto Bacchelli, Marco D’Ambros, Michele Lanza, and Romain Robbes

Domain Feature Model Recovery from Multiple Applications Using Data Access Semantics
and Formal Concept Analysis ... 215
Yiming Yang, Xin Peng, and Wenyun Zhao

Session VIII - Program Comprehension

Characterizing Evolutionary Clusters ... 227
Adam Vanya, Steven Klusener, Nico van Rooijen, and Hans van Vliet

Autumn Leaves: Curing the Window Plague in IDEs .. 237
David Roethlisberger, Oscar Nierstrasz, and Stéphane Ducasse

Constructing a Resource Usage View of a Large and Complex Software-Intensive System .. 247
Trosky Boris Callo Arias, Pierre America, and Paris Aygeriou

Session IX – Static Analysis

Static Detection of Disassembly Errors ... 259
Nithya Krishnamoorthy, Saumya Debray, and Keith Fligg

Reverse Engineering Sequence Diagrams for Enterprise JavaBeans with Business Method Interceptors ... 269
Alexander Serebrenik, Serguei Roubtsov, Ella Roubtsova, and Mark van den Brand

Computing Structural Types of Clone Syntactic Blocks ... 274
Ettore Merlo and Thierry Lavoie

Reverse Engineering Existing Web Service Applications ... 279
Houda El Bouhissi and Mimoun Malki

PhD Forum

Supporting Feature-Level Software Maintenance .. 287
Meghan Revelle

Enabling the Evolution of J2EE Applications through Reverse Engineering and Quality Assurance ... 291
Fabrizio Perin

Approximate Graph Matching in Software Engineering .. 295
Sègla Kpodjedo

Evolving Software Systems Towards Adaptability ... 299
Mehdi Amoui

SQUAD: Software Quality Understanding through the Analysis of Design 303
Foutse Khomh
Tool Demonstrations

PRECISO: A Reverse Engineering Tool to Discover Web Services from Relational Databases .. 309
 Ricardo Pérez-Castillo, Ignacio García-Rodríguez de Guzmán, Ismael Caballero, Macario Polo,
 and Mario Piattini

Recovering Class Models Stereotyped with Crosscutting Concerns ... 311
 Heitor Augustus Xavier Costa, Paulo Afonso Parreira Júnior, Valter Vieira de Camargo,
 and Rosângela Aparecida Delossso Penteado

SHINOBI: A Tool for Automatic Code Clone Detection in the IDE ... 313
 Shinji Kawaguchi, Takanobu Yamashina, Hidetake Uwano, Kyohei Fushida, Yasutaka Kamei,
 Masataka Nagura, and Hajimu Iida

Enhancing Quality of Code Clone Detection with Program Dependency Graph ... 315
 Yoshiki Higo and Shinji Kusumoto

JavaCompExt: Extracting Architectural Elements from Java Source Code .. 317
 Nicolas Anquetil, Jean-Claude Royer, Pascal André, Gilles Ardourel, Petr Hnětynka,
 Tomáš Poch, Dragoș Petrașcu, and Vladiela Petrașcu

ConAn: A Tool for the Identification of Crosscutting Concerns in Object Oriented Systems
 Based on Type Hierarchy Analysis .. 319
 Mario Luca Bernardi and Giuseppe Antonio Di Lucca

Workshops

R.E.M. 2009 - International Workshop on Reverse Engineering Models from Software Artifacts 323
 Leon Moonen and Tarja Systä

FAMOOSr 2009 - Workshop on FAMIX and Moose in Software Reengineering ... 325
 Simon Denier and Tudor Gîrba

Author Index ... 327
Abstract—There is a real need for SOA principles, such as those offering software as services, in the software industry. In this effort, databases (one of the most important artefacts in Information Systems) can be also seen as a set of services offering access to the stored information. This paper presents PRECISO, a reverse engineering tool to discover and generate Web Services automatically from relational databases. PRECISO makes it possible to modernize legacy databases by introducing them in an SOA context by means of the generated services. This tool was used in a real-life case study in the context of a software company.

Keywords: Database Reverse Engineering, Web Services, MDA, SOA and Pattern Matching.

I. INTRODUCTION

Today, organizations are increasingly forced to share more and more information as part of the basic activity in their daily operations. However, the heterogeneity of Information Systems (IS) is growing every day due to the appearance of new technological paradigms, standards, and environments, making it more and more difficult to share information [3]. Due to these facts and in order to keep their competitiveness level throughout their IS, organizations must be involved in a process of continuous renewal. Therefore, IS developers must constantly and quickly develop and maintain their products in order to meet market requirements [3]. Among all the artefacts that compose information systems, databases are possibly one of the most important elements since they contain all the organizational information and form the basis of decision-making.

This paper presents PRECISO [1], a tool for database re-engineering following the MDA (Model-Driven Architecture) principles [5] to extract Web Services (WS) that show the database as a set of services, offering easy access to the information. PRECISO offers several benefits: (i) it minimizes heterogeneity problems since databases can be integrated in SOA environments; (ii) it advocates the reuse of legacy databases, thus extending the lifecycle of databases; and (iii) it shortens development time because the WS generation is automatic and instantaneous.

II. THE RECOVERY PROCESS

Figure 1 depicts the database re-engineering process, which consists of three main activities broken down into several tasks. DMR is the first activity to create a PSM (Platform-Specific Model) which represents the input relational database. The DMR-1 task recovers metadata from the database and builds the PSM according to an SQL-92 metamodel based on [2]. The DMR-2 task simultaneously discovers the potential services by means of pattern matching [4]. Figure 2 shows the patterns recognized in the database schema and the associated service templates.

![Figure 1. The Web Services recovery process](image-url)
The PRECISO tool automates several tasks in the proposed recovery process (see Figure 1); but it also addresses other necessary issues such as remote database connection, connections to databases from different vendors, project management, graphic display of involved models, testing, reporting, and so on. The proposed architecture, taking into account the previous challenges, is shown in Figure 3.

![Figure 3. Architecture of PRECISO](image)

III. THE ARCHITECTURE

The PRECISO tool automates several tasks in the proposed recovery process (see Figure 1); but it also addresses other necessary issues such as remote database connection, connections to databases from different vendors, project management, graphic display of involved models, testing, reporting, and so on. The proposed architecture, taking into account the previous challenges, is shown in Figure 3.

ACKNOWLEDGMENTS

This paper has been supported by the FPU Spanish Program; by the R+D projects funded by JCCM: ALTAMIRA (PII2109-0106-2463), INGENIO (PAC08-0154-9262) and PRALIN (PAC08-0121-1374); and MITOS (TC20091098) funded by the University of Castilla-La Mancha.

REFERENCES

